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1 Introduction

A large amount of work ( cf. [1-19 ] ) has been devoted to the study of genercalized of Davey-

Stewartson systems:

s + OUsg + Uy = Mul?u + puv, (1.1)

Ugy + VUyy = (I“Iz)w

Where u is the complex amplitude, a complex-valued function of (’t;z,y) € Rf x R%, Vis
the real mean velocity potential, a real-valued fur;ction of (t;z,y) € Rt x R?, 5, /\:, u,v € R.
The Davey-Stewartson systems were first derived by Davey and Stewartson (1] in the cen-
text of water waves, these systerﬁs model the evolution of weaklyv nonlinear water v;lavés that
travel predominantly in one direction, but iﬁ whiqh ;che wave -applitude is Iﬁodﬁla;ted sloxlavfl)'f»i’n
two horizonltal aireétions. The real parameters o, \, u, aﬁd V can assume botvh signs. Dé;/(;y-
Stewartson systems can be »cl;assi‘ﬁed as elvliptic;elliptic, elliptic—hyperBolic , hyperbolic-elliptic,
and hyperbolic-hyperbolic according to the respective sign of (o, v) : (+,+), (+,—), (-, +) and
(—, —) .System (1.1) were also derived by‘Djordjevic and Redehkopp [2], and Ablowitz and
Haberman (3].Varions properties of solution for Davey-Stewartson systems have been investi-

gated by many authors including Ghidaglia and Saut [4], Anker and Freeman[5], Ablowitz and



Fokas [6], M. Tsutsumi (7] Hayashi and Saut 8], Linares and Ponce [9] and thereferences therein.

In 1990, Ghidaglia and Saut in [4] studied the Cauchy problem of (1.1) and except for the
case g, v < 0 proved the solvability in the Sobolev spaces H 1 = HY(R?) . In the elliptic-
hyperbolic case, i.e.,0 > 0 and v < 0 Tsutsumi in [7] obtained the LP(R?) decay estimates
of the solution of (1.1) (2 < p < 00). Ozawa in [10] preseuted the exact blow up solution
of the Cauchy problem (1.1)., Ohta [11] and [12] discussed the existence and nonexistence of
stable standing waves under certain conditions. In 1999, Guo and Wang [13] proved i;he global
existence for the Cauchy problem (1.1) in H*(1< s <2,n =2, 3). In 2001, they in [14] also
extend this result to generalized (1.1) systems., Moreover, the existence of global attractors
, global existence and blow up of solutions to a degenerate Davey-Stewartson equations and
approximate inertial manifolds was also studied by Wang and Guo in [15], Li, Guo and Jiang

in [16], and Guo, Li and Lin in [17], respectively .

In this paper, we shall first treat the case o > 0 and v > 0 of (1.1), by using Besbv
space. Secoand we consider the existance of global attractor for (1.1)in R? and construct the
approximate inertial manifolds to (1.1). Finally, the global existence and blow up of solution

to degenerate Davey-Stewartson equations also have been established



2 The Cauchy problem for Davey-Stewartson systems

In this section , we shall treat the case ¢ > 0 and v > 0 and study the Cauchy problem of the

following generalized Davey-Stewarstson systems,

)
iug +Au = alu|u + byuv,
1 —Av = by(ju)m (2.1)
u(0,z) = uo(z)

Where u(t,z) and v(t,r)(z = "(:1:1 -++&p)) are complex and real valued functions of (¢,z) €
R* x R™ respectively, A is the Laplace operator on R"™, and a,b; and b, are real constants .
One can easily see that (2.1)is a generalized version of (1.1) is the case ¢ > 0 and v > o.

let u,v be the solution of (2.1), It follows from the second equation in (2.1), that

I3

2
vy = —b2f-1(!—§-l15)f|‘u|2 (2.2)
For brevity we denot&
2
E(y) = f“l(é;;)f«/) (2.3)

Combining (2,1) and (2,2), we have

iug + Au = alu|®u — b1 E(|ul?)u
(2.4)
U(O,CL‘) = up(x)
One can easily verify that (2,4)is essentially equivalent to (1.1) through the transformation
(2.2). We shall study the local and global existence of solutions in H %(1 < s £ 2) of problem

(2.4) is two and three space dimensions.

