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SELF-CONCORDANT BARRIERS AND CHEBYSHEV SYSTEMS*

LEONID FAYBUSOVICH! .

Abstract. We explicitly calculate characteristic functions of cones of generalized polynomials
corresponding to Chebyshev systems on intervals of the real line and the circle. Thus, in principle,
we calculate homogeneous self-concordant barriers for this class of cones. This class includes almost
all "cones of squares” considered in {4]. Our construction, however, does not use this structure and
is applicable to a much broader class of cones. Even for ”cones of squares” within the considered
class our results are new. '
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1. Introduction. To apply a modern interior-point technique as it is developed
in [5], it is necessary to know a self-concordant barrier for a feasible domain of a given
convex optimization problem. Given a convex domain in a finite-dimensional vector
space, there exists an explicit formula for at least one such a barrier, the so-called
universal barrier function [5]. For example, let K be a closed convex pointed cone in
R" with a nonempty interior. Consider

(11) $(p) = In / e~ P (),
.

where p € int(K), K* is the cone dual to K and p is the standard Lebesgue mea-
sure on R™. Then & after an appropriate normalization is the so-called homogeneous
self-concordant barrier function. The knowledge of such a function in a ” computable”
form, enables one, in principle, to develop interior-point algorithms (along with com-
plexity estimates) for optimization problems whose feasibility domain is the intersec-
tion of K with an affine subspace in R™ and for many other related problems (through
the barrier calculus). Unfortunately, the expression (1.1) requires the evaluation of
multidimensional integrals over geometrically complicated domains for the computa-
tion of the value of @, its gradient and the Hessian at a given point p € int(K). This
is, in general, computationally too expensive taking into account the original task in
question, i.e. solving a convex optimization problem. There are a number of situations
where (1.1) can be more or less explicitly calculated. Most of the corresponding cones
belong to the class of symmetric cones and (1.1) is then easily expressed in terms
of the attached Jordan algebra (see e.g. [2]). A part of the theory of interior-point
algorithms. admits an infinite-dimensional generalization [6] but the concept of the
universal barrier function seems to be essentially finite-dimensional.

In the present paper we significantly expand the class of cones for which (1.1) can
be explicitly calculated. Respectively, we expand the class of optimization problems
to which the modern interior-point technique can be applied. Namely, we consider
cones of generalized nonnegative polynomials generated by Chebyshev systems on
the intervals of the real line or the unit circle. For such cones we find more or less
explicit expressions for (1.1) only slightly more complicated (in computational sense)
than for symmetric cones. In particular, practically all cones considered in [4] can
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be treated from our viewpoint. Note, however, that the representation of a given
cone as a "cone of squares” (and hence the reducibility of a given problem to the
semidefinite programming)which is crucial for Nesterov’s construction, does not play
any role in our approach. Thus, our results are applied to a broader class of cones.
The calculation of (1.1) is new even for most of the cones considered in [4].

2. Chebyshev systems. We start with several examples of Chebyshev systems.
We then formulate several important for us properties of such systems.

DEFINITION 1. A system of real functions ug,...,u, defined on an abstract set
E is called a Chebyshev system (T-system) of order n on E if the determinant

det(U;(tj)),

i,7 = 0,1,...n, does not vanish for any pairwise distinct tg,...,t, € E. If the
set E is endowed with a topology, one usually assumes that the functions ug,...,u,

are continuous on E. In this paper we are mostly interested in the cases where E =
[a,b] C R or E = S?* (unit circle ). In the latter case, ST may be viewed as an interval
[a, b] with identified endpoints. A T-system on a circle is a T-system of functions on
[a,b) with the additional property that ug(a) = ur(b),k =0,1,...,n.

Consider several examples of T-systems.

EXAMPLE 1. Let u;(t) = t',i = 0,1,...,n,t € [a,b]. This is a T-system as it
easily follows from the properties of the Vandermonde determinant.

EXAMPLE 2. The system of functions t™,t™~1, ... t,1,(t—z1)T, (t—22) 7, ..., (t—
z,)T, form the so-called WT —system on the interval [—1,1], provided —1 < z; <
... <z, < 1. Here zy = max{z,0}. The requirement here is that all determinants
from the Definition 1 are nonnegative.

