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Abstract

A Lipschitz function between metric spaces is an important notion in fractal
geometry as it is well-known to have a close connection to fractal dimension. In
this note, we describe a new method of using the theory of approximate resolutions
to study Lipschitz maps.

The purpose of this note is to present our recent work on approximate resolutions and
applications to fractal geometry [MiW,).

Recall that a function f : X — Y between metric spaces X and Y is a Lipschitz map
provided there exists a constant a: > 0 such that

d(f(z), f(z)) < ad(z,z’) for z,2’' € X.

Being a Lipschitz map is an important property in fractal geometry, especially, in fractal
dimensions since one of the required conditions for a fractal dimension is the Lipschitz
subinvariance (see [F, p. 37]), i.e., if a map f: X — Y is a Lipschitz function, then the
fractal dimension of f(X) is at most that of X. In this note, we introduce a new method
of using the theory of approximate resolutions to study Lipschitz maps.

Mardesi¢ and Watanabe [MW] introduced the notion of approximate resolutions,
which generalizes all compact limits, approximate limits of Mardesié and Rubin [MR]
and resolutions of Mardesi¢ [Ma]. This notion has proved to be useful in many prob-
lems in topology especially for nonmetric or noncompact spaces [W2, MiW;]. However,
even for compact metric spaces, approximate resolutions are essential [Mio, Wy, W2)]. In
fact, when we are given a map f : X — Y between compact metric spaces and limits
Pp={p}: X - X ={X;,pupn}andqg={g;} : Y - Y = {Yj,qjj+1}, there may not
exist a map of systems f = {f;,f} : X = Y, i.e., a function f : N —» N, where N
denotes the set of positive integers, and maps f; : X 7G) — Y, j € N, with the property
that for any j < 5/, there is i > f(j), f(j') such that

(M) fipsiyi = @35 fiPs(iryi; 8nd
(LM) fipsi) =gif, j €N

In the theory of approximate resolutions, we replace those commutativity conditions by
approximate commutativity conditions so that a map of systems f : X — Y exists.
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Throughout this note, a space means a compact metric space, and a map means a
continuous map unless otherwise stated. - :

For any space X, let Cov(X) denote the set of all normal open coverings of X. For
any subset A of X and U € Cov(X), let st(4,U) =U{U e U : UN A # 0} and U|A =
{UNA:U eU}. If A= {z}, we write st(z,U) for st({z},U). For eachf € Cov(X), let
st = {st(U,U) : U € U}. Let st"* U = st(st"U) for each n =1,2,... and st*U = stU.
For any metric space (X,d) and r > 0, let Ua(z,7) = {y € X : d(z,9) < r}. For any
U € Cov(X), two points z,z’ € X are U-near, denoted (z, ') < U, provided z, z' € U for
some U € Y. For any V € Cov(Y), two maps f,g : X — Y between spaces are V-near,
denoted (£, g) < V, provided (f(z),g(z)) < V for each z € X. For each U € Cov(X)
and V € Cov(Y), let fU = {f(U): U €U} and f7'V={f"1(V):V €V}

Approximate resolutions. First, let us recall the definitions and properties of
approximate resolutions. For more details, the reader is referred to MW]. -

An approzimate inverse system (approzimate system, in short) X = {X;,U;, Diir }
consists of

i) ‘a sequence of spaces Xj, i € N;
ii) a sequence of Y; € Cov(X;), i € N; and
iii) maps‘ piir + Xor — X; for i < i’ where Dii =1 x; the ideni;ity' map on X;.
It must satisfy the following three conditions:
(A2) For each i € N and Y € Cov(X;), there exists i’ > ¢ such that (Diiy Diyig» Piig) < U
for i/ < i; < is; and -
(A3) For each i € N and Ue Cov(X;), there exists ' > i such that U < paU for
i<
An approzimate map p = {p;} : X — X of a space X into an approximate system
X = {Xi, Ui, pi } consists of maps p; : X — X; fori € N with the following property:

(AS) For each i € N and U € Cov(X;), there exists i’ > i such that (piwpi, pi) < U for
i >4 |

An approzimate resolution of a space X is an approximate map p = {p}: X - X
of X into an approximate system X = {X;,U;,pww} which satisfies the following two
conditions: '

