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Abstract- There are several attempts to generate chaotic binary sequences by using one-
dimensional maps. From the standpoint of cugineering applications, it is necessary to evaluate
statistical propertics of sample sequences of finite length. In this paper we attempt to evaluate the
statistics of chaotic binary sequences of finite length. The large deviation theory for dynamical
systems is useful for investigating this problem.

1 Introduction

Let A be a closed interval and 7 : 4 — A be a nonlinear map. A real valued sequence
{z1}t=0,1.2.- gencrated by the difference cquation

Tpy1 = T(74) (1)

is perhaps the simplest object which can display chaos. There are several attemnpts to generate
digital sequences by using such a chaotic real valued sequence and apply it to several digital
communication systems [1].[2].

The ensemble average technique enables us to know statistical properties of such digital
sequences of infinite length when the system is ergodic [3].[4]. On the other hand. from the
standpoint of engineering applications, it is necessary to evaluate statistical properties of
sample sequences of finite length.

In this paper we attempt to evaluate the deviation from the statistics of chaotic sequences
originated from the finiteness of their length. The large deviation theory for dynamical
systems [5]-[7] plays an important role in discussing such problems.

2 Chaotic Binary Sequences Generated by One-Dimensional
Maps

In this section we shall explain the one-dimensional map dealt with in this paper and the
method of generating binary sequences using the above one-dimensional maps. Furthermore,
we shall present a framework of evaluating statistical properties of the obtained binary se-
quences of finite lengths.

We first present several notations used throughout this paper. Let B = {0,1}, and let B"
denote the set of all binary strings which have length n and B~ denote the set of all finite
binary strings. We denote by b7, the string b,,b1,41 - - - by. For m > n.the string b}, is empty,
denoted by A.

It is well known that tent maps, logistic maps and Chebyshev maps are examples of one
dimensional maps whose propertics are extensively studied. In this paper, we deal with a
case when A = [0,1]. and 7 is a dyadic map defined by

2z for0<z<1/2
T(z) = { (2)

2z -1 for1/2<z <1
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Although the above case is an example of one-dimensional
maps displaying chaos, the arguments we shall develop
here will be extended to a more general case that the 1
map 7 is an r-ardic map. Moreover, by using some con-
formal transformation, an extension to the case of Cheby-
shev maps is also possible. Using the following threshold

i
function : ’C(x) T J [
v _Jlfor0<z<c % i
oe(w) = {0 forc<z <1’ (3) 1(c) g i
i P
we obtain the binary sequence {o.(7"(z))}nr, from the A , I x
real-valued sequence {7"(z)},—,. It is well known that 0 x 4 i 1
o0 .
if ¢ = 1/2, {01 /Q(Tn(m))} 0 gives a dyadic expan- v i
n=
sion of the real number z. It is also well known that 0 1
{01 /Z(q—n(x))}nzo can be regarded as a random process Fig. 1: Generation of binary
equivalent to a realization of fair coin tosses. sequences using the dyadic map

and the threshold function

From a theoretical as well as practical engineering point of view, we are interested in the
statistical properties of the above binary sequence for general value of c. In this paper we
shall demonstrate that the binary sequences {o.(7"(z))}n=( can be considered as a functional
process on some transformation of the random process of fair coin tosses.

To examine statistical properties of the above binary sequence we consider the relative

frequency of the letter 1 appearing in the sequence o.(z), oc(7(2)), -, oc(T"( )), i.e.
1 n—1
S(z) ==Y ol (2)). (4)
n k=0

By Birkhoff’s individual ergodic theorem we have
lim ST(f)(w) =/ oc(s)u(s)ds=1—c ae. x, (5)
n—oo A

where g is an invariant measure calculated from 7. When 7 is the dyadic map, p is the
uniform distribution on [0,1]. The above equality means that the measure of the set of the
initial value for which SS,C)(:C) does not converge to ¢ as n — oo is zero. Our purpose is

to examine the asymptotic behavior of such measure for large n. To this end, let B be an
arbitrary subset of [0, 1] and set ‘

D(B)={z:z€ 4,8 (z) € B}.

