
Optimizing the largest eigenvalue of positive matrices having
their rows belonging to polytopes

静岡大学工学部 関谷和之 (Kazuyuki Sekitani )
Department of Systems Engineering, Shizuoka University

静岡大学工学部 岡崎充高 (Mitsutaka Okazaki )
Department of Systems Engineering, Shizuoka University

1 Introduction
Problem of minimizing the maximum real part of the eigenvalue of amatrix arises in avariety of
real world, for example, stability analysis of control systems[ll], economic structure models[6]
and so 0n[l0, 12].

Previous studies discuss an eigenvalue optimization problem whose optimal value is the
largest real eigenvalue, that is , the maximum real part of the eigenvalue is attained by areal
eigenvalue not acomplex one. Hence, the eigenvalue optimization problems impose proper
restrictions on amatrix, for example, symmetry and irreducibility. In other words, eigenvalue
optimization problem is to find amatrix among aclass of symmetric matrices or aclass of
positive matrices under an additional real constraints.

This study considers aclass of positive matrices whose row vectors are defined by sev-
eral linear inequalities. The main aim of this study is to develop an algorithm for minimiz-
$\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{z}\mathrm{i}\mathrm{n}\mathrm{g}$ the largest eigenvalue of apositive matrix whose row vector belongs to aeach
polytope.

We omit the almost all proofs of lemmas and theorems in the sequel. The details can be
found in [5]

2Frobenius’s Theorems and multiffactional problems

For every positive matrix $X$ , the largest eigenvalue of $X$ is denoted by $\Lambda(X)$ . Let $I=$
$\{1,2, \ldots, n\}$ . The $i^{th}$ row vector of $X$ of order $n$ is denoted by $x_{i}$ for all $i\in I$ . We can
sider aperturbation of the $i^{th}$ row vector $x_{i}$ of $X$ as $x{}_{i}C^{i}\leq b^{i}$ for all $i\in I$ , where C’ is some
matrix and $b^{i}$ is some row vector. The polyhedron $\{x|xC^{i}\leq b^{i}\}$ is denoted by $S^{i}$ for all $i\in I$ .
We put the following assumption in order to keep the matrix $X$ consisting of rows $\{x_{1}, \ldots, x_{n}\}$

positive.

Assumption 1Assume that the polyhedron $S^{i}$ is a nonempty bounded set in the positive
orthant of $R^{n}$ for all i $\in I$ .

Since $S^{i}$ is apolytope for all $i\in I$ , the product set $\square _{i\in I}S^{i}$ is apolytope. For every positive
matrix $X$ , the largest eigenvalue of $X$ is denoted by $\Lambda(X)$ . From Frobenius’ theorem [6], $\Lambda(X)$

is areal function on $\Pi_{i\in I}S^{i}$ . By $X\in\Pi S^{i}$ , $x_{i}\in S^{1}$

.
for all $i\in I$ . We consider apair of the

following two problems:

$\min_{X\in\Pi S}.\cdot\Lambda(X)$
(1)

and $x \in\Pi\max_{S^{j}}\Lambda(X)$
(2)
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as the problem of finding the bounds for the largest eigenvalue of $X$ with perturbed rows. Then
we have the existence of optimal solutions of Problem (1) and Problem (2) as follows:

Theorem 2.1 Each of Problem (1) and Problem (2) has a real optimal solution.

From Frobenius’ theorem [6], we have

$\Lambda(X)=\max_{w>0}\min\{\frac{x_{1}w}{w_{1}}$ , ..., $\frac{x_{n}w}{w_{n}}\}=\min_{w>0}\max\{$ $\frac{x_{1}w}{w_{1}}$ , ..., $\frac{x_{n}w}{w_{n}}\}$

for all $X\in\Pi_{\dot{|}\in I}S|.$ .Therefore, we can transform Problem (1) and Problem (2) into the following
two multifractional problems:

$\min$ $\max$ $\{\begin{array}{lll}-\underline{x}w arrow x\underline{w}w_{1} \cdots x_{\mathrm{L}}\end{array}\}$ (3)

s.t. w $>0$ and X $\in\Pi S^{i}$

and

$\max$ $\min$ $\{\begin{array}{llll}-\underline{x}w -x_{\mathrm{A}}\underline{w}w_{1} \cdots ’ x_{\hslash}\end{array}\}$ (4)

s.t. w $>0$ and X $\in\Pi S$:

respectively. $\mathrm{B}.0$th Problem (3) and Problem (4) have $\mathrm{n}$ homogeneous ratios of asingle variable
$w.\cdot$ to abilinear term $x:w$ .

