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1 Introduction

Let 2 be a domain in R3, and we denote the set of smooth solenoidal vectors
with the compact support in Q by V. The spaces H and V are respectively the
completion of V in the topology of L2(2) and H'(f2). V" is the dual space of V
with respect to the L?(Q)-paring. For given uy € H and F € L¥(0,T; V"), it
is well-known that the initial(-boundary) value problem of the Navier-Stokes
equations

(u—Au+u-Vu+Vp=§F in 2 x (0, 00),
divu =0 in Q x (0,00),

J | R
u'aﬂx(o,oo) =0 | ‘ (if BQ # @), .

{ u’ﬂx{t:O} = U

has a weak solution u in the sense of Leray-Hopf, which satisfies the energy

inequality

%/Qlu|2dx+/ot/9|vu|2dxd7's %Lluolzdwfotfnf-udxdr. |

It is uncertain that u satisfies the energy identity

1 2 ¢ 12 _ 1 2 vt/
2/Q|u| d:c+/0/Q|Vu| dzdr—zfnluol dx+/0 [ £ udsdr.

Furthermore it is still unsolved that every weak solution satisfies the energy
inequality. : ‘
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The author has been investigated the energy inequality or identity with
extra term in [1, 2]. In particular we had the following result.

Theorem 1.1 ([1]) Assume that Q is bounded There ezists a weak solutzon
satisfying an energy mequalzty with an extra term

% /ﬂ jul?dz + /0 /ﬂ |Vu|2dzdr

+= hmsup/ /

1 t
<= 2 // - uwdzdr.
_2/Q|uo|da:+on,fudz1'

u(z,7) — 'u.(:l: T — h) ddr

It is a still inequality. In the paper [2], we discuss the energy of weak solutlons
satisfying a postenon estimate

lim sup [ /

and got an energy identity with an extra term.

In this note we shall give a similar result without (1 2). Further we shall
also improve the result in [2] under the assumption (1.2).

The energy identity is formally derived from the inner product between
the both sides of the Nawer-Stokes equations and the solution u itself. How-

u(z,T) u(a;, h)

a:d'r—O.: o (12)

ever, the paring / u, - udz is not integrable in ¢, because of u; € L3(0,T; V")
and of u € L2(0,T;V). This obstracts the validity of the relation

/“ / u, - udodt = = / = / (uftdodt = & / fu(t)?ds — = / [t *de.

To aboid thls dlfﬁculty we use the following idea. Put
p(t)u(t) for t> O

U(t) ={ '
Lo for t<0,

Here ¢ is an arbltranly fixed functlon in O'o (R R) with supp ¢ C (0 00).
We consider the paring / Ut(t) U(t—s)dz instead of / U.(t)-U(t)dz.

Then by virtue of the Hausdorfl-Young’s inequality, / Ut)-U(t—s)dzis
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integrable on R? as a function of ¢ and s. Therefore by Funini’s theorem,
/Q Uy(-)-U(- - s)dz is in L'(R) for almost all s. By passing the limit

lim /ot/QUt(t) Ut - s) dzdt

8—0

in some sense, we can get the energy identity with a extra term. The expre-
sion of the extra term depends on the regularity of weak solution (of course
the extra term vanishes provided the solution is smooth enough). Therefore
we should give the expression under the condition as weak as possible. For
that we label the following consitions as [C1] - [C4] in the sequel.

[C1] w € L*(0,T; H) N L*(0, T; V) with u, € L#(0,T; V") satisfies (1.1) in
the sense of Leray-Hopf. '

[C2] u satisfies [C1] and

lim % L@ - U - m)de =o.

h—0
[C3] u satisfies [C1] and
1 2 1y o 2 b w(p)?
B VO - UG- ik <wgay, [" =g, <0
[C4] u satisfies [C1] and

1 . [MWwlp)
5 Jo U@~ U= Wit <w(nly’, | =L dp <0.

From now we denote the paring between the elements of V' and V by (-, v v;
and the inner product on H by (-,-)y. And the operators A and B from
V! = V are defined by '

(Au,v)yy = — [ Vu-Vvdz,
| (Bu, v>V,’,V = L(u-V)u-vd¢.
Then we can write (1.1) as )

{ u+Au+Bu=Ff in V' ae t,

u(0) = uy.
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Theorem 1.2 Let u be a weak solution. Then the identity

L h D s [ e, w0

+ “lim” fo " (Bu(t), u(t — 8))viye(t) dt

= [T, u®vvolt)d

holds for any ¢ € C$°(0,00) in the sense of

( . 1 €
Jim /. ds  for the case [Cl],

“Hm?”. = . _1- h ] :
0 ﬁ 'ltl_r)n() A /0 ds for the case [C2],

| ap lim - for the case [C3)].
Here ap lim is the approzimate limit.
Remark 1.1 In [2] we have proved a similar result for the case [C3] with
1 e
« lim,’ — lim — / . ds
80 e—>+0 2¢ J—¢
This is improved as above. ’

Theorem 1.3 Assume that a weak solution u satisfies [C4]. For givent, s
(t > s> 0), we take € and § so small that 0 < e <s—0, and s+68 <t—4.
Let 05,1 € CP(0,00) satisfy supp @sse C [s — 6, + 0], Psae(T) =1 on

[s + 6,t — 4], and ‘id(p—&(;-qf(—T)- < C67! Then u belongs to C(|0,00); H), and
the identity

M@ + [ (Au(r), w(hvvdr
+imaplim [ (Bu(t), ult ~ 1))viypusslt)

= Zlu@l+ [ (SO
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Passing to the limit as s | 0, we have

Corollary 1.1 If u satisfies [C4], then it holds that

Lu@l + [ (Au), ey

+ lim limap lim / /_ (Bu(t), ult = 7))y selt) dt

= Slually + [{7), ulr)yydr.