EXAMPLE 3. The functions

1, sint, ..., sin(nt), cost, . .., cos(nt)

form a periodic T -system on [0, 27] of the order 2n. One can show that every periodic
T-system has an even order. For a detailed discussion of examples given above and
many more examples see e.g. [3].

Given a T-system uy, ..., U, on the interval [a, b], consider the cone K of nonneg-
ative generalized polynomials associated with this system:

K={p= iaiui : p(t) > 0,Vt € [a,b]}.
) 1=0

We can associate with K the dual cone

n
K* ={(co,---,ca)T € R™1: Y "cia; >0,
1=0

Vp:iaiui € K}.

=0
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THEOREM 1. We have :

int(K) ={pe€ K :p(t) > 0,Vt € [a,b]} # 0.

The vector (co,...cn)T € K* if and only if there ezists a Borel measure o on [a, b]
such that : L

(2.1) ' ci = /b ui(t)do(t),i =0,1,...n.

For a proof of Theorem 1 see e.g. [3]. If in the representation (2.1) the corresponding
measure o is concentrated in a finite number of points

a<&H <L <. .<&n <),

then (2.1) takes the form:

(2.2) | ci=) pui(§),i=0,1,...m,
=0 :

pj > 0. Following [3], the points §; involved in the representation (2.2) will be called
the roots and the coefficients p; will be called the weights. We further introduce the
notation €(t),a <t < b, where €(t) = 2,a < t < b,e(a) = €(b) = 1. The sum

m

(D)

=1

will be called the index of the representation (2.2). A representation (2.2) is called
principal if its index is equal to n + 1, where n is the order of the Chebyshev system
U, - - - , un. Consider the possible types of principal representations. If n = 2v—1,v =
1,2,... then either all §; € (a,b),m = v, or §; € (a,d),j =2,3,...,v,& =a,,41 =
b,m = v + 1. In the former case the corresponding representation (2.2) is called the
lower principal representation and in the latter case the representation (2.2) is called
upper principal representation. If n = 2v, then either v roots ¢, = 2,3,...,v +1
belong to (a,b) and &, = a,m =v+1, or v roots §;,j = 1,2, ...v belong to (a,b) and
§v+1 = b,m = v + 1. In the former case the representation (2.2) is called the lower
principal representation and in the latter case the representation (2.2) is called upper
principal representation. Thus, a principal representation is upper or lower according
to whether it has or has not a root at the right end point b of the interval [a, b].

THEOREM 2. Given a T-system uo,...un on the interval [a,b], each point ¢ €
int(K*) (see (2.1)) has exactly one lower principal representation and ezactly one
upper principal representation.

This result admits the following modification for the case of a periodic T-system
on the interval [a,b),n = 2v.

THEOREM 3. Each point c € int(K*) admits a unique representation (2.2) with
m =v + 1 one of whose roots £, ...£,41 is a prescribed point £ € [a,b). For a proof
of Theorems 2,3 see e.g. [3].
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3. Calculation of characteristic functions. We are using now principal rep-
resentations of elements of K* to calculate the characteristic function of the cone
K generated by a Chebyshev system wuy, ..., u,. We assume that ug,...u, are con-
tinuously differentiable functions on the interval [a,b]. Let us start with the case
n = 2v — 1. Given p € K, we wish to calculate

(3.1) mm=/;¢”w@,

where p is the standard Lebesgue measure on R®t1. We use the lower principal
representation (2.2) to parametrize int(K*):

14
(3.2) =) pjus(&),
j=1
i=0,1,...,2v — 1. According to Theorem 2 the map (3.2) gives a one-to-one corre-

spondence between

R x{{eR":a<€ <6 <... <& <b}

and int(K*). Here Ry = {z € R: z > 0}. Denote thismap by ® = ®(p1,...p,,1,..-&).
We obviously have: ~

a_p; = U(gj),

j=1,2,...,v, where

u(gj) = (uﬂ(éj), cee auzv—l(éj))T € Rzya

o0d /
—a_g; = pju (Ej)a

j=1,2,...v. Thus , the Jacobian of this map is equal to:

| det(“({l), . u(fu)’plul (fl), cee ;puul (Ev)) |=

(T px) | det(u(&), ' (&) .- u(&),u' (&) |-

k=1

Making the change of variables in (3.1) and using the Fubini theorem , we obtain:

F@=/ | det(u(€n), ' (61), .., u(6), ' (6)) | X
a<€1<€a...£,<b
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(/ pre PEP gy / p,,e—p(f")""dp,,)dfl ...d&,.
R+ R,

Here we used that if p = agug + .. .anu,, then

(C,p) = Z:Ciai = Ziju,-(gj)a,- =

1=0 =0 j=1

v

pi Y awil&s) = pip(&s).
1 i=1

j= 1=0
Let
Vi, o, -, &) = det(u(€),u (61) ... u(&), u (£)).
Since
+o0 1
/ re *dr = —,a >0,
o a
we obtain
(33) F(p) = / T ) [V -6) | s .. 6.
a<61<...<€v<b 4 p(§;)? '

Observe that the function under the integral sign in (3.3) is symmetric with respect
to variables &; ... §£,. Hence,

1 [ N |
F(”)zﬁfa .../a(jl}lm)IV(el,...,ev)ldsl...su.

-~ LEMMA 1. The function V(£r;...,&,) does not change the sign on R".
Proof
Consider, first , the case wherea < & < & ... < £, < b. Let ,...,n, be such
that

(3.4) L<m<&<m...& <y <b

Since uo, . .., uz,—1 is a T-system, we can assume without loss of generality that:

’Y(El) e )é.l/) M,.-- J)u) = det[u(él):u(nl)a’u’(€2)7u(n2)7 o 'u(él/))u(nl')] >0

for any &, n; satisfying (3.4). By the mean value theorem we have
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vy oym, o) =

[T - &) detu(&r), w' (61), u(&), v (B2), - - ., u(&), ' (6,)] > 0

i=1

for some & < 6; <mn;,i=1,2,...,v. Hence,

det[u(€1),u (61),u(&2),u (82), - .. u(&), u ()] > 0.

Taking limit when n; = §,7 = 1,2,...v, we obtain:

V(&,...,€6) >0

for all a < & < & < ...&, < b. Using continuity of V', we obtain:

Vi&,...£&) >0

for a < & < & <&, < b. Our final observation is that:

V(ﬁa(n,éa(z), o bewy) =V (&, 60)

for any permutation o of the set {1,2,...v}. Hence, V(&1,62,...&) > 0 for all &
satisfying a < §; <b,i1=1,2,...,v
Using Lemma 1, we obtain:

35)  Fp) = / /detu@l)u(a) @(6), @ (6))dér .. de,

where

u()
p(€) "

The next Proposition which is due to N.G. de Bruijn ( see [1]) is crucial for the
evaluation of the characteristic functlon '
PROPOSITION 1.
Let (X, p) be a measurable space with a ﬁmte positive measure y on X. Suppose
that ¥y, ..., %20, P1,- .., P2n are integrable functions on X. Let

u(€) = =+1.

D=D(t1,...,tn)

be the determinant of the matriz with k—th row

¢k(t1)’¢k(tl)a ¢k(t2)a ¢k(t2) s ¢k(tn)a'¢)k(tn),
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k=1,2,...2n,t;,ts,...t, € X. Then
A z/ / Ddu(ty) . ..du(t,) = n!Pf(B).
X X
Here B = (b;j) is 2n x 2n skew-symmetric matriz with
by = [ 1040)052) - ¢3()(a)ldua)

and Pf(B) stands for the Pfaffian of B.
Proof.
Using the definition of the determinant, we have:

D(tl,...,tn) =

> (—1)T G0y (b)) (t1) bo(a) (t2) (e (t2) - .- ¢a(2n—1)(tn)¢a(gn) (tn).

g€X(2n)
Hence,
A= Y ()" kq)o)ko(3)o) - - - Bo(zn—1)o(an)»
oc€X(2n)
where

ki = /X Bi(t); () dp(t).

