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REACTION-DIFFUSION: FROM SYSTEMS
TO NONLOCAL EQUATIONS IN A CLASS
OF FREE BOUNDARY PROBLEMS

Josk-FRANCISCO RODRIGUES
CMAF /Universidade de Lisboa,
Av. Prof. Gama Pinto, 2
1649-003 Lisboa, Portugal

We consider a class of reaction—diffusion systems where the diffusivity of the second
equation tends to infinity and we illustrate in model problems the use of energy estimates
for basic existence and convergence results of the solutions.

We consider also free boundary problems of obstacle type as a special class of partial
differential equations with discontinuous nonlinearities, following the plan:

1. Elliptic problems

1.1. A model nonlocal equation
1.2. Discontinuous reaction terms
1.3. Obstacle problems

2. Parabolic problems

2.1. Non-localization via the shadow system
2.2. Discontinuous nonlinearities
2.3. Extension to a unilateral problem’

Although most results of this paper can be found in previous works, namely in a joint
work with D. Hilhorst [HR] and in the references quoted there, some new extensions to the
obstacle problem, whose general references can be found in the books [L], [F] or [R2], are
taken from [R4] and [RS]. In this last work an application to the diffusion of the oxygen
with a nonlocal diffusion coefficient is considered. Other motivations for considering these
type of mathematical problems arise in the study of dynamics of the mechanism of basic
pattern formation (see, for instance, [N}, [LS], [HS] or [K]), in excitable media (see [OMK]
and its references), in combustion problems (see, for instance, [FT] [FN] or [BRS]) or in
some. phase transitions models (see [CHL] and its references). '
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1 — Elliptic problems

1. A model nonlocal equation

Consider in a bounded open subset 2 C R", an arbitrary f € L*(Q2) and a given mea-
surable function a: Q x R — R, continuous in the second variable, i.e., a(z,-) € C°(R)
for a.e. z € Q and, such that, for some constants ¢, @:

O0O<a<a(z,p)<a, VpeR, aezeQ. (1.1)

For o > 0, we consider the homogeneous Dirichlet—-Neumann problem for the reaction—
diffusion system (8, denotes the normal derivative 8/0n):

—V-(a(v,)Vua)=f inQ2, wu,=0 onodQ, o (1.2)

-0 Avy =u, — v, in Q, anv,,=0 on 0 . | (1.3)

Proposition 1.1. There exist solutions (us,v,) to (1.2),(1.3) such that
uy = u in HY(Q), | va—>][u in H(Q) as o — 0,
Q
where f,u is the average of u in Q and u solves the nonlocal problem

—V-(a(]{lu)Vu)=f inQ, wu=0 ondQ. ‘ | (14)

Proof: We write (1.2) and (1.3) in variational form
Uo € HO(Q) / a(ve) Vg - Voo = /ftp, Vo € Hy(Q), (L5)
v, € HY(Q /Vv,, V¢ = /(u,,—va V(e HY(Q) . (1.6)
For any given v, € L?*(Q) in (1.5), with ¢ = u, we obtain the a priori estimate |

& / W2 < / Vu,2 < C, (L.7)
Q Q o

where C depends only on ¢, f and the constant ¢y of Poincaré inequality, and therefore
it is independent of v, and ¢ > 0.
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Letting ( = v, in (1.6) we immediately obtain also

/'vg 5/11.3 <C = € and /|V'v,,|2 < g (1.8)
Q Q G Q g

Since (1.6) is a linear problem in v, for fixed u, € L?*(f2), we easily construct a
nonlinear operator S from the ball B of radius v/C' in L?(R2), by solving (1.5) with those
solutions of (1.6). By (1.7), its image S(B) C B and S is compact by the compactness
of H}(Q) C L?(R). By the Schauder fixed point theorem, there exist solutions (u,,vs) to
(1.5),(1.6). By the estimates (1.7) and (1.8), for subsequences, we have as ¢ — oo

uy — u in H}(Q)-weak and v, — v =const. in H'(Q) .