1. We first state the main results, Let



(2.5)

Theorem 2.1 Let n = 2,3. 1 < s < 2 and uo € H®. Suppose that a € (1,as(n)]. Then

there exists a unique solution u of (2.4) satisfying
u € Cioc(0,T*; H?) nL;Yo(cr) (o, T*; H>")
for some T* € (0,00), where r € (2,2 + a1(n)] and ;7—(2;5 = n(} — 1), Moreover, if T* < oo, then

l. t s =
Jm, supl|u(t)||ns = o0

Theorem 2.2 let n = 2,1 < s < 2, and ug € H®. Suppose that one of the following

conditions holds:

i) a>0 and 2 < a < oo;
(i) a=2 and a < maz(0,b1b2)
(iii) a=2 and biby >0, and (bibg) —a)|luoll22 < 4
(iv) a=2 and bibs <0, and —alluol2s <4
(v) 1<a<?2 and biblluoll? <4
Then (2.4) has a unique solution u € Cloc(0,00; H*) N L], (0, 00; H*") N C(0, 00, H') for

anyr€[2,oo)andﬂ2;5=l—%.



- Theorem 2.3 let n ='3,1 < s < 2; and up. € H*. Suppose that one of the following

conditions holds:
i) >0, 2<a<d4, or
(i) a=2, a> Q, and a > bybs
Then (2.4) has a unique solution u € C’loc(O oo; H8) N L7(T)(O,oo;Hs’r) N C(0,00; H') for

loc
'anyr€[2 6) and 7_5—”(2_7 .
Throughout this paper, we will have occasion to use a variety of function spaces, Lebesque
space L™ = L"(R"); Bessel potential space H*" = H ST(R™), H® = H*? ; Riesz potential space
Hor = H*"(R"), H* = H%2; Besov space BY, = B (R"), B} = Bf,; and homogeneous Besov
space B;?,q = Bﬁ,q(R"), B = »2, The deﬁmtlons of these spaces allow 1 < r,q < 00,s € R. If
§ > 0, Then we have B} = L™ N Bs, H" = L™ N H? An equivalent definition of the norm on
B? is that |

1

ell g, = ( LT S sup lanpoul, ‘“) E (2.6)

o =]s| hI=t

where [s] denotes the largest integer less than or equal to s, Apu(') = u(-+h) —u(-) = up —u.
For some additional basic results on Besov space , one can refer to [20]and [21].
In the following, C will stand for a constant , depending only on R", that can be different at

different places . For any r € 1, 00, r' denotes the duality number of ,i.e., % + ;lr =1.

The main tools used in here are time-spaceLP—LP estimates for solution of linear Schrodinger
equations in Lebesque-Besov spaces; these estimates are usually named generalized Strichartz

inequalities. The method of the proof of main results is a contraction mapping argument. Les



us recall that some estimates for linear Schrodinger equations in Lebesgue-Besov spaces have

been established by Cazenave and Weissler in [12]

Proposition 2.4 Let S(t) = et Lets€ R, 2<r, p<2+a(n), and let

2 _ L1
- -7 2.7)

(i) If p € H® , Then S(-)p € L") (R, B?), and ther exists a constant C > 0 such that

IS@®)Pll L~ (r,B2) < Clloll e (2.8)

for all <p>€ H*

(i) If f € LY (0,T; BY), then [t S(t — 7)f(r)drinL"® (o, T; B}), and there exist C > o

such that

t |
1 [ 5= f@drllgroeig S My orise,) (29)

for all f € L’r(r)' (o, T; B;",), where 71?5 + ;,—(i—)r =1

2. Nonlinear estinates

2=

Lemma 2.5 Let 1< \,7,0 <00, 3 =

(i) We have

luvllna < Clllullzollvllzna + lullellvllzy) (2.10)



for any v € HY* and v € HMY

(ii) Let 1 < s < 2. Then we have

lwvllsg < Clllullzellvlleg + llullssllvl|zy

+ ellzriol o1l g-1 + lullgo- | ollr10) (2.11)

for all u € B} and v € B;.