Let $V^{\dot{1}}$ be the vertex set of $S^{:}$ for all $:\in I$ , then the polytope $S^{\dot{1}}$ is the convex hull of $V^{\dot{1}}$ .
We consider two following problem for any positive vector $w$ :

$\min_{X\in \mathrm{n}s}.\max\{\frac{x_{1}w}{w_{1}}$ , \ldots ,
$\frac{x_{n}w}{w_{n}}\}$ (5)

and $\max\{\min_{x_{1}\in V^{1}}\frac{x_{1}w}{w_{1}}$ , ..., $x \min_{\in nV^{n}}\frac{x_{n}w}{w_{n}}\}$ (6)

Lemma 2.1 For any positive vector $w$ , the optimal value of Problem (5) is equal to that of
the following pmblem:

$\max\{\min_{x_{1}\in S^{1}}\frac{x_{1}w}{w_{1}}$ , $\ldots,x\min_{n\epsilon S^{n}}\frac{x_{n}w}{w_{n}}\}$

Proof.
Choose $w>0$ arbitrarily. Assume that

$\min_{X\in\Pi S}.\cdot\max\{\frac{x_{1}w}{w_{1}}$ , . .., $\frac{x_{n}w}{w_{n}}\}\neq\max\{\min_{x_{1}\in S^{1}}\frac{x_{1}w}{w_{1}}$ , ... ’
$x \min_{\in nS^{n}}\frac{x_{n}w}{w_{n}}\}$ .

Let $\tilde{x}$ :be an optimal solution of $\min_{X\in\Pi S}:(x_{1}.w)/w$:for all $i\in I$ , then it follows from $\{\begin{array}{l}\tilde{x}_{1}\vdots\tilde{x}_{n}\end{array}\}$ $\in$

$\Pi S^{}$ that

$\min_{X\in\Pi S^{j}}\max\{\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}$ $\leq$ $\max\{\frac{\tilde{x}_{1}w}{w_{1}}$ , $\ldots$ , $\frac{\tilde{x}_{n}w}{w_{n}}\}$

$=$ $\max\{\min_{x_{1}\in S^{1}}\frac{x_{1}w}{w_{1}}$ , ..., $x \min_{\in nS^{n}}\frac{x_{n}w}{w_{n}}\}$

110



ana nence,

$\min_{X\in\Pi S^{i}}\max\{\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}<\max\{\min_{x_{1}\in S^{1}}\frac{x_{1}w}{w_{1}}$ , $\ldots,\min_{x_{n}\in S^{n}}\frac{x_{n}w}{w_{n}}\}$ (7)

Let $\hat{X}$ be an optimal solution of $\min_{X\in\Pi S}:\max\{^{\underline{x}}w_{1}\mapsto w$ , $\ldots$ , $\frac{xw}{w_{n}}\}$ , then,

$\min_{X\in\Pi S^{i}}\max\{\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}\geq\frac{\hat{x}_{i}w}{w_{i}}$ (8)

for all $i\in I$ . Since $\hat{x}_{i}\in S^{i}$ for all $i\in I$ , it follows from (8) that

$\max\{\min_{x_{1}\in S^{1}}\frac{x_{1}w}{w_{1}}$ , . .., $x \min_{\in nS^{n}}\frac{x_{n}w}{w_{n}}\}$ $\leq$ $\max\{\frac{\hat{x}_{1}w}{w_{1}}$ , $\ldots$ , $\frac{\hat{x}_{n}w}{w_{n}}\}$

$\leq$ $\min_{X\in\Pi S’}\max\{\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}$

and hence

$\max\{\min_{x_{1}\in S^{1}}\frac{x_{1}w}{w_{1}}$ , ..., $x \min_{\in nS^{n}}\frac{x_{n}w}{w_{n}}\}<\min_{X\in\square S^{i}}\max\{\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}$ . (9)

From (7) and (9), it is acontradiction. $\square$

Then we have the following theorem:

Theorem 2.2 The optimal value of Problem (1) is equal to that of the following problem:

$\min_{w>0}\max\{\min_{x_{1}\in V^{1}}\frac{x_{1}w}{w_{1}}$ , \ldots ,
$\min_{x_{1}\in V^{n}}\frac{x_{n}w}{w_{n}}\}$ . (10)

Proof.
It follows from Lemma 2.1 and $V^{i}\subseteq S^{i}$ that for problem (6)and (5)

$\min_{X\in\Pi s:}\max\{\frac{x_{1}w}{w_{1}}$ , . .. ’
$\frac{x_{n}w}{w_{n}}\}$ $=$ $\max\{\min_{x_{1}\in S^{1}}\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\min_{x_{n}\in S^{n}}\frac{x_{n}w}{w_{n}}\}$

$\leq$ $\max\{\min_{x_{1}\in V^{1}}\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\min_{x_{n}\in V^{n}}\frac{x_{n}w}{w_{n}}\}$ .

Since the $i^{th}$ term $\min_{x_{i}\in V}:(x_{i}w)/w_{i}$ of Problem (6) is alinear programming problem whose
feasible region is the polytope $S^{i}$ , it has an optimal solution which belongs to the vertex set
$V^{i}$ . Therefore, we have

$\min\underline{x_{i}w}--\mathrm{m}.\mathrm{n}\underline{x_{i}w}$ (11)
$x_{i}\in V:w_{i}$ $x_{i}\in S^{i}w_{i}$

for all $i\in\{1, \ldots, n\}$ . This implies that

$\min_{X\in\Pi s:}\mathrm{A}(X)$
$= \min_{w>0}\min_{X\in\Pi s:}\max\{\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}=\min_{w>0}\max\{\min_{x_{1}\in V^{1}}\frac{x_{1}w}{w_{1}}$ , $\ldots,\min_{x_{n}\in V^{n}}\frac{x_{n}w}{w_{n}}\}$ .

$\square$

Theorem 2.3 The optimal value of Problem (2) is equal to that of the following problem:

$\max_{w>0}\min\{\min_{x_{1}\in V^{1}}\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\min_{x_{1}\in V^{n}}\frac{x_{n}w}{w_{n}}\}$ . (12)
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3Coloring matrix and algorithms
Firstly, we will define “coloring matrix” for matrix of order $n$ which is similar to abasis matrix
of a linear programming as follows: Amatrix $A$ of order $n$ is called a coloring matrix if the
$i^{th}$ row vector $a_{\dot{1}}$ of $A$ is avertex of $S^{\dot{1}}$ for all $i\in I$ , i.e., $a:\in V^{i}$ for all $i\in I$ . By solving
Problem (10) and Problem (12), we will find an optimal solution of Problem (1) and Problem
(2), respectively. The following lemma states that acoloring matrix attaining the optimal value
of Problem (10) is also an optimal solution of Problem (1).
Lemma 3.1 There is a coloring matrix whose largest eigenvalue is the optimal solution ofProblem (1). Let $(\overline{w},\overline{X})$ be an optimal solution of Problem (10). Then $\overline{w}$ is a positive largest
eigenvector of $\overline{X}$ .
If acoloring matrix has the largest eigenvalue that is equal to the optimal value of Problem
(1), it is called the optimal coloring matrix for Problem (1). We have the following property
for an optimal solution of Problem (10).
Theorem 3.1 Let $\overline{X}$ be an optimal coloring matrix for Problem (1). Then, $(\mathrm{w},\mathrm{X})\overline{X})$ is an
optimal solution of Problem (10) if and only if $w-$ is a positive largest eigenvector of $\overline{X}$ .
From Lemma (3.1) and Theorem (3.1) we have only to find the least largest eigenvalue of a
coloring matrix among those of all the coloring matrices. We develop the following algorithm:

Algorithm for Problem (1)

StepO Choose apositive vector $w^{0}$ and set $k$ $=1$ .
Stepl Find an optimal solution $x_{}^{k}\in V^{i}$ and the optimal value $\gamma_{*}^{k}$. of

$\min_{x.\in S}:(x:w^{k-1})/w_{}^{k-1}$ for every $:\in I$ . Let $X^{k}=[x_{1}^{kT}, \ldots,x_{n}^{kT}]^{T}$ .
Step2 Find the largest eigenvalue Aand alargest eigenvector $\hat{w}$ of $X^{k}$

Step3 If $\mathrm{A}\geq\max_{\dot{|}\in I}\gamma_{i}^{k}$ , then $X^{k}$ and Aare an optimal coloring matrix and the optimal
value of Problem (1), respectively and stop. Otherwise let $\mathrm{A}_{k}=\mathrm{A}$ , $w^{k}=\hat{w}$ and
$k=k+1$ and go to Step 1.