We say that the sequence of the probability measure {p, (Dn(B))}c>c> ,on A has the large
n=
deviation property with a rate function I ©)(y), if

lim sup % log p (Dﬁf)(B)) <- ylg% I9(y) for closed B,

n—00
1
im inf = () —inf I©
hgl_l}oréf nlogu (Dn (B)) > ;gi';I (y) for open B.
Roughly speaking, this means

u(DY(B)) = exp [-nI(B)] , (6)
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where I(°)(B) = infyep I')(y). It can be seen from (5) that the sequence {o.(7"(z)) breo
is the pseudo-random sequence approximating the binomial distribution p, = (¢, 1 — ¢). The
function I')(y) indicates how well the random number sequence approximates the distribu-
tion p. for the finite period n, and therefore, is considered as one of the criterion to evaluate
the quality of random numbers. It is important to know I ()(y) in a closed form. When
¢ = 1/2. the binary sequence can be regarded as stochastically equivalent to a random pro-
cess of fair coin tossing. In this case, S,(,l/ 2) (+) is considered as a sample mean of the random
sequence from this stochastic process. Then, it follows from Cramér’s theorem in the large
deviation theory that we obtain

1) (y) = log 2 — h(y), (7)

where h(y) = —ylogy — (1 — y)log(1 — y) . In this paper we try to derive an explicit form of
I9(y) for some rational numbers c.

3 Functional Process on Prefix Transformations

In this subsection we examine the structure of the generation of the binary sequence {o.(7"(z)
) }52 ¢ for some rational number ¢. We show that the generation of the above binary sequences
can be considered as a functional process on some transformation of the random process of
fair coin tosses.
We consider the case that the threshold value ¢ is a rational number having a finite dyadic
expression given by
c¢=10.a1a2 - ay, (8)
wherea; € B,1=1,2,---,landa;=1. Letl =1 (c) denote the length of the dyadic expression

of c. Based on the above binary expression of ¢, set

§1 = ay, u) = ay,
S2 = a)a9, u2 = a1a62,

(9)

§; =aj1a2---a;-135,u; = a162-- - aj, f

S1=a162---a;-10;, U = aja---ay, )

and define the subset of B* by S = {s1,s9,- -, s;. ur} . The set S of B* satisfies the following
property.

1. No string in § is a prefix of any other string in S.
2. Each string in B* has a prefix that belongs to S.

In general we call § C B* a prefiz set if it satisfies the above two conditions. Set U =
{u1,u2, -, u_1} . The prefix set S makes it possible to define the function which maps strings
in B* — U onto their unique prefix s € S. We denote this map by 8(¢) : B* — &/ — S and call
it a prefiz function. Furthermore, define ¢ : S — {0,1} by ¢(b*) = 0 if b, = 0, () =
1, if b, = 1.
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For example, we consider the case ¢ = 5/8. In this case the dyadic
resentation of ¢ is ¢ = 0.101. In this case we have

s = 0, Up = 1,
so =11, ug = 10, (10)
s3 = 100, ug = 101

and S = {0,11,100,101}. The prefix set S and the function ¢ on

the set S can be described with a binary tree as shown in Fig. 2.~
The following theorem states that the binary sequence generated Fig. 2: An example of
by (0., 7) is characterized with (B, oy /2:T) -

binary tree describing S

and p on S
Theorem 1 Suppose that the threshold value ¢ has a dyadic expression with finite length

1 =1(c). Then, for anyn >1—1 and any z € A, we have

-1
o(M(x)) = ¢ ()3(6) (H 01/2(Tn+j—l+1($)))> : (11)
| j=0

Proof: To prove (11), it suffices to show that for any = € A,

-1
oo(THz)) = (ﬂ“’ (H ol/z(ﬂ(w))» : (12)
j=0

The above equality is merely a consequence of a simple computation. We omit the detail. O
Next, we investigate an explicit characterization of the rate function I(°)(y). To this end
we define

n—1 » 1
2(6) = | exp {0;]08(7’“@))}u(w)dw,q“)(o)= Jim ~log27(6).  (13)

According to Gartner-Ellis [8], under some regularly conditions for ¢(©)(8) we have
19(y) = sup {6y — ¢'(6)} . (14)
6

Hence, the determination problem of I (©)(y) results in the problem of calculating ,(6) and
(e
g (9).
By the definition of i (9) and Theorem 1, we obtain the following another form of
(c) '
Q7 (6).
Theorem 2 Suppose that the threshold value ¢ is a rational number having a 'dya,dic expres-
sion of finite length | = I(c). Then, for any n > 1, we have