(iii) We have
llwvllgza < Cllullzellvllzza + llullmzellvllEs + llellgelvligs) (2.12)

for any u € H?? and V € H?".

Corollary 2.6. let 1 < s < 2, We have
lwol|grias < Clullpellollen + [lul[zra]lv]|z2) (2.13)

luvllgaars < C(lullzallvllze + ullgzallvllze + lullzallvl| ) (2.14)

|luv]| B

20 < (Cllullallollzs + [0l ellullzy + llullmnallvllas- + ollg llull gg-1)

Lemma 2.7 (Convexity Holder Inequality) Assume that 1 < p;,q; < 00,
N

: ¢ N N N
Oseis1,0'i70'€R(i=1»""N)7 Zoi=1>0< Zeidi, 1/p= Zei/pi,a.nd 1/q= Zg‘-
i=1 i=1 i=1 i=1""

N
o3 0
Then we have iQI Bpi,qi - Bp,q and

) N
lollsg, < C]1 IIvH%;?q (2.15) .

p.q — Sa;
i=1

N
forallve N B,
i=1



Lemma 2.8 Let E(-) be as in (2.3). let 1 < s < 2. Then we have

E(ul?)ullsy, < Cllullggllullzg (2.16)

/3 —
IE(ful®)ullgzes < C llul g2 [ul| e (2.17)
Corollary 2.9 Let n =2, 3. Let E(-) be as in (2.3). Let 1 < s < 2. Then we have
| E([ul)ullsy,, < Cllullflulls; (2.18)

NE(ul?)ullgzass < Cllullfnllullgzs (2.19)

Lemma 2.10. Let p = 2n/(n — 2+ 2¢),n > 2,¢ € (0,1).

(let0<a<o(n)ande=1- 9-‘1"4—-2)-“ifn > 3; € € (0,1) is arbitrary if n = 2. we have
ul®ull g, < Cllwlig lullae (2.20)

(i) Let1<s§2,1§a<a1(n),ande=i—5$'f4——22ifn23;e€(0,1) is arbitrary if
n = 2. we have

llul®ullgs, < Cllullfllullsg +C Il el |l | e (2:21)

(iii)Let1$s§2,lgas(n),and€=1—3§3‘;—2slifs_<_%;e=1ifs>%; We have

llul®ullze, < Cllullfllulls; (2.:22)



Lemma 2.11. (i) Let p be the same as in (iii)of Lemma 2.10, Let 1 < s < 2.Then for any

a € (0, as(n)),we have
el = fol*vll < CUllullFs + 11ol1%)llu = vl]20 (2.23)
(ii)We have
IE(ul*)u — E(fo*ollgs < C(llull2s + [ol2e)llu — v]] e

3. Prof of Theorem 2.1
Let p be the same as in (iii) of Lemma 2.10. For the sake of convénience, we assume that
P1 =2, p2 = p, and p3 = 4. Put
3
D= {u €N m(m)(o,. T;B,) : llullng L7®(0,T; BS,) < M} (2.24)
i=1

and for any u,v € D, we define a metric d(u, v) by letting

d(u.v) = |lu - v”nle LY®) (0,T;LPs) (2.25)

Considering the mapping

t
J u(t) — S(t)uo — z'/o S(t — 1)[alu()|* = bibo E(|u(7)|})|ulr)dr

we shall prove that J is a contraction mapping for some T' > 0. For convenience, we denote

f2(v) = aju|*u and f3(u) = E(|u|?)u. For any u,v € D, in view of (2.7)and (2.8) we have
, ‘ ’ . : : 3 . o ' C )
”jullnf:l L"(”i)(O,T;Bgi) < Clluol|zs + C% “fi(u)||L~,(p,~)' (0.T;B3,) (2.26) -
1=