Letting ¢ = 1in (1.6) we have [, v, = [, u, and since f,v, = f,v and f, u, — fou
as o — oo, we find v = fyv= f,u.
Taking this limit in (1.5), we obtain

u € Hy(Q): /

Q

a(]{)u)Vu-Vgo:/nfcp, Vo€ Hy(Q), (1.9)

which is the variational formulation of (1.4). Finally comparing (1.9) with (1.5)‘,> and
observing that a(v,) — a( {,u) in L?(R), Vp < oo and a.e. in 2, we easily conclude the
strong convergence u, — u in Hj(2). »

In general we cannot expect uniqueness of solutions in (1.2),(1.3) nor in (1.4) even in
the case when a is independent of z, as it was observed in [CR]. Indeed, we remark that
u is a solution of

—a(][u)Au=f in2, u=0 ondQ, (1.10)
Q

if and only if v = u,/a( f, u), where u, is the unique solution of (1.10) with a = 1. hence
by integrating in 2, we see that p = f, u solves the equation in R

a(p) = ]{) w/p. (1.11)

Reciprocally, if p solves (1.11), then u = pu,/ f, u; solves (1.10).

Since the equation (1.11) may have, in general, more than one real root (it may have
even a continuum of solutions) the same may occur for (1.10). However, this cannot
happen if a(z, p) is Lipschitz continuous in p, with small oscillation, i.e., if there exists a
sufficiently small o’ > 0 such that

a(z,p) —a(z,7)| < o |p—7|, ae TEN. _ (1.12)
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Proposition 2. There exists § > 0 such that, if (1.12) for o/ < § then (1.4) admits at
most one solution. The same conclusion holds for the system (1.2),(1.3), if, in addition,
a is continuous in z € Q, f € LP(Q) for p > n and 08 is of class C*.

Proof: If u and U are two solutions to (1.4) (or (1.9)) then we may write for their
difference w = v — 4 (using (1.1), (1.7) and (1.12)):

Q/Q|v1,u|2 < /Qa(][ )|w|2 /Q[a(]{zﬂ)—a(][ u)] va- vu
[ of ([ 1var) “(f vul?)” \/_T; [ rour

Therefore if o/ < a +/co [Q|/C, we must have w =0, i.e. u=u.

For the system (1.2),(1.3) we need to use some elliptic regularity theory (see [R2], for
references). If f € LP(2), p > n, we have U, € C°()) and then also 9, € C°(Q2); hence
a(?,) € C°(Q) and also Vii, € LP(Q2) for p > n. We observe u, — U, solves the equation

IA

v. (a('va) V(uy — a,,)) —-Vv. { [a(v,,.) - a(a,,)] va,} in Q.
Hence, using the generalized maximum principle in this equation, we have

lto = Bollzmq@y < C ||[atve) - a(d)] VE,

Lr(Q)

< o C v — Byllzm@ < a'éuu, — Ty || e) -

The last inequality is also a consequence of the maximum principle applied to (1.3).
Again, we see that if o/ < 1/ C we must have u, = G, and the uniqueness follows for the
system (1.2),(1.3). m ’

1.2. Discontinuous reaction terms

We can extend the framework of the preceding section to more general reaction terms
in the right hand side of (1.2). We may suppose f = f(z, u,v), under appropriate growth
conditions on (u,v), and allow this dependencé to have certain discontinuities. However,
the notion of solution must be extended as the following counter-example shows.

If h denotes the Heaviside function (h(s) = 1 if s > 0, and h(s) = 0 if s < 0), consider
the Dirichlet problem

'—Au:h(u—][u) inQ, w=0ondQ, ‘-"(1.113)
Q .

where 0 < p < f,u;. Here u; denotes the solution of (1.13) with h replaced by 1 and we
have f,u; > 0. Since 0 < h <1, by the maximum pr1nc1ple if u solves (1.13) we have
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0 < u < u; in Q and we obtain the absurds: if fn“ > u>0then h =0 and u = 0; if
fQ u< pu< fn u; then h = 1 and u = u;. Therefore it cannot exists a classical solution to
(1.13). However, using the method of “filling in the jumps” and introducing the maximal
monotone graph H associated with h by setting H (s) h(s) if s # 0 and H(0) = [0, 1],
we replace (1.13) by

—AueH(u—][u) ae.in2, u=0 onodQ, - (1.14)
Q

Then we may obtain solutions to (1.14) provided f,u = p € [0, f,u]. Indeed if u, €
H} () denotes the solution in  of —Au = ) € [0, 1], we may construct the linear mapping
[0,1] > A > f,ux € [0, f, u1]. Hence, for each p € [0, f,u;] there exist one A € [0, 1]
such that u, is a solution to (1.14).