1 n—I+1 .
AO) =57 D exp {0 > so(ﬂ“)(bj))} (15)
breB™ j=1

The above form is useful for computing Q9(6). Set
n—I+1 ) 1 Lo
MEOG) =Y exp |0 D, o(BO0)] p9(6) = lim ;logM,(f)(B). (16)
breBn j=1 :

Tt is obvious that ¢t9)(8) = (1/2)p(?(8) . Thus, it suffices to examine the properties of M(8)
for the computation of the rate function.
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4 Rate Function for Threshold Values with Finite Dyadic
Expression

In this section we deal with the problem of computing the rate functions for threshold values
¢ of some rational numbers. From arguments of the previous section it suffices to discuss the

calculation of MT(IC)(O) for the computation of the rate function.

4.1 Threshold Values with General Finite Dyadic Expression

We first deal with the case that the rational number ¢ has a general dyadic expression with
finite length. Suppose that ¢ has the finite dyadic expression given by (8) in the previous
section. Throughout this subsection we assume that the threshold value ¢ is given by (8).
Furthermore, the definition of s;,u; : =1,2,---,1 and S and U are the same as those in the
previous section.

For bf" € B", define M} (6) by

n—I{+1
M3 (@)= 3 exp [0 > so(ﬂ“)(b;))} : (17)
by 41 €EB ™ Jj=1

In particular if b7 is the null string A, M,(:g;,. (9) is regarded as M. (8). The quantity defined
as above have the following properties.

Property 1 For any prefiz set S C B*, we have

M) 6) =Y ME). (18)
se$
Property 2
a)
M), (6) = e M2, (6) (19)
M, 0) =5 MO . (8) forj=2,-- 1 (20)
n—l.a; "a;
M2,(0) ="M, (0) (21)

b) For any b* € B*, there ezists the minimum integer i, 0 < i < m such that b1 = Um—i.
When t = m, um—; is regarded as the null string \. Then, we have the following:

M} (6) = exp [o )3 w(ﬁ(")(b}"))] M2, (0. (22)
7=1

The following two lemmas provide useful formulas for deriving recursive equations with
respect to M,(.c)(O).

Lemma 1

l
MO (8) = (& + M 0) - (& - 1) Y ajMifl’ai._laj(o) : (23)
J=2
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Proof: By Properties 1 and 2-a), we have

: |
MP0) =" M) (6) + ML), (6)

n,u;
j=1
= M9, (0) + Z MO, i O+ M, 0). 24
We note here the following identity:
4 =14 —e%=e — (e - l)a;. (25)

Substituting (25) into the second term in the right member of (24), we have

MO (6) = %5 M, (8) + ZM(C) ai1a, ©) + M2, 4(0)
j=2

l
- -1 ajMTEC_)Lag_laj ). (26)

We note here that the set consisting of l—sequences a%_léj, j=2,3,---,1 and a,’2 becomes
a prefix set. Then, by Property 1, the second term in the right member of (26) is equal to
M, () ”,(8). Hence (23) of Lemma 1 follows. O

Lemma 2 Foranyl<k<l-1,
© ’ © i) 5 © ©
c (o4 c [+
M, o (0) = ,%lajMn_Lai_laj 0) +e -%1 aiMO, g O+ M2 L O) (2T)
i= j=

Proof: By Properties 1 and 2-a), we have

l
M4 (6) = MI(6) _Z ME,0)= 3 M, (0)+ M2, 6)

j=k+1
: :
= Y fupmt 0) + €M (8). (28)
. n—1 a2 -1 a; n—1, 0
j=k+1
Furthermore, observe the following identity
%% = eoaj +a;. (29)

Substituting (29) into the second term in the right member of (28), we have (27) of Lemma
2. O

Lemma 3 For any b* € B*, M( m(0) can be written as a linear function of M )(0)

M,(f_)l(0)3 , M, (e) ) (0). Let & be a threshold value whose dyadic ezpression has the prefiz
equal to the dyadic expression of c. Then, if m < I, the ezpression of M@ (0) with the

n,b*

linear combination of M, (c)(a), M(é_)l(O), R (c) m(0) is the same as that of M,
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Proof: We first prove the first statement. By Property 2-b), it suffices to show that for 7=
1,2,---land for n > I, M,(f,),J (@) can be written as a linear function of M,sc)(é?), M,(f_)l(ﬂ), e
Mﬁc_)j(ﬂ). Since

M350, (6) = M (8) — M), (6) = M) (6) — 1 ML), (9), (30)
Lemma 3 is true for j = 1. Suppose that Lemma 3 holds for some 7 2 1. Then, we have

M3, (0) = M, (6) — M), (8) = ML), (6) — ePasvr M@ ®. (31

n.uj4 n,8541 n—l,a;&j.}.]

which together with Property 2-b) and the induction hypothesis yields that Lemma 3 holds for
J+1. The second statement follows from that B9 coincides with B9 on the set Ui<; 5137 -U.
O

Combining Lemmas 1 and 3, we obtain the following theorem.

