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DISCRETE VERSION OF LIAO’S CLOSING LEMMA
AND
THE C' STABILITY CONJECTURE
: HAS THE C! STABILITY CONJECTURE BEEN SOLVED ?

A & (HIROSHI IKEDA)
BRXx HI

ABSTRACT. R. Maiié published a proof of the C! stability conjecture for diffeomor-
phisms[5]. In the proof R. Mafié used the discrete version of Liao’s Closing Lemma
without proof. However, the author cannot be convinced of this version of Liao’s
Closing Lemma. We consider length of y-strings. We prove the discrete version of
Liao’s Closing Lemma in consideration of length of ~4-strings. In this paper we claim
need of reconstruction of a proof of the C! stability and Q-stability conjecture for
diffeomorphisms and flows.

1. INTRODUCTION

R. Maiié published a proof of the C? stability conjecture for diffeomorphisms(5].
In [5] R. Mafié used the discrete version of Liao’s Closing Lemma without proof.
Liao’s Closing Lemma is a kind of Shadowing Lemma to show existence of a periodic
orbit near a given periodic pseudo-orbit. Mané cited this lemma from [3]. However,
in [3] the original flow version of the Closing Lemma is only applied to a proof of
a theorem. The original version of the Closing Lemma is stated in [2] in Chinese.
Moreover, a proof of Lemma 3.6 in [2] is incorrect. Thus, there exists a counter
example. But the original flow version maybe holds by minor corrections or at
least in similar setting to Maiié’s diffeomorphism version. The author however
cannot be convinced of Mané’s discrete version of Liao’s Closing Lemma, Lemma
I1.2[5]. Maiié’s version has no bounds for length of y-strings(that is, length of
parts of a given pseudo-orbit). Maifié’s discrete version is very powerful because
there exist no bounds for length of «-strings. However we need bound for length
of ~-strings to guarantee shadowing property. We consider length of «-strings to
guarantee shadowing property. We prove the discrete version of Liao’s Closing
Lemma in consideration of length of y-strings. In the framework of the argument
of Mafié[5], we need not only the existence of a periodic orbit but also the periodic
orbit to shadow a given periodic pseudo-orbit. If Lemma II.2[5] does not hold, then
Theorem 1.4 and Theorem IL.1 in [5] collapse. If one would like to declare that
the C? stability conjecture has been solved, one should show us clear and rigorous
proof of Lemma II.2[5]. In this paper we claim need of reconstruction of a proof of
the C! stability and Q-stability conjecture for diffeomorphisms[5,6] and flows[1].
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In section 2 we give definitions and precise statements of results. After we inves-
tigate several information obtained from uniform <y-strings, we prove the discrete
version of Liao’s Closing Lemma in consideration of length of y-strings. Also we
prove Lemma II(Pliss’s Lemma).

2. DISCRETE VERSION OF LI1AO’S CLOSING LEMMA

Let M be a closed manifold with dimension m > 2 and let Diff” (M), r > 1, be the
space of C” diffeomorphisms of M endowed with the C” topology. Given a compact
f-invariant subset A of f € Diff" (M) we say that a splitting TM|A =E @ F is a
dominated splitting if it is a continuous, D f-invariant and there exist a Riemannian
norm || - || on TM, and C >0, 0 < A <1 such that

I(DFHIE@) - I(DFMIF (=) < O

for all z € A and all n > 0. A splitting TM|A = E & F is homogeneous if the
dimension of the subspace E(z), £ € A, is constant. We say that a subbundle
E c TM|A is contracting if it is continuous, D f-invariant and there exist G>0
and 0 < p < 1 such that

(Df)"|E(z)|| < Gu™ forallz € Aand n > 0.

We say that a pair of points (z, f*(z)) contained in A, n > 0, is a y-string if
n .
[T HIFEFE ) <"
Jj=1

and we say that it is a uniform vy-string if (f*(z), f*(z)) is a v-string for all 0 <
k < n. For further information and details we refer the reader to Maiié¢[5], Shub[8].