In general, we have nonuniqueness for (1.14). For instance, for any function g € L?(),
0 < g < 1, the solution u, € H() of —Au = g in Q, clearly also solves (1.14) for
p= fqu,

We consider now more general discontinuities with a given measurable function f :
O xR? — R such that,

|f(z,u,v)| < fo(z) ae z€Q, Vu,veR, (1.15)

where fo € LP(Q2), with p > 2n/(n+2) if n > 3orp > 1if n = 2, is such that fo € H-1(Q),
by Sobolev imbedding. More generally we could also admit a certain growth in u and v
under suitable conditions.

As in [C] and [HR], we construct the multivalued function F: (z,u,v) — [f(z,u,v),
f(z,u,v)], where f and f are, respectively, lower and upper semicontinuous functions in

(u,v) defined by

L) = i Sl @)
and

f(z,u,v) = lim esssup f(z,z,w), forae €.
o0+ |z2—u|+jw—v|<é

Of course, if f is continuous in (u,v) we have f(u,v) = f(u,v) = f(u,v).
We replace (1.2) by the extended reaction—diffusion system

-V - (a(vs) Vu,) € F(us,v,) in 2, u, =0 ondf, (1.16)
—0AVs=U;—Vy, INN, v, =0 on N . | (1.17)

Proposition 1.3. Under the assumptions (1.1)-(1.15), there exist solutions (uy,v,)
to (1.16)-(1.17) such that, as ¢ — oo, they converge to (u, {,u) in Hj(Q2)x H'(2), which
is a solution to

-Vv. (a(]{lu) Vu) € F(u,]ﬁu) inQ, u=0 ondN. (1.18)
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Proof: First we regularize f by mollification in (u,v) and, arguing as in [HR] (see
also [Ral), we suppose initially f is continuous in those variables, being the general case
obtained by approximation and a passage to the limit as in the Theorem 5.1 of [HR].

The existence to (1.16),(1.17) is then reduced to a Schauder fixed point argument,
provided we obtain the equivalent to the a priori estimates (1.7) and (1.8). Now we use
Sobolev embedding Hj(2) C L9(2) (¢ < 2n/(n—2) if n > 3, or any ¢ < oo if n = 2) and
we reobtain the estimate (1.7) from |

Cullells < @ [ 19" < Wiolis ol

where ¢ = p/(p — 1). Hence (1.8) still holds, with constants mdependent of o and
independent of the mollification parameter. :

In case of a continuous f(z,-) the passage to the limit is done without difficulty smce,
by compactness, we may also assume u, — u in L?(Q). ;o

For' F' discontinuous but defined in terms of f and f as above, the passage to the 11m1t
o — oo is performed by using the following Lemma. a ' '

Lemma 1.1. Let ¢, € F(u,,v,) a.e. in Q, o = (p in L}(Q)-weak. If u, — u and
vy — v in L'(Q)-strong, then ¢ € F(u,v) a.e. in Q.

Proof: We use an argument of [Ra] as in Theorem 5.3 of [HR]. For any n > 0, we
may consider that (us,v,) — (u,v) uniformly in ©, = Q\O with meas(®) < 7. Since
¢s € F(ug,v,) is equivalent to

f(@,us(2),v5(2)) < ¢o(z) < f(z,u,(2),0,(2)) ae z€ 2,

for any g € L*(Q), g > 0, we have
/ gp = lim [ go, > liminf/ 9 f(uosvs)
n" [ er » o—00 917 -

> [ gliminf f(u,v) > JRC

Q, g—00 Q
by Fatou’s Lemma, semicontinuity and boundedness of f in Q,. Similarly we obtain
¢ < f(u,v) in (1, and, since 7 is arbitrary, we conclude that ¢ € F(u v) a.e.in Q. n

Remark 1.1. We may solve directly the nonlocal equation (1.18) by applying the fixed
point Theorem of Schauder to the mollified problem with f, continuous and “approaching”
F. Similarly to Lemma 1.1, u, — win L'(Q) and f.(u, f,ue) — ¢ in L}(Q2)-weak, implies
¢ € F(u, fyu) a.e. in  and we then obtain directly a solution to (1:18). See [HR] for
the extension to the parabolic nonlocal problem.
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1.3. Obstacle problems