(R1) For each ANR P, V € Cov(P) and map f : X — P, there exist i € N and a map
g : X; — P such that (gp;, f) <V; and . ' ’

' (R2) For each ANR P and V € Cov(P), there exists V' € Cov(P) such that whenever
i€ Nand g,¢ : X; — P are maps with (gp;, ¢'pi) < V', then (gpssr, g'iw) < V for
some i’ > 1. 4 ‘ -

If C is a collection of spaces, and if all X; belong to C, then the approximate resolution

p: X — X is called an approzimate C-resolution. Let POL denote the collection of
polyhedra. We have the following characterization for approximate resolutions:
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Theorem 1 An approzimate map p = {p;} : X — X = {X;,U;, piv} is an approzimate
resolution of a space X if and only if it satisfies the following two conditions:

(B1) For each U € Cov(X), there exists iy € N such that U < U fori > ig; and

(B2) For each i € N and U € Cov(X;), there ezists i9p > i such that pi(Xy) C
st(pi(X),U) for i’ > ip.

We have the following existence theorem for approximate resolutions:

Theorem 2 1) ([Wa]) Every topological space X admits an approzimate POL-resolution
P={p}: X - X = {Xi,U;,pir} such that all X; are finite polyhedra.

2) ([MS]) Every connected compact Hausdorff space X admits an approzimate POL-
resolution p = {p;} : X — X = {X;,U;,pis} such that all X; are connected finite
polyhedra, and all p; and p;» are surjective.

Let X = {Xi,U;,piv} and Y = {Y},V;,q;7} be approximate systems of spaces. An
approzimate map f = {f;, f} : X — Y consists of an increasing function f : N — N and
maps f; : Xy;) = Yj,j € N, with the following condition:

(AM) For any j,5' € N with j < j/, there exists i € N with > f(j') such that
(955 FirPriiy, Fipsiyw) < stVj for &' > i,

A map f: X —Y is a limit of f provided the following condition is satisfied:
(LAM) For each j € N and V € Cov(Y;), there exists j' > j such that

(5 fips(im), ;) <V for §" > 5.

For each map f: X — Y, an approzimate resolution of f is a triple (p, q, f) consisting
of approximate resolutions p = {p;} : X —» X = {X;,U;,piw} of X and q = {g;}: Y —
Y = {Y},V},q;#} of Y and of an approximate map f : X — Y with property (LAM).

Theorem 3 Let X andY be spaces. For any approzimate POL-resolutionsp: X — X
andq:Y — Y, every map f : X — Y admits an approzimate map f : X — Y such
that (p,q, f) is an approzimate resolution of f.

For each approximate system X = {X;,U;,pi}, let st X denote the approximate
system {X;,st;,piw}. Then there is a natural approximate map ix = {1x,} : X —
st X, where 1y, : X; — X is the identity map. For each approximate map p = {p;} :
X — X = {X;,U;,pir}, the map st p = {p;} : X — st X = {X;,stU;, pix} also satisfies
(AS) and hence is an approximate map. Moreover, if p : X — X is an approximate
resolution, so isstp : X — st X.

For any approximate systems X = {X;,U;,piv} and Y = {Y;,V;,q;;} and for each
approximate map f = {f;,f} : X — Y, themap stf = {f;,f} : st X — stY is
also an approximate map. Moreover, if (f,p, q) is an approximate resolution of a map
f:X > Y, thenst f:st X — stY also satisfies (LAM) and hence (st f, st p, st q) is an
approximate resolution of f.
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Throughout the rest of the note, an approximate resolution means an approximate
PO L-resolution unless otherwise stated.

An approach by normal sequences. Having recalled the notion of approximate
resolutions, we follow the approach of Alexandroff and Urysohn (see [AU] and [N, 2-16])
to obtain a metric dy on X for a given space X and normal sequence U on X.