Theorem 3 There exist some polynomial functions v; = Vj(eo )s 3 =1,2.---,1 of € such
that

{ l
3 a,-ijl 12 0 =Y ()M (6). (32)
j=2 vz j=1
Then, forn > 1, M,(lc) (0) satisfies a linear difference equation given by
l
M (0) - (¢ + )M, (8) + (¢ - 1) Y vi(e®)M.(6) = 0. (33)
ij=1

Let f(9)(z) be denoted by the characteristic polynomial associated with this linear difference
equation. It has a form

)
FO2) =1 (2 + 1)z + (¢ ~ 1) > vi(ef)e? (34)
j=1

1

The quantity p= = (p(9)(6))~! is the minimum positive root of f(9)(z) = 0.

We can compute the characteristic polynomial f(¢)(z) for an arbitrary prescribed threshold
value ¢ with finite dyadic expression. We shall demonstrate it for an example. Consider the
previous example in which the threshold value c is given by ¢ = 5 /8 = 0.101. In this example,
we explicitly derive a linear difference equation that M,(f/ 8) (0) satisfies. Furthermore, we
derive an explicit parametric form of the rate function. By Lemma 1, we have

MEP(0) = (¢ + MY — (¢ = )M (6) . (35)
By Property 2-b). we have
| MPPh(8) = MP/D(9). (36)
Thus. we obtain a recursion
MEP () - (f + )M + (£ —1)MPD(9) = 0. (37)

The corresponding characteristic polynomial is

FOB(z) =1—(f + 1)z + (e —1)23. (38)
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1

Since p~! is the root of the above polynomial, we have

3 2
g_ P —p -1
S M 39
e 21 (39)
We denote the right member of (39) by g(p). It can easily be verified that g(p) is 2 monotone
increasing and concave function of p for p > 1. Let g —1(z) is an un1que branch of inverse
functions of g(z) that satisfies g~1(2) > 1. Then, we have p = g~ 1(¢?) and p is monotone

increasing and lower convex function of §. An expression of the rate function using parameter

p is given by
3_ 2 1
1(5/8)(y) = sup |y log _[’__2_/)____ — log (£> . o
p>1 P 1 2

The above supreme is attained by some y for which the derivative of the quantity in the
above bracket with respect to p is zero. Hence we have

2p — 3p° —2p 1
Y To 23 1= -==0. (41)
+p=p p p

Thus, we obtain the following parametric form of the rate function.

1 PP-DE=p"-1) 58 pP-p-1 (p)
=—- ‘ = P ") -1 (%) 2
y= Py , I6/8(y) = ylog o og | 5 (42)

4.2 Threshold Values with Some Periodical Finite Dyadic Expression

In this subsection we shall argue a more explicit form of the characteristic polynomials in
some special case that ¢ has some periodic property. Furthermore, we establish an explicit
characterization of the rate function in this case.

Let [bibe - b)™ € € B™ denote m— concatenation of the binary sequence bjba---b;. For
example [011]201 means 01101101. Consider the threshold value ¢ having the following dyadic
expression:

c=cm = 0.a1a9 - a;—1[0a1az - ai-1]™. (43)
S
!
We assume that ¢;_; = 1 and the minimum period of the above binary sequence is 1.