In the equation (1.2) or (1.4), by the maximum principle, if f > 0 we have u > 0. But
if f may change sign, i.e., f = f* — f~ with f* = max(f,0) =0 and f~ = (—f)* #0,
we cannot guarantee that u is nonnegative. If we impose then the unilateral constraint
v > 0 in Q, we have instead of (1.2) an obstacle problem, and we should look for u in the
convex set '

K = {v € H}(): v>0 ae.in Q} . (1.19)

The variational formulation takes now the form
us, € K: /a(v,) Vu, - V(p —ug) > / fle—u,), Vepek, - (1.20)
o) Q

where v, is given by (1.17) and f = f(z) is given in LP(2), with p > 1 if n = 2 or
p > 2n/(n + 2) if n > 3. Taking ¢ = 0 in (1.20) we still have the estimate (1.7) and
hence also (1.8). Using well-known properties of the obstacle problem (see [R2]), we can
directly show that Propositions 1.1 and 1.2 hold for the problem (1.20),(1.3), being the
corresponding nonlocal obstacle problem given by

u € K: /f;a(]{]u)Vu-V(cp—u)Z/ﬂf(cp—u), chGlK.v (1.21)

We can regard the obstacle problem as a problem with the particular nonlinear dis-
continuity envolving the Heaviside graph:

F(z,u,9) = f*(@) - f~ (&) H) . | (1.22)

In fact, if u denotes a solution to (1.16) (resp. to (1.18)), then, there exists a function
h = h(z) € H(u(z)) a.e. z € Q, such that, with a = a(v,) (resp. a = a( f, u)):

- =V-(@aVu)=ft-f"h aein Q. (1.22)

Multiplying (1.22) by —u~ and, integrating by parts, we obtain

ngV’u_I? 5_/QaVu-V(—u") = —/ﬂf"‘u‘+/ﬂf’hu‘ = —/(;f+u— <0,

since hu~ = 0. Then u~ = 0 and we have u > 0in £, i.e. u € K.
Remarking that (h — 1) u = 0, for any v € K we have a.e. in {2

=1 He-uw = [+ 0-R]@-u) > f@-u

and integrating-(1.22) by parts in Q, we conclude that we have as a special case of
Proposition 3 the following conclusion. ' '
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Corollary 1.1. With the choice (1.22), the solutions (u,,v,) to (1.16),(1.17) also
solve (1.20),(1.17), and their cluster point (u, f,u) as 0 — oo solves (1.18) and (1.21).
In addition, under the assumptions of Proposition 1.2, the uniqueness of solutions holds
and the whole sequence (u,,v,) = (u, f,u) converges in Hj(Q)x H'(Q) as 0 — co. &

Under additional conditions, in fact, the problem (1.16) (resp. (1.18)) with F' given
by (1.22) is equivalent to (1.20) (resp. (1.21)) as it was observed in [C] (see also [R2],
page 146). Indeed, if u solves (1.20) (or (1.21)), it also satisfies the Lewy-Stampacchia’s
inequalities (see [R2], §5.3):

f<-V-(aVu) < f* ae.in Q. (1.23)

On the other hand, since u > 0 in €, we may consider two regions {u>0} = {z € Q:
u(z) > 0} and its complement {u = 0} which is called the coincidence set. As it is
well-known

-V .- (@aVu)=f ae in {u>0}, . (1.24)

and, from (1.23), one should expect {u = 0} C {f < 0} at least formally. _
Assuming now more regularity, for instance, f € L?(Q2), p > n/2 (which ylelds Vs €
C°(2)), and the coefficient a Lipschitz continuous in z € Q and in p € R, :

|a"(a:p)|+|Va(mp)|<C ae €, peR, - (1.25)

by sta.ndard regularlty in the obstacle problem (see [R2], §5.3 and its references) we have
u, and u are in W?2?(Q) and satisfy

~V - (@aVu) = f+ f xju—ey ae.in €. - (_1‘."2_6)

Here x(u=0} denotes the characteristic function of the coincidence set {u = 0}. Com-
paring (1.26) with (1.22), we easily see that we may choose h = 1 — X{u=0} and clearly
h € H(u) a.e. in §, and u, and u satisfy also (1.16) and (1.18) with (1.22), respectively.