At first, we state discrete version of Liao’s Closing Lemma in consideration of
length of ~y-strings.

Theorem I. Let A be a compact f-invariant subset of M. Let TM|A = E® F
be a homogeneous dominated splitting such that E is contracting. Given N € Z¥,
0<4<1andfB >0, there exists a = a(N,%,8) > 0 such that if (z;, f™ (z:)),
i=1,---,k, are (uniform) ¥-strings satisfying
() d(f™(x:),Tit1) <a forall 1<i<k,andd(f™(zx),71) <a;
(i) 1<n; <N foralll<i<k,
then there ezists a periodic point y of f with period Zf___l n; such that

d(f*(y), fM(z1)) <B for 0<n<m

and setting N; = Z;‘:l nj,

d(fNitn(y), fM(@ip1)) < B  for 0<n<mniy, 1<i<k.
Remark. Maié[5] claims that o depends only on 4, 8. That is, Mané’s discrete

version has no bound for length of 4-strings. However, in Liao’s original flow
version([2] correspondent to a depends on correspondents to %, B, and an upper
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bound of length of 4-strings respectively. Moreover, Liao’s original flow version|[2]
has lower bound for length of 4-string.

From now on, we shall call above o connecting range, above 3 shadowing range,
and above 4 contracting rate. The essence of our problem is not the number of
v-strings but the length of 7-strings consisting of a periodic pseudo-orbit. More
precisely, the main problem is whether a sufficiently long uniform 4-string can be
decomposed into appropriate (uniform) «'-strings with v < 4’ < 1. For simplicity,
we consider the case of k = 1 in the setting of Theorem I. That is, (z1, f™ (z1))
is a uniform 4-string satisfying d(f™'(z1),z1) < € for small ¢ > 0. If we treat
(z1, f*(x1)) as only a A-string, then we can show existence of a periodic point
x with period n; but cannot guarantee whether z shadows z;. However we can
apply Lemma II(below) to (z1, f*(z;)). Lemma II guarantees a decomposition
of a (uniform) 4-string into uniform v3-strings for some 1 > v3 > 4. Hence there
exists a sequence 0 = mg < my < --- < mp = ny such that (f™i(z;), f™+(x;)) is
a uniform +3-string for all 0 < ¢ < p. In original flow version, a quasi-hyperbolic
arc [2] has similar properties to a uniform 4-string (z1, f™ (z)) in above situation.
However, correspondent to (f™:(z1), f™+!(x1)) has an upper bound of length of
strings in original version. Lemma II does not inform us about length of a uni-
form ~yz-string (f™i(z1), f™+'(z1)) at all. Certainly Lemma 3.6[2] is applicable
to a uniform 4-string (z1, f™*(x1)) with the decomposition into uniform +3-strings
(f™i(z1), f™+1(z1)). But the diffeomorphism case is different from the flow case.
Continuing the similar argument to the flow case[2] is hard because discreteness
and no upper bound for length of uniform v3-strings. If one would like to declear
that the C! stability conjecture has been solved, one should show us the way of
finding connecting range o from only shadowing range 8 and contracting rate ¥
without upper bound N for length of ~3-strings.

Proof of Theorem 1. Without loss of generality we can suppose that the given
Riemannian metric is adapted to (f, A), uniformly on A, that is, there are constants
0< A< 1, C >0such that

(1) ||Df|E(z)|| <A for any z in A ;

2) D™ E@)] - [|(Df~H)*F(f*(z))|| < CA™ for any z in A and n > 1.

Let ¢’ > 0 be such that the exponential map exp,, : TM — M is a diffeomorphism
on the ball of radius &’ for every z in M. For small 0 < ¢ < €', define By(e) =
Ep(g) x Fp(e) and By(e) = exp,(Bp(€)) , where Ep(¢) and Fy(e) are the closed balls
in E(p) and F(p) about 0 of radius ¢, respectlvely

From now on we fix €g such that 0<egy<e. If zand z are two pomts in M with
d(f(z),z) < €0, define a map F, , : T,M — T,M by F, . = D(exp;! )f(x)Dfm .