Througout this subsection we always assume that the threshold value ¢ has the above dyadic
expression.
To state our results, we observe that by virtue of Lemma 3, we have

ZGJ (le) J 1_ (0) ZVIJ(EQ)M,,%)W (44)
-1 21 1 ( )
2 M T ot (0 = 3 (DM (45)
j=1 ' !

where 11 ](eo) j=1,2,---,1—1and 1/2](e9) j=1,2,---, 2l — 1 are polynomial functions of

e?. Let 7 be a cyclic shlft of binary sequences with length l Since ! is the minimum length of
the period, any of the (I — 1)-sequences 7 (aras -+ - @1—10),5 = 1,2, ---,1 — 1 do not coincide
with u; = aja2- - a;_10. This means that those (I — 1)-sequences are in the domain B* - U
of f{¢m). Hence, the quantity '

-1
exp |3 ¢ (B (w0 (@raz - ai10))) (46)
j=1
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is well defined. We denote it by K. Our result is as follows.

Theorem 4 Suppose that the rational number ¢ has a binary presentation given by (43).
Then, forn > lm+1-1, ,(f"‘) (0) satisfies a linear difference equation given by

ML) = (¢ + )M ()

-1 m 20-1
=& = 1) | i )MI)0) + 33 KDy s Dyml) | (6)| (47)
=2 i=1 j=1

Let f°m)(z) be denoted by the characteristic .polynomial associated with this linear difference
equation. Set

-1 201-1
fi(z) =1— (e + 0 )z + (e — 1) Z ul,j(eo)zj . fa(z) =(e? = 1) Z Vg,j(eo)zj. (48)
j=1 i=1

Using f1(z) and fa(2), flem)(z) is computed as
. 1-— eOKzl m
1) = A + 2 e, (49)
The quantity p~' = (p{°m)(0))~! is the minimum positive root of flem)(2) = 0.
Proof: By Lemma 1 and the periodic property of the dyadic expression of ¢,,, we have
ME™(0) = (e + €%8) M) (6)
m [-1

l
—(e‘9 -1) ZajM(cm) (0) + EzajM(CM) -‘l+j—1_,+,(0) . (50)
— i 2 j

n—l,a;-_l& e n—1l,a a1

Suppose that a; = 1. Using Properties 2-a) and b) and periodic property of the binary
presentation of c. for 1 = 1.2,---,m, we obtain the following

(em) _ 0K pslcm) _ 8(i—=1)K 3 s(cm)
Mn—l,a;l+j_l&il+j (0) =€ Mn—l,ag‘—l)'.ﬂ._]a(i—1)1+j (0) =e€ Mn—(i—1)1—1,0’2+j_lal+j (9) ]
(51)
which together with (44), (45), and (50), yields (47) of Theorem 4. O

Consider an example given by I = 2. In this case ¢ = ¢,, = 0.1[01]™ = % [1 - 2_2("‘"'1)] .
Characteristic polynomial is given by

2m
l_z 3

fem)(z)=1—-(? + 1)z + (f = 1) - 28, (52)

— 22
Since p~! is the root of the above polynomial, we have
PP —ptp?m
p?2—2+p2m
By the argument quite similar to the previous example we obtain the following parametric
form of the rate function.
1 |i3p2 —2p+1—2mp~—2m-1 _2p- 2mp_2’"‘ll -

pl P—P+p—pom pr—2+p7m

3 2 —2m
(em) (y) = pFopmpte L (L’)

(53)

(54)
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5 Rate Function for Threshold Values with Infinite Dyadic
Expression

In this section we shall argue an explicit form of the rate function for ¢ with infinite periodical
dyadic expression. Consider the threshold value ¢ that is obtained by taking a limit of ¢, as
m — oo:

c= lim ¢y, =0.a1a9-:-a;_10a102---aj-1---. « (55)

m—0o0 N——, pr——
l

On |z| < e~ B/D9_ the characteristic polynomial f(c"‘)( ) converges to the following rational
function f{9(2) as m — oo:

Jim_fm)(2) = FO) = Aile) + (56)

Qur result is as follows.

Theorem 5 Suppose that the rational number ¢ has a binary presentation given by (55).
Then, the quantity p~ = (p\9(8))™! is the minimum root of the equation fO(z) =0. This
implies that

I(y) = lim 1)(y). (57)
m-—0o0
The proof of Theorem § will be stated later. ;
Consider an example given by [ = 2. In this case ¢ = limpm—co ¢ = 0.10101 --- = %— By
letting m — oo in (54), we obtain the following parametric expression of the rate function
C1[302-20+1 20 |7 2/3)1\ _ pr=p p
y_; p3_p2+p _p2—2 , ( /)(y) ylog{—TT}—log (5) . (58)