3
”Ju - J'U”n?:l L(P)(0,T;LP%) < CZ “f‘l(u) - fl(v)” (227)

U
2 L7’ (0,T5L7%)



By Corollary 2.9 and Lemma 2.10, we have

“J'U'”n" 1[;1(17;)(();1‘;3;)2) < C”uOHH’ + CT&I”u“([x,m(o,T;H’)||u‘|L1(p2)(6,T;B;2)
t=

2
+CT62I|U||L°°(0,T;H1)HU'” LY(®3)(0,T;B3,)

Where

1
1 3 n=2
fi=1———=¢, &=
1 ’7(})2) * .
1 n=3

¢ is the same in (i) of Lemma 2.10. By Lemma 2.11, we have

| Tu = Follng_ Lrwr ooy < CT® (||ull® + |[0ll*) Lo 0, H2)
lfu — ””Lv(m)(o,T;Lpz)
+ T (|[ull? + |0l1*) L o,3mm)
Il = vl o> 0 73255)
where §;(i = 1,2) are the same as the above .We have

||Ju|Ini-’=1L‘7(pl')(0,T;B;’,) S C“'UOHHO + CT61M0+1 + CT62M2M

”Ju - Jvlln-;?=1Lv(p¢)(o,T;Lp.') < C(T‘s1 M* + T62M2)||u - v“n?___lL"(Ps‘)(o,T;LPI)

10

(2.28)

(2.29)

(2.30)

(2.31)

Put M = 2C||uo||n+. One can choose a sufficiently small T’ > 0 such that C(TH* M*+T%M?) <

1. It follows from (2.30) and (2.31) that J is a contraction mapping on (D,d). Thus , J has

a unique fixed point u € D that is just the solution of the integral equation

u(®) = Sttyuo ~ i [ (¢ = lalu(r)I” — b B(fu(r)Nutr)dr

(2.32)



11

Repeating the obove argument on [T,T],[T1,T3),- - -, one can easily see that there exists a
T* > 0 such that uw € N}_; LY®1)(0, T; B;.) is a unique solution of (2.32). Moreover, if T* < 00,

by a standard disscussion, we have
tliljr“l* sup||u(t)||gs = 00 ; - (2.33)

By virtue of (2.7) and (28), we have u € Cjo(0, T*; sHo)NL] r)(O T*; By) forr € [2,2n/(n—2)).
This finishes the proof of Theorem 2.1
4 Proof of Theorem 2.2 and 2.3

Propasition 2.12 (Conservation law) Let u be a suitable smooth solution of (24). Then we have
lu@llzz = lluollzz,  E(u(t)) = €(uo) (239

Where

1 a o b1b2
£ = 3lIVullle + gl - 220 () Al @3s)

Lemma 2.13 Let uo € H® and u € H%(s > 1) be a solution of (2.4). Assume that one of
the following conditions holds:
(i) a>0- and. 2< a<oo;

(i) a>0, a=2, and a > bybo;

u

(iii) n=2 a=2, bby>0, an (b1b2 - a)]luollig < 4
(iv) n=2, a=2, bby <0 and —aHUO“%'z < 4;
(v) n=2, 0<a<?2 and bibs [ |up(z)2dz < 4

Then we have ||u(t)||; < C, where C is independent of t.
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Proof of Theorem 1.2 and 1.3. In view of Theorem 2.1, we shall show that T* = oo by
proving that ||u(t)||#» remains-bounded on (0,00). Let p be as in (ii) of lemma 2.10. It follows

from proposition 2.4, Corollary 2.9 and (i) of Lemma 2.10 that for any r € [2,2 + a1(n)), .