The algorithm has the following properties:
Lemma 3.2 $\mathrm{A}_{k+1}<\mathrm{A}_{k}$ for k $=1,$ 2, \ldots .

Lemma 3.3 $\min_{j\in I}\gamma_{\dot{1}}^{k}$ $\leq \mathrm{A}$ $\leq\max:\in I\gamma_{}^{k}$ for k $=1,$ 2, \ldots .

Lemma 3.4 $Sup\mu se$ that A $\geq\max:\in I\gamma_{i}^{k}in$ Step3, then $\min_{\dot{|}\in I}\gamma_{i}^{k}=\mathrm{A}$ $= \max:\in I\gamma_{i}^{k}$ and Ais
the least largest eigenvalue among those of all the coloring matrices.

Theorem 3.2 The coloring algorithm for Problem (1) provides its optimal solution after $a$

finite number of iterations.

Replacing $\min/\max$ with $\max/\min$ in the definition of $\gamma_{*}^{k}$. of Step 1and the stopping criteria
of Step 3, we obtain the same algorithm for Problem (2) as the above one and we can show
the similar properties to the above lemmas and theorem.

Algorithm for Problem (2)

StepO Choose apositive vector $w^{0}$ and set $k=1$ .
Stepl Find an optimal solution $x_{}^{k}\in V^{:}$ and the optimal value $\gamma_{\dot{1}}^{k}$ of

$\max_{x:\in S}:(x:w^{k-1})/w_{j}^{k-1}$ for every $i\in I$ . Let $X^{k}=[x_{1}^{kT}, \ldots, x_{n}^{kT}]^{T}$

Step2 Find the largest eigenvalue A and alargest eigenvector $\hat{w}$ of $X^{k}$

Step3 If A $\leq\min_{j\in I}\gamma_{}^{k}$ , then $X^{k}$ and Aare an optimal coloring matrix and the optimal
value of Problem (2), respectively and stop. Otherwise let $\mathrm{A}_{k}=\mathrm{A}$ , $w^{k}=\hat{w}$ and
$k=k+1$ and go to Step
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The iterates $\{\mathrm{A}_{\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}}\}$ of the proposed algorithm for Problem (2) have the similar properties to
those in Lemma 3.2 and Lemma 3.3.

The algorithm has the following properties:

Lemma 3.5 $\mathrm{A}_{k+1}>\mathrm{A}_{k}$ for $k=1,2$ , $\ldots$ .

Lemma 3.6 $\min_{:\in I}\gamma_{i}^{k}\leq \mathrm{A}$ $\leq\max_{\grave{|}\in I}\gamma_{i}^{k}f$or $k=1,2$ , $\ldots$ .

Lemma 3.7 Suppose that $\mathrm{A}\leq\max_{i\in I}\gamma_{i}^{k}$ , then $\min_{i\in I}\gamma_{i}^{k}=\mathrm{A}$ $= \max_{i\in I}\gamma_{i}^{k}$ . That is, Ais the
largest largest eigenvalue among those of all the coloring matrices.

Theorem 3.3 The proposed algorithm for Problem (2) provides its optimal solution after $a$

finite number of iterations.

4Duality of the largest eigenvalue estimation problems

We define

$(w)= $\min_{X\in\Pi s:}\{\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}$ and $\mathrm{w})=x\in\Pi\max_{S^{i}}\{$ $\frac{x_{1}w}{w_{1}}$ , $\ldots$ , $\frac{x_{n}w}{w_{n}}\}$

and consider the following two multifractional problem:

$\max_{w>0}$
$\Phi(w)$ and (13)

$\min_{w>0}$
$\Psi(w)$ (14)

The following theorem states the weak duality between Problem. (1) and Problem (13)

Theorem 4.1 For every positive vector rp and for every matrix $X\in\Pi S_{f}^{i}$ we have $(w)\leq
$\Lambda(X)$ . Furthermore, there are a matrix $\overline{X}\in\square S^{i}$ and a positive vector $\overline{w}$ such that $(w)=
$\Lambda(\overline{X})$ .
We call Problem (13) adual problem of Problem (1)

Corollary 1An optimal solution of Problem (13) is unique up to scalar multiplication.