If the points z and z belong to A, the splitting E & F allows us to write FZ z as

the block matrix
Az,:c Bz,x
Cz,m Dz,x

where A,, € L(E(z),E(2)) , B;s € L(F(z),E(2)) , C,s € L(E(z), F(z))
D, . € L(F(x), F(z)) . Here L(E}, E») is a space of continuous linear maps of E;
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Let F, ; be the map with the diagonal block matrix

A, O
O D,;)

In this setting we obtain two preliminary lemmas.
Lemma 1. For all n > 0 we find a constant 0 < § < ¢ such that if two points z, 2
in A satisfying d(f(x), z) <6, then

|Fee — Faall <, | Fez| Bl < A .

Lemma 2. For given N € Z*, 3> 0 andn' > 0 with 8 < €, there are 0 < 6 (< )
andr = r(N,B,7',6) > 0 such that ifd(z, f*(y)) <6 and1 < n < N, then we have
(i) f*(By(r)) C exp,(B:(8)) ,
(ii) f7(By(r)) C expyiy)(Bsiy)(B)) for 0<j<m,
(iii) Lip[(F, fn-1(y) © D1 — exp;lof™ oexp,)|By(r)] < 7.
Remark. r depends on 4.

Now return the proof of Theorem I. For 0 < o < min{eg, 8}, where (3 is given
by Theorem I, let (z;, f*(z;)), i =1,---,k, be a (uniform) ¥-string satisfying

d(fr(x;),ziv1) <a foralll <i<k and d(f™(zx),z1)<a.

Let X = {z1, - ,Zx}. We define the following maps:
(i) 2 : X > A C M is the inclusion map, i.e., i(z;) =z forall1 < j < k.
(ii) h: X = X is a shift with h(z;) = 7,41 for all 1 < j < k and h(zk) = z1.

Let I'(X, *TM) be the space of continuous sections of X with sup norm ||¢|| =
suPg<;j<k [1€(z;)|| - Continuity of section £ on X means that there exists a con-
tinuous section ¢ on M satisfying ( oz = £. We will construct a hyperbolic linear
operater F on I'( X, :*T M) which depends only on X. By 0 < a < g¢ we can define
F by the formula

F(o)(z1) = =(z1) for-1(h=1(z1)) © (D)™ o (R (1))

F(o)(z;) = 1($J)f =171 (ih-1(z;)) o (Df)*-1"ta(h~ 1(3; )) for 1<j<k,

where o € I'(X,i*TM) .

We shall show that F is hyperbolic. Take \ such that 1 > A > max{\,%}. Then
there exists a constant 0 < ap(< €9) such that if ag > a > 0 then

(H II(Df‘l)IF(f'(wj))ll) NID(expz ), ) pmi@pl I <A for j=1,--+ k=1,
(HII(Df 1)IF(f’(:mc))Il) (I[D(expz,) gra @] 7HI < A,
(n,—l

II woniEs (wa))ll) ID(expz ) ) gmiepll <A for j=1,--0 k-1,

ng—1
( 11 ||(Df)|E(f'(xk))n) ID(expz?) pos oyl < A



(Because F is contracting and (z;, f™ (z;)) is 4-string for j = 1,--- , k.) Hence for
some 0 < a < ag, F is hyperbolic.
We define G:T',. (X *TM) - I'(X,i*TM) Dby
G(o)(a1) = O f ™ o expis oy (a0 21)
G(0)(w5) = expick ) o™= 0 exPip-1(ay) (0 (h™(z5))) for 1< j <k,
where I, (X, #*TM) is the closed ball in I'(X, s*T M) about 0 of radius r.
Let K = maxi<k<n ||Df¥|A||. We shall show that G is Lipschitz close to F. Using

the norm on I'(X, ¢*T M), we can calculate the Lipschitz distance from G to F on
the ball I'y. (X, *TM) = T'(r'): :