Using the equation (1.26) it is possible to show the continuous dependence of the coin-
cidence set {u = 0}, through its characteristic function x{u=oy, under the nondegeneracy

assumption - :
"f#0 aein Q. S s (12D

For instance, under the assumption (1.25), if u; denote the solution to (1.20) corre-
sponding to v; — v in C°(2), which |Vw;| are uniformly bounded in L>(Q), then not
only u; — u in W??(Q), where u is the solution to (1.20) corresponding to v; but also
X{u;=0} —* X{u=0} in L(Q), V¢ < oo, provided (1. 27) holds (see for instance, Theor 5:4.5
and Theor. 6:6.1 of [R2], respectively). :

As in [R4], we can not only consider (1.20) associated with

. € H'(Q): Vo, -V = [ xem ¢, VCEHYQ) - (128
v, € H'(Q) /v c+/v /QX{ 0} ¢ CeH(Q) - (128)
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instead of (1.17) or (1.6), but also consider the limit problem ¢ — co where the nonlocal
obstacle problem (1.21) is replaced by

u € K: /{?a((u:O))V‘u-V(v—u)Z/Qf(v—u), VvekK. (1.29)

Here we have introduced the “fraction” of the coincidence set {u = 0} with respect to
the whole domain Q:

(u=0) = ]{1 X(u=o} = meas{u = 0}/ meas() . (1.30)

Theorem 1.1. Under the previous assumptions, namely (1.1), (1.25) and (1. 27) with
f € LP(Q), p > n/2, and 9Q € C"1, there exist solutions (u,,v,) € [KﬂW”*”(Q)]xW"”q(Q),
Vg < oo, to the coupled problem ( 1.20),(1.28), such that

U, = u in Hy(?) and v, = (u=0) in H'(Q), as 0 - o0,
where u is a solution to (1.29).

Proof: Remarking that by elliptic theory v, € W29(Q) N D, where D = {veC'(Q):
0 < v < 1}, the existence of solution for (1.20),(1.28) can be found as a Schauder fixed
point in Q for the mapping w — z — X{z=0} F> Wg, Where z solves uniquely (1.20) with
v, replaced by w € D and w, solves uniquely (1.28) with X{z=0} in the second hand term
(see [R4], for details).

For the passage to the limit 0 — 0o, as in Proposition 1, we know that v, — V = const.
in H'(Q) and also

4y = 0) = ][ vV (1.31)

Q
Then, we may pass to the limit in (1.20) and show that u, — u first in H}(£2)-weak
and afterwards also strongly, where u solves (uniquely) (1.20) for V in place of v,. By
regularity, u also solves a.e. in 2 the equation (1.26) with a = a(V'). By Theorem 6:6.1 of

[R1], we have then X{u,=0} = X{u=0} in LI(Q), Vg < oo, due to assumption (1.27). But
then, using (1.31) we find V = f, x{u=0} = (v = 0) and u solves (1.29).

2 — Parabolic problems

1. Nonlocalization via the shadow system

We consider now the natural extension of the model nonlocal equation of Section 1.1 to
an evolution problem in a cylindrical domain Qr = Qx]0,T[, T > 0, with Q@ C R™ an open
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bounded subset and with a prescribed f = f(z,t) € L*(Qr). We give a: Q7 xR — R,
a(z,t,-) € C°(R), satisfying (1.1) for a.e. (z,t) € Qr and initial conditions

ug, Vo € L*(R) .

The for each 0,7 > 0 the corresponding parabolic reaction-diffusion system reads
(0, = 8/0t and Tr = 9N x]0,T):

Oiure — V - (a(v,,,) Vuw) =f in Qr (2.1)
Urs =0 on X1, Ue(0) =up in - ‘ (2.2)
T OUrg — O AVpg + Vro = Ure 1N Qr - (23)
OnV7e =0 on Tr, v;4(0) =v in Q. | | (2.4)

The passage to a noplbcal equation may be performed in two steps by letting first
o — oo with fixed 7 > 0 and afterwards 7 — 0. The intermediate shadow system is given
by the Cauchy-Dirichlet (2.2) problem for (§ = d¢/dt)

Su, — V- (a({,) Vu,.\) =f in Qr, (2.5)
TE & = ][ u, in ]0,T[, &(0)= ][ vo, (2.6)
_ o Q L\
and the nonlocal parabolic equation in the limit case 7 = 0 is now .
Su—V-la ]lu Vul=f in Qr, - . 2.7)
w = (a( f,u) Vu) r @)
with the conditions (2.2).