The following theorem provides the same results between Problem (2) and Problem (14) as
that between (1) and Problem (13).

Theorem 4.2 For every positive vector rp and for every matrix $X\in\Pi S^{i}$ , we have $(w)\geq
$\Lambda(X)$ . Furthermore, there are a matrix $\overline{X}\in\Pi S^{i}$ and a positive vector $\overline{w}$ such that $(w)=
$\Lambda(\overline{X})$

Corollary 2An optional solution of Problem (14) is unique up to scalar multiplication.

5Numerical experiments
We now give asummary of our computational experiments with the proposed algorithm.

Let $P^{i}$ be agiven set of finite $n$-dimensional row vectors for all $i\in I$ . In this section we
consider that $S^{i}$ is the convex hull of the given set of $P^{\dot{1}}$ for all $i\in I$ . Then we can simplify the
proposed algorithm for Problem (1) as follows: Replacing $\min_{x:\in S}$ , $(x_{i}w^{k-1})/w_{i}^{k-1}$ in Step 1of
the proposed algorithm for Problem (1) with $\min_{x:\in P}:(x_{i}w^{k-1})/w_{i}^{k-1}$ , we have the proposed
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algorithm for Problem (1). All steps of the proposed algorithm and we have set tolerance of a
stopping criteria in the power method as $1.0\cross 10^{-7}$ .

Since $S^{i}$ is the convex hull of $P^{\dot{1}}$ for all $i\in I$ , an equivalent formulation of $\max_{w>0}\Phi(w)$ is
as follows:

$\max_{w>0}\min\{\min_{x_{1}\in P^{1}}\frac{x_{1}w}{w_{1}}$ , $\ldots,\min_{x_{n}\in P^{n}}\frac{x_{n}w}{w_{n}}\}$ . (15)

Problem (15) is alinear fractional problem with $\sum_{:\in I}|\dot{P}|$ ratios that is discussed von Neumann
[7] and Crouzeix, Ferland and Schaible [8]. We can apply some algorithms of the linear fractional
programming to Problem (15) which is the dual problem of Problem (1).

Let $e$ be avector of all ones. From Corollary 2we can add aconstraint $e^{T}w=1$ to Problem
(15) without loss of generality. Notice that Problem (15) with the additional constraint $e^{T}w=1$

has aunique optimal solution. Hence, we can solve the dual problem (15) of Problem (1) by
aDinkelbach-type algorithm due to Borde and Crouzeix [4] that converges super-linearly for
Problem (15) with the additional constraint $e^{T}w=1$ . The Dinkelbach-type algorithm is as
follows:

StepO Choose apositive vector $w^{0}$ and set

$\eta_{1}=\min\{\min_{x_{1}\in P^{1}}\frac{x_{1}w^{0}}{w_{1}^{0}}$ , $\ldots,$
$x \min_{\in\hslash P^{n}}\frac{x_{n}w^{0}}{w_{n}^{0}}\}$

and set $k=1$ .

Stepl Solve

$w>0 \max$

$\min\{\min_{x_{1}\in P^{1}}\frac{x_{1}w-\eta_{k}w_{1}}{w_{1}^{k-1}}$ , ..., $x \min_{n\epsilon P^{n}}\frac{x_{n}w-\eta_{k}w_{n}}{w_{n}^{k-1}}\}$ . (16)

$e^{T}w=1$

and let $w^{k}$ and $\xi_{k}$ be an optimal solution and an optimal value, respectively.

Step2 If $\xi_{k}=0$ , then stop: $\eta_{k}$ and $w^{k}$ is an optimal value and solution of Problem (15) ,
respectively. Otherwise let

$\eta_{k+1}=\min\{\min_{x_{1}\in P^{1}}\frac{x_{1}w^{k}}{w_{1}^{k}}$ , $\ldots,x_{n}\min_{\in P^{n}}\frac{x_{n}w^{k}}{w_{n}^{k}}\}$

k $=k$ 1 1 and go to Step 1.