lullpororann < Clluollan +Clllulwll oy o rims')
Bl e oy
< Clluollm + CTE“U’“(I!;‘”(O,T;HI)”ul|L’7(F)(0'T;H1m)
+ Clluollas + CT 4 |ull} 0.7, 1ell Ly 0,7 1010)-
Since ||u(t)||g: < Co , where Co is ir;dependent of ¢, we can choose a sufﬁcéntly Small T >0

such that

C(T*Cg + T'™"/*C3) <

N |-

This leads to
]| 10> (0,13 11 2)N LA (0,13 H1A) S 2C||uol|gn < 2CCo = C

Repeation the above procedure on [T, 2T}, [2T, 3T),- - - we have

ll 76> (uT (g 1)T; HEPINLY® (T (b )T 1) S 2CC0

It follows that u € L‘lyo(cp )(0, 00; HY?) N LZf: )(0,00; H'*). Moreover, one can easily see that

u € L?o(cr) (0,00; HY7) for any r € {2,2+ a1(n)]. For any 1 < s < 2, in view of proposition 2.4,

Corollary 2.9 and(ii) of Lemma 2.10, for any r € (2,2 4 a1(n)), we have

Wullpvrorsy < Clluollas + Clllul®ull ey o 1,80
. p

+ CIE(|ul*)ull oy (0.T;B,;)

< C“'U'OHH’ + CTE”""'”’[Y,oo((),T;Hl)““”L'r(p)(O,T;B;)
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+ CT6||U||%;1(0,T;.H1)H“Hm<p) o.1:mu0) Ul Lo (0,1;H9)
+ CTl_"/4||u||%°°(O’T;H1)Hu||m(4) (0,T;B3)

< Clluollae + CT*C§|lullpre 072
+ CTEC(‘)’_161||UHL°°(0,T;H8)

" CTl—n/4Cg Hul| e (0,T;B3)"

Similarly as in the above process, we can choose a sufficiently small 7' > 0 such that

C(T'"™4C§ + TC§'Cy + T*CF) <

N =

This leads to

”UI|L°°(o,T;Ha)anp)(o,T;B;,)nm(‘t)(o,T;B;) < 2C ||uollne ‘
Repeating the above procedure, we obtain that T = oo in Theorem 2.1, i.e., u € L5, (0, 00; H*)N
L?o(cp)(O,oo;B;) N L?éj)(O,oo;BZ). It follows from proposition 2.4, u € L;L(:) (0,00; BE) for any
1:' € 2,2+ a1(n))
For s.= 2, in the same way as in th proof of the case 1 < s C 2 we can prove that

u € L;’O(: ),(O;oo; H2%™Yfor any r € [2,2n/(n — 2)). The details are omitted .

Now we consider the following generalized Davey-Stewartson system

g + Au = Allulp‘U-F'/\2|u|”2U+uuvxi . .
(2.36)
Bv = (lulz)ml ,
Where u(t,z) and v(t,z)(x = x1,---,2,)) are complex and real valued functions of (¢,z) €

Rt x R", respectively, Xi o, u € D

A-'— Z aijaxiaxj ,‘ B.__ Z bijaa,‘ial‘j

1<i,j<n
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(ai;) and (bs;) are all real and invertible matrices, in addition we assume that there exists a

constant C > 0 satisfying

Y bi&igi| 2 CIEP?, for all £€R” (2.37)
1<ij<n
We denote
E(‘/’)’—‘J:—1 _€i__ Fy (2.38)
> bi&é
1<i,j<n

One find that the system (2.36) can be rewritten as
iug + Au = A|ufPru + AolulP?u + pE(u*)u (2.39)

For any 4/n < p < oo and r € [2,00) and we write

2n(2 + p)

2 1
n(2+p)—4

s<p>=g~§ L 5= Y, rlo)= (2.40)

Let
00 n=2 '
a(n) = (2.41)
2n/(n—-2) n>2 ’
For the equation(3.39), p = 4/(n — 2s) is said to be an H*® —critical power and p < 4/(n — 2s)
is called an H*-subcritical power . It is easy to see that every p > % is just an H*(P)—critical
power. In the sequel, we always assume that (a;;) and (bi;) are invertible and (b;;) satisfies