2 Proofs

The energy identity is reduced to

/R (Us Uy, y dt =0,

if u is sufficiently smooth. Indeed if so, then

0= /R (Ue, Uy dt
= /0 (e + oeu, pu)y, , dt
) 1 roo - d

— o2 1 2 2n

[) (e, u)yy p7dt + 2/0 ||’"'“Hdt‘P d
=~ [*(Au+ Bu - £,u) ¢2dt+1/“ ullt-L o2t

0 VLY 2Jo Hat
Taking ¢ = ¢; € C§°(0,00) such that

d
‘P? - X[o,q’ d—t‘P? - —6t + 60

as j — 0o, we get the desired identity. Here x, is the characteristic function
of the set K, and 9, is the Direc mass at p.
Consequently the proof of Theorems is reduced to showing

A(Ut(t),U(t—S))V,’th—)O as s—0

in some sense.



Proposition 2.1 We have

JAm o /_ / (UL(t), Ut - 8))yrydtds =0  for the case [Cl],
h_x)n0 % /0 * /R (Ue(t),U(t — 8))yy dtds =0 for the case [C2],

ap lim /R (U.(t), U(t — 8))yny dt =0 for the case [C3].

Proof. Case [C1]. Since U € L?*(R; H) with compact support, we have

/R (U(s+h)—U(s — h),U(s)) g ds
_ /R (U(s +h), U(s)) y ds /R (U(s — h),U(s)) g ds

- /R (U(s +h),U(s)) g ds — /R (U(s),U(s + b))z dt =0.
Therefore it holds that

0= [ (U(s+h)~Uls~h),Uls)) g ds

= /R (U(s +h) — U(S —h), U(s))V’ V’ds

- [ < / Ui(t) dt, U(s)>w

Since U, € L'(R; V') and U € L*(R;V)) with compact support, the above

integral has meaning. Using Fubini’s theorem, we have
A th oo\

0= /R<Ut(t),/t__h U(s)qs> ’th

- / <Ut(t) / U(t—s)ds> -

v

- /_,. /R ({U(t),U(t — 5)}y y ditds
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Consequently we get

(m %) f / (U(t), Ut - 5))y,, dtds = 0.
Case [C2]. Since o ‘

0= [ (IU(s+ Ml — [UG)IE) ds
. /R {U(s+h)-U(s),U(s + h)+U(s))y ds
= /R (U(s+h) — ‘U(s),‘U(s +h)—U(s) +2U(s))y ds

= [ I1U(s+8) - U3 ds+2 [ (U(s+h) - Uls), U(s)  ds.
we have . ) t o . » rv

lim = [ (U(s +h) = U(s), U(s)) rds =0
by [C2]. By Fubini’s theorem we get

| Ws+h) —U(s) U()gds
= [ W+n)-U0) Uy ds

L[ enno),

Ty o

<Ut(t) / U(s)ds>v_‘; dt
<Ut (®), / > |

= /Oh /R (Ut(t)‘, U(‘t”‘— S)>V'V dtds

Consequently we get

’111_%—/ / (U(t), Ut~ 5))yy dtds = 0.



Case [C3]. If u satisfies [C3], then
A ~ 1 .
2 —_ —itT
J @+ IrDITlhdr <o, U(r)=—= Je U
(by refinement of the argument of J. Simon [3]; see also [2]). Put
Uls) = [ U U(E - )y dt.

Then U(7) = —y/2mir||U(7)|% is an odd function, and belongs to L'NL%(R).
Therefore F~1[U] is continuous, F~'{U](0) = 0, and
U(s)=F'[0](s) a.e s€eR.

For € > 0 put _
E.={se(-nr)||U(s) >¢}.
Since F~1[U] is continuous,
CHE,) =L ({s € (-r,r) ||F1[0](s)| > s}) :
is zero for small € > 0. Therefore we have
LYE.)
r—+0 2r -
Proof of Theorem 1.2. Put

| O U= )yt

0.

= fo ~ ((t)uelt) + pe(Oult), ot — s)yult — s))v vt
- /0 * (ual(2), u(t — 8))vrveo(t)dt
o [7 el eteyiat
+ [T tue), utt - )vved)elt - 5) — p(t)) d
+ [T 1@ et (e~ 5) — o(0) dt
+ [ ), u(t - )~ u@) medt)p(t - s) dt

_ /0 “(u(t,8) + Jalt, 8) + Ja(t, 8) + Ja(t, 8) + Js(t, 8)) dt,
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Ii(s) = /0  Ji(t, s) dt.