In Step 1of the Dinkelbach-type algorithm we solve the linear programming problem (16) with
the coefficient matrix multiplied by the iterates $\eta_{k}$ . This means that we must pay sufficient
attention to the numerical error in pivoting process and evaluating the reduced cost. All steps
of the algorithm except for Step 1has been implemented in $\mathrm{C}$ and the linear programming
of Step 1is solved by the commercial source code Xpress-MP in order to avoid the numerical
errors. Tolerance of astopping criterion of both Xpress-MP and Step 2are set as $5.0\cross 10^{-7}$ .

Two programs were run on Sun Ultra-l with double precision arithmetic. The study con-
ducts a $3\cross 3\mathrm{x}3$ factorial experiment in which each treatment has 10 replications. Factors
used in this numerical experiment are summarized in the following manner
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Type of $\Pi_{i\in I}P^{i}$

Typel The first type of $\Pi_{i\in}{}_{I}P^{i}$ is generated as follows: For all $i\in I$ , choose $m$ points $u_{i}^{J}$

$(\mathrm{j}=1, \ldots,\mathrm{m})$ randomly from $\{x|x\in R^{n}, 0<x\leq \mathrm{e}\}$ and set $P^{i}=\{u_{i}^{jT}/||u_{i}^{j}||_{\infty}|j=$

$1$ , $\ldots$ , $m$ }. Note that all row vectors of $P^{i}$ are positive and that at least one element
of each row vector is 1. The coloring matrix of this product set $\Pi_{i}{}_{\in I}P^{i}$ is modeled
after the cross efficiency matrix of DEA [9].

Type2 The second type of $\Pi_{i\in I}P^{i}$ is generated as follows: First, we have generated $m$

reciprocal matrices $X^{k}$ $(k=1, \ldots, m)$ such that for all $i<j$ the element $x_{ij}^{k}$ of
$X^{k}$ are chosen uniformly at random from {1/7, 1/5, 1/3, 1, 3, 5, 7}, and $x_{ij}^{k}=1/x_{j}^{k}\dot{.}$

and $x_{ii}^{k}=1$ for all $i\in I$ . Next, $P^{i}$ is given as aset of the $i^{th}$ row vector of $X^{k}$

for $k=1$ , $\ldots$ , $m$ . The coloring matrix of this product set $\Pi_{i\in}{}_{I}P^{i}$ is similar to the
pairwise comparison matrix of AHP[10].

Type3 the third type of $\Pi_{i\in}{}_{I}P^{i}$ is generated as follows: First, we have generated $m$

stochastic matrices $X^{k}(k=1, \ldots, m)$ such that each column is randomly chosen
from { $x|e^{T}x=1$ , $x_{i}>0$ for all $i\neq k$ , and $x_{k}=0$ }. Next, $P^{i}$ is given as the set of
the $i^{th}$ row vector of $X^{k}$ for $k=1$ , $\ldots$ , $m$ . For all coloring $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s},\mathrm{a}\mathrm{l}\mathrm{l}$ the diagonal
elements are zero.

Matrix size (n) 5,10, and 40

Number of points in $P^{i}(m):$ 4,8 and 16.

Table 1: Number of iterations in our algorithm $(\#\mathrm{C})$ and Number of iterations in the Power
method $(\#\mathrm{P})$

$\mathrm{m}$ 4 8 16

$\frac{\#\mathrm{C}\#\mathrm{P}}{2.26.9}$ $\frac{\#\mathrm{C}\#\mathrm{P}}{2.36.7}$ $\frac{\#\mathrm{C}^{1}\# 1^{\mathrm{J}}}{2.76.5}$

$\mathrm{n}=5$ Type 1
Type 217.7 16.7 2.3 16.3
Type 316.5 15.8 2.8 19.0

$\mathrm{n}=10$ Type 16.1 6.3 2.2 6.2
Type 219.0 18.6 2.7 18.3
Type 310.5 10.2 2.7 10.9

$\mathrm{n}=40$ Type 15.3 5.2 3.0 5.0
Type 218.8 19.0 3.4 17.8
Type 36.0 6.0 3.0 6.0

Table 2: Number of iterations in the proposed algorithm $(\#\mathrm{C})$ and Number of iterations in
the Dinkelbach-type algorithm $(\#\mathrm{D})$

115



$\frac{\mathrm{m}4816}{\frac{\#\mathrm{C}\#\mathrm{P}}{2.24.2}\frac{\#\mathrm{C}\#\mathrm{P}}{2.34.0}\frac{\#\mathrm{C}\#\mathrm{P}}{2.74.0}}$