(2.37). For any r € [1,00],7 denotes the dual number of r,i.e., 1+ ;lr = 1. Our main results

are the following:

Theorem 2.14. let n > 2, 4/n < p1 < p2 < 00, maz(s(2), s(p2) < s < oo and [s] < p1.
let uo € H®. Then there exists a T* > 0 such that (2.39) with the initial value up at ¢t = 0

has a unique solution u € Cioc(0,T*; H®?) N L;’(r) (0,T*; BE,) for all r € [2,a(n)), Moreover, if

ocC
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T*; < 00, then

lullryms 5y L P(0, 7% B2 ) = 00 | (2.42)

For the sake of convenivence,we write
B = {ue B :|[ull o < 6} (2.43)

For any 0 < sp < s < .

Theorem 2.15 Let n > 2, 4/n < p1 < p2 < 00, maz(s(2), s(p)2 < s < oo and [s] <m
There exists a § > 0 such that if ug € Np=y p1, P2 Bg(p) ® then(2.39) with the initial value ug at

t = 0 has a unique solution u € C(0, 00; H*) N L") (0, co; B;,) for all r € {2,a(n)).

Theorem 2.16 Let S(t) be the unitary group generated by 2'3% +A letn>2 4/n <
p1 < p2 < oo, maz(s(2),s(p2)) < s < oo. and [s] < p;. There exists a 6§ > 0 such
that the scattering operator S of (239) map V=2, p1, py) B§(p " into H®. More precisely,
for any & € My=2.p, 1 B;“’ )’s,(2,39) has a unique solution u € C(R; H*) N L") (R; B} ,) for all

r € [2,a(n)) such that

lu(t) = S@) ¢~ |las — 0, as t — —o0;

and there exists ¢* € H® such that the above solution u satistying

llu(t) = SE)e*|lgs — 0, as t — oo

Remark 2.16 Since (a;;) is only assumed to be invertible. A can be a hyperbolic operator in

Theorem 2.14-2.16. for example, A = ¥ 5‘9;2; -3 8%27, N1 UN; = {1,---,n} In view of
€Ny Tt jeNz i
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condition (2.37) the operator B is essentially elliptical.

Remark 2.17. [s] < p; is used for deriving the différentiability of |u[P'u, so, if p; are all even
integers C; = 1,2, then condition [s] < p1 could be removgd in ’_I‘heqrem 2.14—2.16 .

Remark 2.18 . In Theorem 2.14, if T* < oo, then the solution u actually blow up in the

Besov space B2P?)

- (2vps)» WheTe s(2vpe) = smaz(2,p2) is the critical order association with the

nonlinearity |u|?'?? u, i. e.,
2v
[[ull 2+ avra (0 T*; Biger?) 5) = 00 | | (244)

* % 2V
It means that o 20»11»2 Lo, T ;B:gl) > Lrve)(0, T ;B:§2v£3,2)’ whence , (2.44) follows .
Remark 2.19. Considering an important case p; = pz = 2 in Theorem 2.15 ,we have shown that
(2.39) with the initial value ug at t = 0 has a unique solution u € C(0, co; H*)NL*(0, 00; B} (3)2)
it lluoll g1 < 8,8 > m/21.

Remark 2.20. one see that

np=.2’ P1. sz:(p),s = {u € Hs M “u“np=2, 1 pzl'{,(p)sé'}

in Theorem 2.15, ||uo||zs can be arbitrarily large if s > (n/2 — 1)vs(p2).