The standard energy estimates can be obtamed by integration in Q: = x]0,t[, using
only (1.1) and Poincaré inequality, yielding

1 o
sup /lu,a )2 + a/ |Vun,|2 /uo +— | = C’o, (2.8)
0<t<T QCo JQr o
T sup /lvm(t)|2+ 0/ IVv.,¢,|2+ [vyo | < T/vg + CoT . (2.9)
0<t<T Qr 0

They are sufficient to obtain the existence of weak solutlons to (2. 1) (2.4). It is also
standard to multiply (2.3) by ¢ 0; v, to obtain

t
T//Iatvw|2+0/|V'vw(t)l2 <% o<s<t<r,
§JN Q 6

where C, is independent of o, but C;, — +00 as 7 — 0.
By (2.9), as 0 — oo, there exists & = &,(t) and v, — & in L2(O T; H'(R?)) and in
CO([6, T); L3(2)) strongly, for each § > 0 by compactness. o



82

Integrating (2.3) in 2 x4, ¢, we have

T/n[vm(t) — vTa(J)] = _/Jt/‘;(uw — Vrg) -

Letting 0 — oo and then § — 0, we obtain the weak form of (2.6)

Téf(t)—‘r]{)vo =/ot]{!uf—/ot&

since & does not depend on £ € (2, and u, is a limit of a subsequence u,, in
L*(0,T; H}(2))-weak N L2(Qr)-strong. It is then easy to conclude the following special
case of Theorem 2.1 of [HR].

Proposition 2.1. There exist solutions (urq,Vr,) to (2.1)-(2.4) in the class
L*(0,T; H} () x L?(0, T; H(Q)) N C°([0, T); L*())?, such that, as o — oo

Urg = U, in L2(0,T; H}(R))-strong (2.10)
vy =& in L*(0,T; H'())-strong , (2.11)

where (u,,&;) € L2(0,T; H}()) N C°([0, T]; L3(£2)) x C*[0, T] are solutions, in the gener-
alized sense, of (2.5), (2.2) and (2.6).

Proof: Since, in particular, v,, — & in L2(Qr) and a.e. in Qr, also a(i),;,) — a(&;)
a.e. in Qr and in LY(Qr), V¢ < co. First we take the limit in the variational form

Oglrg +/ a(vre) Ve - Vo = [ fo, VeeL*0,T;Hy(Q), (212
Qr T Qr »

where the first integral is understood in duality sense with du,, € L2(0,T; H}(R)), by
considering a subsequence o — oo, such that u,, — u, in L?(0,T; H}(2))-weak. Then
u, solves (2.12) with a(v,,) replaced by a(é;). Finally taking the difference of the two
corresponding variational formulations for u,, and u, we obtain the strong convergence
(2.10) for w = Urg — Us:

o—00

a QTIVw|2 g/QTa(vﬂ, ) |[Vw|? < f [a({,)—a vﬂ,)] Vu, - ?w — 0.nm

The results of [HR] were obtained for the Neumann problem for u instead the Dirichlet
condition (2.2), but there is no essential difference except in the next step 7 — oo. In fact,
now we cannot obtain the estimate % four in L(0,T), uniformly in 7, just by taking
¢ =1 in (2.12), what would be possible in the Neumann problem. However, we may use
a different and more general argument to prove the next result, which is new.
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Proposition 2.2. There exists at least a solution u€ L*(0,T; H}(Q))NC°([0, T);L%(Q))
of the problem (2.5),(2.2), which can be obtained as the limit

ur »u in L*(0,T;Hy(Q)) asT—0, | (2.13)

& — ][ in LY0,T), Vg< oo, (2.14)
where (u,,§,) are weak solutions of (2.5), (2.2) and (2.6).

Proof: The estimate (2.8) allows us to consider subsequences wu, — u in
L*(0,T; H}())-weak, L*®(0,T; L*())-weak* and also L?(Qr)-strongly, since the equa-
tion (2.5) also yields then d,u, is uniformly bounded in L?(0,T; H~1(f)).