$\mathrm{n}=5$ Type 1
Type 22.6 9.0 2.3 9.2 2.3 8.6
Type 32.4 4.2 2.5 4.0 2.8 4.0

$\mathrm{n}=10$ Type 12.4 4.0 2.1 4.0 2.2 4.0
Type 22.9 9.0 2.9 12.2 2.7 12.2
Type 32.6 4.8 3.1 5.0 2.7 4.6

$\mathrm{n}=40$ Type 12.5 4.0 2.6 4.0 3.0 4.0
Type 22.9 18.8 3.0 17.0 3.4 16.7
Type 32.8 4.4 3.0 4.1 3.0 4.0

The same initial point $e/n$ is given to the both algorithms. Table 1reports the average number
of iterations in the proposed algorithm and the average number of iterations in the power
method.

We see from Table 1that the proposed algorithm converges within 4iterations in all cases.
From Table 1we see that the number of iterations in the proposed algorithm is independent
of the matrix-size and the number of the points in $P^{\dot{\mathrm{s}}}$ for all types.

There are large difference of the average number of iterations in power method between
Type 1and the other types in the small matrix-size. The power method converges within
several iterations for all cases in Type 1but it converges within about 18 iterations in Type 2
and 3for the small matrix-size. The number of iterations in the power method is much effected
by the distribution of $x_{\dot{1}}$

$\in P^{\dot{1}}$ . For Type 3, the average number of iterations in the power
method is in inverse proportion to the matrix-size. For all types the number of iterations in
the power method does not increase for the matrix-size and the number of points.

The proposed algorithm and the Dinkelbach-type algorithm generate an eigenvalue problem
and alinear programming problem as subproblem in each iteration, respectively, and the size
of the coloring matrix is almost equal to that of the basis matrix in the linear programming
problem of the Dinkelbach-type algorithm.

Table 2reports the average number of iterations in the Dinkelbach-type algorithm and the
proposed algorithm for $3^{3}$ experiments. Since the numbers of iterations is coincide with the
number of subproblems, the number of subproblems in the proposed algorithm is always less
than that in the Dinkelbach-type algorithm. Especially, in Type 1, the proposed algorithm
has less number of subproblems than the Dinkelbach-type algorithm. If the computational
complexity of solving the subproblem in the Dinkelbach-type algorithm, the computational
complexity of the proposed algorithm is comparable with that of the Dinkelbach-type algorithm.
In fact, we may say from Table 1that solving the subproblem in the proposed algorithm is as
efficient as that in the Dinkelbach-type algorithm.

6Extension and further research
In this study, we propose the algorithm for optimizing the largest eigenvalue of amatrix with
linearly perturbed row vectors. For agiven $n$-squared symmetric matrix $X^{:}$ and $i=0$ , $\ldots$ , $m$ ,
Jarre consider the affine space generated by $X^{0}$ , $\ldots$ , $X^{m}$ :

$S= \{X^{0}+\sum_{=1}^{m}\mu:X:|\mu:\in R$ , $i=1$ , $\ldots$ , $m\}$ .

Let $\mu=[\mu_{1}, \ldots,\mu_{m}]$ and $\mathrm{Y}(\mathrm{p})=X^{0}+\sum_{\dot{|}=1}^{m}\mu_{\dot{1}}X:$ , then largest eigenvalue optimization prob-
lem is as follows:

$\inf\{\Lambda(\mathrm{Y}(\mu))|\mu\in R^{m}\}$ .
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Jarre develop an interior-point algorithm [3] to finding the lower bound of the largest eigenvalue.
In further research, we will consider the largest eigenvalue optimization problem with the

matrix set that is similar to that of Jarre’s study as follows:

$S= \{_{j}\sum_{=1}^{m}\mu_{i}X^{i}|\sum_{i=1}^{m}\mu_{i}=1$ , $\mu_{i}\geq 0i=1,\ldots$

, $m\}$ .

This matrix set $S$ is convex set of amatrices $\{X^{1}, \ldots, X^{m}\}$ . We only assume that $X^{\dot{1}}$ i $\mathrm{s}$

apositive matrix for all $i=1$ , $\ldots$ , $m$ . In order to solve the largest eigenvalue optimization
problem with the matrix set $S$ , we will develop the similar algorithm to the coloring algorithm.
On computational experiments, we will compare the algorithm with the Jarre ’s algorithm.
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