3 Existence of global attractor for Davey-Stewartson systems

First, we consider the following Davey-Stewartson systems

i%+AwHM=aM%+W%+f@w, (3.1)
Ap = Z(|uf), (32)

where f(z,y) € L*(R?),é > 0 and

a<0, a+b<0 B ¢ X:)
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Obviously, systems (3.1) (3.2) can be reduced to a nonlinear nonlocal Schrodinger equations

z% + Au + idu = aful*u + buE(jul?) + fley) » . (34)

which is complemented with the initial condition -

u(z,y, 0) = UO(:L', y)
where ,
E(f)(§1§2)2*€%-2f(§1,€2), o (3.5)
g+gtnth | - B
Theorem 3.1 Assnme that (3.3) holds. Then there exists a compact global attracfor for

systems(3.4)(3.5)

Second, we consider the following Darey-Stewartson system

% —a%4 034 = XA-BlARPA+4QA (3.6)
2 2 .
=447 >0, @yen, @7

supplemented with boundary conditions
A2y =0, altzy) =0, t20, (zy)eQ (3:8)
and initial condition
A0, z,y) = Ao(z,y) , (z,9) €N , (3.9)
where a = a1+ iag, b'= by + iby, B = B + B2, 7= + 72 and X = X1 + ix2 are co.mplei"
constants , @ C R? is a smooth bunded domain. We can reduce (3.6) 3.7 to a nonlocal

nonlinear Schréodinger equation

( ; ) . . X . : s s Lo
5 —a%# — b4 = xA— BIARA—YAE(AP), t>0 (z,y)€Q (3.10)
\ A(t,z,y) =0, t>0,; (z,y) € 00 (3.11)
‘ A(0,z,y) = Ao(z,y), (z,y) € Q (3.12)
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where E(|A]2) = —(—2) 1 Z5|A?

Theorem 3.2 Assume that
[H] K=min{a1,b1} > 0,061 >O,ﬂ1+c(2)71 >0,X;>0

holds, C(2) is a miniml constant, such that

|I 2l < c@l|Aullz , u € Q)

Then there exists a global compact attractor for system (3.10)-(3.12), which has finite dimen-

sional Hausdorff dimension and fractal dinension

4 Approximate inertial manifolds

We consider the approximate inertial manifolds. for systems (3.10)-(3.12), we have

Theorem 4.1 Assume that [H] holds, uo € LP(R) (p > 3) ||uollp < R. Then there exists the flat
approximate inertial manifold Mo and non flat approximate manifold M; for system (3. 10)
(3.12). i.e ., the orbits of systen(3.10)-(3.12) from ug when ¢ > T, > 0 remuin at a distance H

of My and M; bounded by Ke™?%. 66 >0,K > 0.

5 Existence and Blow Up of Solution to a Degenerate D S
- Equation
We study the following degenerate Davey-Stewartson equations
iy + Yoz = XY | C(5.)

xy = [[2 - (5.2)
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With initial condition

¥(0,7,9) = ¢o(z,y), (z,y) € R (5.3)
At infinity we assume that
lim (t,z,y) =0, lim x(t,z,y) =0 (54)
z],lyl—o00 2|, lyl—o0 ™" ‘

We have

Theorem 5.1. If 4 € L%(R?) with o, € L?(R2)satifying

1
2 —
/Rz W’Ol drdy < 2

then(5.17)-(5.4) has a global weak solution,i.e.
Ut € LT (LF(L*(R)
X € L®(R*; L}, (R, xy € L®(R*; LY(R?) .
and if they satify(5.1)in the sense of L*(R*; H~'(R?), and (5.2)in the sense of L°(R; LIJ(R2))'
Theorem 5.2 Let ¢ € L2(R“2) with zy € L2(Rz),¢ be ‘the | splutioﬁ of (’5.1), (5.2)with

zy € L2(R). If one of the following conditions holds ,

(i)  E(0) = Jp: ¢ol?dzdy + } [r2 x|9[?dzdy < 0
(ii) E(0) =0 and Im [p; z3pog,dzdy > 0
(iii) E(0) >0 and Im fg, zpop,dzdy > 4/E(0)1(0)

1(0) = Jra 2?[tol?dady
then

<. 2
Jim, inf (14 = oo

that is, the solution will blow up in finite time.
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