LZP[(F G)|F( ,)] <K Xx Iéla'}k{” i(z;),fri-1" (sh—1(xj)) Fi(z),ih—l(m)”{

i), it inm1 @) ~ Figon) gt anmt e I} + max

{sz[( i(z;), fri-1" 1(1h (s, ))on j—1— —esz(a: of I-loexp;p - 1(31))|B,h 1(_,,,3)(1‘ )]
Lip[(Fy(g,), f“k"l(zh 1(ay)) © D™ 71 —expj, o f ™ °expm—l(ml))|3zh-l(z1)(7” )}

Now, we use N € Z*, 3 > 0 given in Theorem I. Moreover we take 7’ > O
and 0 < § < min{g, (17)} (Note that &(n) is given by Lemma 1 for .) Then
Lemma 2 allows us to find a constant r(N,(3,4,n') > 0 such that for every
0<r' <r(N,B,47)

Lip[(Fy(zy, fre-1 (a1 (a1)) © D™ " - GXP,-_(;I) o f™* 0 eXPip-1(gy)) |1 Bik-1(z;) ()] <

/

and
Lip[(Fi(mj),f"j—l—1(,‘h—1(wj)) °Dfnj_1—1 - eXpi_(:;j) ofmi-1 oexPih—l(zj))lBih—l(mj)(7',)]
<n for 1<j<k.
Now, we take a, r’ satisfying 0 < a <d,0< 1" <r(N,f3,4,7). Then we have

(a) Lip[(F-G)|T(r)] < Kn+n

(b) [IG(0)]|<a

() ||FID(X,#E)||<A<1 ,

@) ||FYr(X,i*F)||<A<1
In order to apply Proposition 7.7 [8], we must use the box norm on I',.(X,#*TM) =
I (X,*E)®T.(X,i*F). It is easy to see the equivalence of the box norm || - ||pox

and the given Riemannian norm || || on E® @ E*. Thus there is a constant ¢ > 0
such that ¢ | [|poe < |- || < |l |lbox on ESF.

Using the box norm, we can rewrite the estimate of (a) and (b):
(a")  Lippos[(F — G)IT(r")] < *(Kn+17')
(b")  1IG(0)llbos < car .

Let I'*(r) be a closed ball in I',.(X, ¢* E') about 0 of radius r. Similarly for I'*(r). If

" is less than r’/c, the box I'*(r”) x I'*(r") is contained in I'(r’), and we have

Lippo[(F — G)|T*(r") x T%(r")] < Lippos[(F — G)|T(r")] < A(Kn+17').
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In order to apply Proposition 7.7 [8], we must have

(e) A+c(Kn+n)<1l ;

(f) ca<r"{1-A-c3(Kn+n)}.
Therefore, we first choose n and 7’ satisfying (e). We take § > 0 such that
é < min{B3,6(n)}. So we get r = r(N,B,6,7') by Lemma 2. Then, we find
constants 7' and "’ < '/c , as above. Finally we choose o < min{é, o} small
enough so that (f) holds. Hence Proposition 7.7 [8] gives a fixed point o € I'(r')
for G. Then y = exp,, o(z1) is a periodic point of f with period Z§=1 n; sat-
isfying d(f'(y), f'(z1)) < B for all 0 < I < n; and, setting N; = 37 _ np,
d(fNi*t(y), f(zjs1)) <B for 0<I<nj,1<j<k. A

Remark. (1) Setting N; = 37 _ nm, d(f¥(y),21)) < [¢2/(1 - A= cE(Kn+7'))]a
and d(fN(y), 7541)) < [*/(1- A= E(Kn+n)a for 1<j<k.
(2) By some minor modifications of the above arguments, we can give rigorous
proofs of Step V and Lemma B in [4]. |
(3) In the framework of the arguments of Maié[5], Theorem I is not effective.
Hence, if Lemma II.2[5] does not hold, then it is hard to prove Theorem 1.4 and
Theorem II.1 in [5].