A family U = {U; : i € N} of open coverings on a space X is said to be a normal
sequence provided st U1 < U; for each i. Let XU denote the normal sequence {V; : V; =
Uis1,3 € N} and st U the normal sequence {stif; : i € N}. For any normal sequences
U = {U4;} and V = {V;}, we write U < V provided U; < Vi for each 7. Let X°U = U, and
for each n € N, let T"U = £(E"~1U), and also let st® U= U and st® U = st(st"~' U). For
each map f : X — Y and for each normal sequence V = {V;}, let f~'V = {f~'V;}. For
each closed subset A of X and for each normal sequence U = {i;} on X, let U|A = {Ui|A}.

Given a normal sequence U = {i;} on X, we define the function Dy: X xX —= Ry
by

9 if (z,2') £ Uy
Dy(z,z') = { 4 if (z,2) <U; but (z,2") £ Uiss ;
0 if(z,2')<UforallieN,

and the function dy : X x X — Ryo by

dy(z,2') = inf{Dy(z, #1) + Dy(w1,22) + -+ + Du(2n, 2')}

where the infimum is taken over all points z1, 3, ...,Z» in X and R3¢ denotes the set of
nonnegative real numbers. Then the function dy : X x X — Ry defines a pseudometric
on X with the property that

st(z,Uiy3) C Ugy(z, %) C st(z,U;) for each r € X and z

Moreover, if U has the following property:
(B) {st(z,U;) : i € N} is a base at z for each z € X.

then dy defines a metric on X, which we call the metric induced by the normal sequence
U. In particular, if U = {i4;} is the normal sequence such that U; = {Ua(z, %) rz € X},
then the metric dy induced by the nomal sequence U induces the uniformity which is
isomorphic to that induced by the metric d.

Proposition 4 Let X be a space, and let U= {U;} and V = {V;} be normal sequences
on X. Then we have the following properties: ~ :

1) If A is a closed subset of X, then dyja(z,z’) > dy(z,z') for all r,z' € A.
2) IfU <V, then dy(z,z') > dv(z,z') for all z,2' € X.
3) dsy(z,z') = 3dy(z,z') for all z,2' € X.

4) dstU(xa zl) < dU(ZIJ,.’E’) < 3dstU($’zl) fOT all z7xl € X.
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Let X and Y be spaces, and let U = {i4;} and V = {V;} be normal sequences on X and
Y, respectively. A map f: X — Y is said to be a (U, V)-Lipschitz map provided there
exists a constant a > 0 such that

dv(f(z), f(z)) < ady(z, ') for 2,2’ € X.

In particular, if we can choose a such that 0 < o < 1, the map f:X —Y is said to be
a (U, V)-contraction map. S

Lipschitz maps and contraction maps between spaces are characterized in terms of
normal sequences as follows:

Theorem 5 Let X and Y be spaces with normal sequences U = {U} and V = {V}},
respectively, and let f : X — Y be a map. Consider the following statements:

(L)m dv(f(z), f(z')) < 3™ dy(z, ') for z,z' € X
(M) Z™U < f1st"V; and
(N)mn Z™U < f18mV.
Then the following implications hold for any m,n > 0:
1) (M)mn = (L)min;
2) (N)mn = (L)n-m;
3) (L)m = (M)mi4p = (N)mtao; and
4) (L)-m = (N)am.
An approach by approximate resolutiohs. Next, given a space X and an ap-
proximate resolution p: X — X of X, we obtain a metric dy on X.

For each approximate resolution p = {p;} : X —» X = {X;,U;,pi}, consider the
following three conditions: ' :

(U) st?U; < p;;'U; for i < j;
(A) (pijpj, pi) <U; for i < j; and
(NR) p;'stU; < p;'UY; for i < j.

An approximate resolution p = {p;} : X —» X = {X;,U;, pi} is said to be admissible
provided it pocesses properties (U), (A), (NR) and the family U = {p;'i4;} has property
(B). For any approximate resolution p = {p;} : X — X = {X;, U, pi}, we can always
find an admissible approximate resolution p’ = {px,} : X — X’ = {Xi,,Us,, pr.x;} by
taking a subsystem, and we have the following property:

Proposition 6 1) The family Uy = {p;' st*U;} forms a normal sequence on X for
k>0;

2) The approzimate resolution st*p = {p;} : X — st* X = {Xi,svt’c U;,pi} is admis-
sible for k > 1.
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Let p: X — X = {X;,U;,piv} be any admissible approximate resolution of a space
X. Then for any z,z’ € X, we define the function Dp : X x X — Ry by