Observe now that in the expression above I::,-j can be substituted by its skew-
symmetric part l;; = (kij — k;ji)/2. Indeed, consider a two-form

2
B = Z a;je; Nej € /\(R2n)

1<i,j<2n

Here ey, . .. €2y is a canonical basis in R?™ and «;; are some real numbers. Taking
n times the wedge product of 8 with itself, we obtain: '

(BAB...AB=( Z (=1)*¥™ 0y 1)0(2) - - - Co(2n—1)o(2m) )W)
o€X(2n)

w=eyAex...Neap_1 A éea,.

On the other hand,
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B = Z (asj — aji)es Nej = Z Yijei N ej,

1<i<i<2n 1<1,5<2n

where 7v;; = (a;; —.a;;))/2. Hence,

BAB...AB=( Y (1™ 7,1)0(2) - - Yo(2n—1)o(2n))W-
g€XL(2n) )

Applying this observation to our situation, we obtain:

A= D (D™ by (1)0(2)bo(3)0(4) - - - bo(an—1)0(2n)
oc€X(2n) ‘ }

Recalling the definition of the Pfaffian of an even dimensional skew—symmetnc
matrix (see e.g [1]))

Pf(B) = > (1P b 1)o@y bo(3)e(4) - - - bo(2n—1)o(2n)

oc€X(2n)

we obtain:

A =nlPf(B).

We are now in position to calculate the characteristic function of a cone generated
by a Chebyshev system of odd order. Applying Proposition 1 to (3.5), we obtain.
THEOREM 4. Let ug,...us,—1 by a Chebyshev system of continuosly differentiable

functions on the interval [a,b]. Let p be a generalized polynomial strictly positive on
[a,b]. Then

F(p) = ePf(B(p)),
where B(p) = (bi;(p)),

b (t)u; (8) — u;(8)u;(t)
bij(p) = / - ’ (t)zj ——dt,
_ a p
i,j=0,1,...2v—1,e = +1.
The case of an even order Chebyshev system is slightly more complicated. Let

Ug, . . ., U2, be a Chebyshev system of continuously differentiable functions on an in-
terval [a,b]. Assume that

(3.6) uo(a) = L,ui(a) =0,i=1,...,20.

THEOREM 5. Let ug,...,us, be a Chebyshev system of an even order of contin-
uously differentiable functions on the interval [a,b], such that u(a) = e;. Let, further,
p be a generalized polynomial strictly positive on [a,b]. Then
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FPf(B(p))
p(a)

>

F(p) =

where B(p) = (bij(p)),

"u,- ul~ —-'U,j ;
bt = [ 0O~ (OU

p(£)?

1,7 =1,2,...2v. Here ¢ = %1.

Similarly, using Theorem 3, we obtain.

THEOREM 6. Let uo,...us, by a periodic Chebyshev system of continuosly dif-
ferentiable functions on the interval [a,b] such that u(a) = e, . Let p be a generalized
polynomial strictly positive on [a,b]. Then

Pf(B(p))

F(p)=¢ P(a)

)

where B(p) = (bi;j(p)),

btp) = [ OO OnE)

p(£)?

1,7 =1,...2v. Here ¢ = 1.

Observe now that the assumption made in Theorems 5, 6 does not restrict the
generality of our approach.

LEMMA 2. Let ug,us,-..,u, be a Chebyshev system on a set E. Let a € E. One
can always choose a basis vo,...v, in span(ug,...u,) such that vo(a) = 1,v;(a) =
0,i=1,2,...n.

Proof

Indeed, for any pairwise distinct points ¢;,i = 0, ... n, there exists v; € span(uq, .. SUp)
such that v;(t;) = i5,%,5 = 0,...n. (See e.g. [3]).

- REMARK 1. Since F(p) > 0,p € int(K) in Theorem 4-6, we conclude that
Pf(B(p)) does not change the sign on int(K). Furthermore, since det(B(p)) =
Pf(B(p))® (see e.g. [1] ), we can easily rewrite In F(p) in terms of Indet B(p).

REMARK 2. The results of this paper can be extended to WT —systems.
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