The following lemma is essentially due to Pliss[7].

Lemma II. For all 0 < 49 < y3 < 1 there exist N(vo,7v3) > 0 and K(vo,7v3) > 0
such that if (z,g™(z)) is a yo-string and n > N(vo,73), then there ezist a segeunce
of positive integers 0 < ny--- < ng < n, s > 1, such that (z, g™ (z)) is a uniform
v3-string for all 1 < i < s. Moreover, if m < nK(vyo,7v3) then m < s. Let
K(n) = max{m € Z*| m < nK(v0,73)}. Then s > K(n).

Proof. Let H = sup{|log||(Dg~1)|F(z)|| |;z € A} + a, where @ > 0 is small
enough. Let N(vo,7v3) = 2H/log(vs/70). Let (z,g™(z)) be a ~o-string with n >
N(v0,73). Define a sequence of positive numbers {p(k)} by

p(0) =1, p(k) = ||((Dg~")|F(¢g"+~*(z))|| forall 1<k <n.

Then it is obvious that |logp(k)| < H for 1 <k < n. Moreover, > ¢_,logp(k) =
> k1 logp(k) < nlog~o. (Because (z,g"(z)) is a yo-string.) Define a sequence of
positive numbers {g(k)} by

¢0)=p(0)=1, q(k)=p(k)y;" for 1<k<n.
Define f(v) = 3 ,_ologg(k). Then

f(n) = Y r_,logq(k) < nlogyo + nlogy;! =nlog(yo/73) <0  (a).

Let v, be a minimal number such that f(v;) > f(v) for 0 < v < n. Obviously
0 < v; < n because f(0) =0, f(n) < 0. Let v be a minimal number satisfying:
(1)  <vvg;
(i) f(re) > f(v) for v <v<mn;
(iii) 0 < f(v1) — f(vo) < H.
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Continuing in this fashion, we obtain a sequence of numbers {y;|1 < j < s}
satisfying

(@) f(vj) > f(v) for v;<v<n;

(II) 0 < f(vj—1) — f(vj) < H for 2<j<s;

(II1) vs = n.
By (I) we have

log1{" ™) > log[T4_,, 41 [I(Dg™)|F(g"**~*(a))|| forv; <v<n and 1<j<s.

Hence [Ty_,, 41 [(Dg~1)|F (g™ ~*(2))|| < 75 for yj<v<n and 1<j<s.

Setting n; = n —vj41-5 for 1 < j < s, we obtain 0 < ny < --- <n; < n such that
[Ties I(DgHIF (g™ * 1 * @) < (ve)  for 1<i<j and 1<j<s.

Hence (z,g™ (z)) is a uniform 3-string for 1 < j < s.

Summation of the inequalities (II) from j = 2 to j ='s yields f(v1)— f(vs) < Hs.
Since f(0) = 0 < f(v1), f(vs) > —Hs. Let K(v0,v3) = H 'log(vs/v0). Then
we claim that k¥ < nK(vo,y3) implies k£ < s. Suppose that k£ > s. Then —Hk <
—Hs < f(vs). If vs_1 = n —1 then —Hk < f(n). But —Hk > —nK(v0,73)H =
—nlog(vs/v0) = nlog(yo/vs) > f(n) by (a) above. This is a contradiction. If
Vs—1 =n—2then —Hk < f(n—1) < f(n) < f(n—2) by the construction of {v;}.
This contradicts to —Hk > f(n). By the similar argument of the case v5_; = n—2,
we can induce a contradiction for the case vs_; =n—m,n>m > 3.

Since n > N(v9,73), n > 2H/log(ysz/v0) so nH~1log(y3/v0) > 2 hence
nK(v0,73) > 2. Therefore s > 2. A
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