The remaining part of this section is devoted to the proof of Theorem 5. Consider the
case that the threshold value ¢ has the following dyadic expression:
m — 0.a1a2 s a1_1[0a1a2 e al_l]ml . (59)
l
It is obvious that oz, (z) < 0c(z) < 0, (z) for any real number z. Then, by the definition
of ¢(9(8), we have

| 1
57(0) < ¢19(8) < 5p(6). (60)
Hence, to prove Theorem 5, it suffices to show that on some suitable open disc of z, f(*)(2)

converges to f(©)(z) as m — oo. Before proving this, we define some polynomial functions.
By virtue of Lemma 3, we have

21-1
E M) s, Z (e )MED©O), (61)
where 19 ](ea) j =1,2,--+, 2l — 1 are the same as those in (45). Furthermore, again by
Lemma 3, there e)ust some polynorma.l functions vg; (), = 1,2,---, 2l — 1 and u4,j(e‘9),
j=1,2,---,1l0of e? such that
l ~
VoM i 0= T M0, (62)
j=1 j=1

ME |, (0)= Zu,(e")M“’")w) (63)
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: 21-1 . 2l . ! .
fa(z) = D 12(f)2, fa(2) = D v3,(e9)27, fa(z) = 3 waj(e®)2d . (64)
Jj=1 j=1 j=1
Then, we have the following lemma.
Lemma 4
fE(@) = fom)@) = (74)" Faf) + (XEHD)™ [f3(2) + LXEHVZfy ()] . (65)

Since Theorem 5 immediately follows from the above lemma, we omit the detail of the proof
of this theorem. In the following we shall give the proof of Lemma 4.

Proof of Lemma 4: By Lemma 3, there exist some polynomial functions ki(€e?),1<j <
(m+ 1)l — 1 of € such that

(&) (m+1)l-1 )
M 0) = k; (€)M (g) . 66
n—1,ai™ l¢‘z(m+1)1( ) ng i(€)M;, ]( ) (66)
Set
(m+1)l-1 '
n(z)= ) ki), (67)
j=1

Then, by Lemmas 1 and 3, we have

FEm)(z) — flemd(2) = n(2). (68)

Hence, it suffices to examine a form of (66). By Properties 2-a) and b) and the periodic
property of the binary presentation of ¢&,,, we have the following

M O =Ml ). (69)

n—1,a§m+l)'—1&(m+

Applying Lemma 2 to the right member of (69) and using the periodic property of the dyadic
expression of ¢,,, we obtain

(ém)
Mn—l,agm"'l)l_l&(mﬂ)l (0)
KR 1 (Em)
—_— . Cm .
- Z:1 a]Mn—l-l,a;'"+"15ml+:'(0)
]:
I ) "
e+ {Z ‘_IJ'M,(;C_";)—1,a;"’+"“&mz+,~ (9) + Mic__";)_l agm“):(ﬁ) . (70)
i=1 ’

Using Properties 2-a) and b) and periodic properf.y of the dyadic expression of &, for a; = 1,
we obtain the following

(€m) _ 0K 3 r(Cm)
Mn—l—l,agl,+j_lﬁml+j (0) =e€ Mn_zl_l’a;m—l)l-{-j—l&(m_l)'+j (0)
= f(m—1)K 3 r(ém) i (0). (71)

n—ml—l,a;+ ary;

Similarly, for a; = 0, we obtain the following

(€m) ) = PUK+1) (Cm)
. =e M - 0
Mn—l—l,a;"’“'lam,H( ) n—2l—-1,agm_])I+J_l&(m_1)1+j( )

— H(m=1)(K+1) pr(Em) io1. (9). (72)
2

n—ml-1l,a [T
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Furthermore, we have

M(Em) : B (0) — e0(K+1)M(5m) (0)
~l.a;

-1
Q(m+1)l n—2l-1,a3" Yami

—e ME i ®)- (73)

Combining (70) - (73), we have

(ém)
Mn—l’agm+1)l_la’(m+1)l(0)
oK N, (m)
— mK . Cm
=e€ J; aJMn_ml_l’a;+j—lal+j (9)
l
Om(K+1) = ar(Em) O(K+1)  r(Em)
te ;{;GJMn—ml——l,a;H—l&H.j (0) + € ‘ Mn—(m+1)!——1,a'2_1&1 (0) ’ (74)
which together with (61)-(64) and (66)-(68) yields (65) of Lemma 4. ' O
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