Assume that supp ¢ C [to, t1] for ty and t; satisfying 0 < tg—2¢p < t;+2
T',. There exists C > 0 such that SUp, (< |9 (t —s) —o(t)| < Ce, and |¢|
hold. Then it follows from u, € L*(0,T; V") and u € L2(0, T; V) that

2“15 | s(s)lds= ¢ | /ttf (e (2), w(t — 8))yry| dtds

< 0 [" "1l (f Iute - 9)lvas) a

< [ tutono® ([ 1uas)

< CVe—0
as gy > € | 0. In particular for any 6 >0

L1({s € (=&,¢) | 3(s)| > 6}) <Ll
: 2e ~ 02
as €y > € | 0. This means

/5113(3);(13 50

ap ll_r)no I(s)=0

Similarly we have
h
;13_‘56/0 [Ia(s) ds = 0.

In a similar manner we get

1 e .1 qh o e
Jim gz [ Ma(o) ds = Jim 3 [*11(6) s = ap i 4(s) = .

Since u € L? N L*°(0, T; H), it holds that
o [ s(s)lds
2e J-¢ 5

max{t;
mi

<Cll sup @l [ @)l - s) - u(®)] adeds — 0
te(0,T) +s} ,

in{to,to

as gg > € | 0. Therefore we can get

lim = [ |Is(s)|ds = lim = [ |Iy(s)| ds = ap L Is(s) =0
Jimy 52 [ 1s(e)] ds = Jim = [" 75(s)] ds = aplimy s(s) = 0.
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Combining these estimates with Fubini’s theorem and Proposition 2.1,
we obtain

1 e 2 4 5
3 Ol g

liw 2 / / (ut(t),u(t - s))w Vgo(t)2dsdt in the case [Cl],

=\ —lim X /0 /0 (uy(t), u(t — )y vep(t)*dsdt in the case [C2)],

—ap lim /0 ” (uy(2), u(t — 3))vrveo(t) dt in the case [C3].

We can replace ¢? by ¢. Indeed, for ¢ € 085(260,00) and ¢ € C§°(2¢&,0)
we have in [C1], taking € < €o,

LIt g o+ e

ik [T [ (o)t = v o+ ¥)Pdsct

which reduces to

dy dy
L[ ol (Ww-ds) a
= 1m o [7 [ 8 (= vy o
=T omRode Jo J T T SIvrER s
Take such that supp ¢ C supp '¢, and 1/1 =1on supp ®. Then we have
d
L i a = gy [ (0,5t — vy (6 dct,

Other cases are proved in the same way. This shows that
4

.1 e : '
lelig -éz _€<yt(t),U(t - 8))VI_Vd§ mn the case [Cl],

1d, o
1 rk
5 dt”u(t)"H = 4 ‘_IR) = /o (us(t), u(t — s))v,vds in the case [C2],

aplim(u.(t), u(t — s))y+,vds ‘in the case [C3]

.
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in D’(0,00). We now prove
%/Eu(t-s)dsﬁu(t) as g >€el0

in L?(go, T; V). Indeed, it holds that |
1 e 2 1 p \
— —g) — < - - -
e L, e = o) —u@)ds| <3 [t~ es) ~ uio)lyds,
and therefore - - ‘

Ty 1 re PR '
[ 5 ) =) - u) ds
as g > € = 0. Consequently we have for ¢ € C(2¢o, 00)

/ooo 2i6 ‘/_Z(__Au(t) + f(t), u(t — S»V’,Vﬁo(t) dsdt

2 T ‘
dt <sup | |u(t—es)—u(t)|ddt—0
v |s|<1 Jeo '

- /Ooo(—Au(t) + F (1), u(®))vve(t)dt

asegg>¢e—0.
Assume that supp ¢ C (2¢, T'). By using of Hausdorff-Young’s inequality
we have

(ue(t), u(t — s))vve(t) € L*((0,T) x (0,T)),
(—Au(t) — Bu(t) + £(t), u(t — s))vve(t) € L*((0,T) x (0, T)),
and "
(ue(t), u(t — s))vrve(t) = (—Au(t) — Bu(t) + £(t), u(t — s))vvip(t)
for almost all ¢, and for all s. Therefore we have verified the existence of the
limit

im — [~ [“(B dsd
60;130%/0 /_E( u(t), u(t — s))yr vo(t) dsdt.

In the same way we can see the existence of

1 foo rh .
lim /0 /0(Bu(t),u(t—s))V,,ch(t)dsdt in the case [C2],

ap Egr‘x) /0 (Bu(t), u(t — s))yve(t)dt in the case [C3].

Consequently the proof is complete.

Proof of Theorem 1.8 (sketch). If u satisfies [C4], then it belongs to
C([0,T); H) (also using the argument of J. Simon [3]; see also [2]). Inserting
¥ = @5, in the identity in Theorem 1.2, and passing to the limit § | 0, we
get the identity in Theorem 1.3.
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