' 9 if (p,(x) pi(x')) £ U; for any i;
p(7,T) sz if (pi(x), pi(a’)) < U but (pi(z), pi(z')) £ Uit ;
0 if (pi(x),pi(z')) < U; for all i ,

and the function dp : X x X — Ryp by
dp(z,z') = inf{D,(z, z;) + Dp(z1,72) + +D (Zn, ')}

where the 1nﬁmum is taken over all ﬁmtely many pomts z1,T2,...,Zn of X. Note that
dp(z,z") = dy(z,z’) for any z,2’ € X, where U = {p;'Us}.

For each approximate resolution p = {p;} : X — X = {X;,Ui,pir }, we define the
approximate system XX as {Z;, Wi, riv} where Z; = Xip1, Wi = Ui, Tir = Pigrirr
Zy — Z; and the approximate resolution Ip as {r; : ¢ € N} : X — XX where r; = p;41 :
X — Xiy1. Let Z°X = X and X°p = p, and for each i € N, let =" X = X(X"'X) and
Enp 2(2" -1 )

Proposxtlon 7 Let X be a space, and let p = {p1} X - X = {X;,U;,pirr} be an
admissible approzimate resolution of X. Then we have the following properties:

1) dgnp(z,2') = 3" dp(z,z') for z,2’' € X and for each n € N; and

2) detp(z,2’) < <d »(z, :L") < 3dst,,(a: z') forz,z’' € X.

Let X and Y be spaces, and let p: X — X and q:Y — Y be normal approximate
resolutions of X and Y, respectively. A map f : X — Y is said to be a (p, q)- szschztz
map provided, there exists a constant a > 0 such that .

dg(f(z), f(z") < ady(z, m)forxz € X.

In particular, if we can choose « such that 0 < @ < 1, amap f: X — Y is said to be a
(p, qQ)-contraction map.
For each m € Z, consider the following condition:

(Lip)m dq(f(2), f(2')) < 3™ dp(z,2’) for z,2" € X,

and for each m > 0 and for each approximate map f = {fi,f} : X — Y, consider the
following condition: '

(ALip)., For each i, there exists jo > ¢ with the property that each j > Jo admlts
iop > f(4),1 + m such that for each i’ > 1o,

pi—+1m z’uH'm < pf(y)z'f ql]lv’

(p, q)-Lipschitz maps are characterized in terms of condition (ALlp)m for approx1mate
resolutions as follows: : ~ -
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Theorem 8 Let f : X — Y be a map between spaces, and let f = { MHf}: X->Y
be an approzimate map such that (f,p,q) is an approzimate resolution of f where p =
{pi}: X - X ={X;,Uy,piv} and g ={g;} : Y - Y = {Y;,Vi,q;jr} are admissible
approzimate resolutions of X and Y, respectively. Then the following implications hold
form > 0:

1) (ALip)m forst f :st X —stY = (Lip)m for p and st>q = (Lip)m42 for p and q.
Moreover, if each p; is surjective, the following implication also holds:
2) (Lip)m for p and ¢ = (ALip)mia forigyivf: X — st2Y.

In a similar way (p, g)-contraction maps are characterized in terms of the following
condition for m > 0:

(ACon),, For each i there exists jo > i with the property that each j > j, admits
i0 > f(4),1 such that for each i’ > iy :

p;llui < p;é),: f j—lq,-__}_lm’jv.‘.g.m.

Theorem 9 Under the same setting as in Theorem 8, the following implications hold for
m 2> 0:

1) (ACon)m forst f : st X — stY = (Lip)_p, for p and st®q = (Lip)_m42 for p and
q.

Moreover, if each p; is surjective, the following implication also holds:

2) (Lip)—m for p and q = (ACon),_4 for igyivf: X — st?Y.

As an easy application, we have the following unique fixed point theorem:

Corollary 10 A map f : X — X has a unique fized point if there is an approzimate
resolution (f,p,q) of f for some approzimate resolutionsp: X — X andq: X —» X'
and approzimate map f : X — X' so that (ACon),, holds forst f : st X — st X and
for some m > 2.
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