Consequently, we may assume in (2.6)

][u7—>][u in L?(0,T) asT—0,
Q Q

and, by Lemma 2.1 below applied to ¢, = &, — o, vo, this implies |
f,—)j[u in L*(0,T), asT7—0.
. Q , ‘

By Proposition 3.2 of [HR] we have

~o) < ,
1€rll oo,y < l]{ﬂ"h”]{]u’”m(o,ﬂ’

and the conclusion (2.14) follows. Then the conclusion (2.13):holds asin Pr‘opi‘oSi’tion'Zl. "
Lemma 2.1. Let 7 > 0 and consider for n, € L*(0,T) and w, eR
Té‘r +¢ =1 in]0,T[, ((0)=uw:.
Then if n,b — n in L?(0,T) and w, = w we have
G n in L*0,T) asT—0.
- Proof: We remark that d/dt is a maximal monotone operatéf in the Hilbert space
H = L?(0,T) with domain
dv

D(%) = {V € ;2(0, T): v= € L2(0 T), v(0) =o} .

Indeed, we have

] .
. 1 d

= — >
/Ouudt. S W@ 2 0, VveD(dt)
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and Vn € L*(0,T), 3v € D(4): v+ v = n. Hence, for each 7 > 0, its resolvent
= (I+7 %)™ is a linear operator in H = L?(0, T) with norm ||J,||z < 1 and J,v — v,
Vve H,as ™ — 0.
Now applying J; to g, =, —w, = 7 —w = g in L%(0,T), we conclude

J-g- — 9l < -l llgr — 9l + | Jrg — 9ll2or)y 20, as 7—-0.m

2.2. Discontinuous nonlinearities

Following [HR] we allow in this section the reaction term f in the equations (2.1), (2.5)
or (2.7) to be given by a nonlinear discontinuous function

f: QrxR* 5 R, (u,v)— f(z,t,4,v) € L2(R), ae. (z,t) € Qr,
under the assumptions that for go € L*(Qr), go > 0 and a constant C, > 0
u f(z,t,u,v) < go+ Co(u?+v?), Vu,veR, ae (z,t) €Qr, (2.16)

and, for any large M > 0, there are gys € L'(Qr), gu > 0 and a constant Cyps > 0, such
that for some ¢ (6 < 2)

sup |f(z,t,u,v)| < gm(z,t) +Cum|v|*?, VveR, ae. (z,t) € Qr. (2.17)

lul<M

As in Section 1.2 we define for a.e. (z,t) € Qr the multivalued function F(z,t,u, v)
in the same way. We may now consider the reaction—diffusion system {S;,} consisting of
(2.1)—(2.4) with f replaced by F(u,v) in the following sense

f=frs€LQr) and f,, € F(Urg,vr6) ae. (z,t) € Qr, (2.18)

as well as the corresponding shadow system {S:} consisting of (2.5), (2.2), (2.6) and the
limit nonlocal problem {S} given by (2.7),(2.2), where we define

f=fr€LYQr) and f, € F(u,,&,) ae. (z,t)€Qr, (219)

f € LNQr) with f € F(u, ][ ) ae (z,t)€Qr, (2.20)
(9]

respectively, in the system {S,} and in {S}.

As it was shown in [HR|, the assumptions (2.16),(2.17) are sufficiently to prove there
exists at least a generalized solution {u,s,v,} to the system {ST,,}, as well as, {u,,v,}
and u respectively solutions to {S,} and to {S}, now in the class

u € L*(0,T; L*(Q)) N L*(0, T; Hy (), 8u € L*0,T; H-Y(Q)) + LY(Qr) .
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Using Lemma 1.1 we can also extend to these cases the previous asymptotic conver-
gence results of Propositions 2.1 and 2.2, but now in a weaker sense. Indeed, since we
only obtain

fTa ajoo fT and fT ‘T———)\O f . in Ll (QT)

we can only show that u;, —rg00 Ur and ur —,0 u in L?(0,T; Hy(Q)-weak, in
L?(Qr)-strong and a.e. in Qr. As in [HR], using now Lemma 2.1, we can illustrate these
results in the following proposition, where we consider the simultaneous limit in o and 7.

Proposition 2.3. Under the previous assumptions we can obtain a solution u to the
nonlocal problem (2.7),(2.2),(2.20) as limits when (7,0) — (0, 00)

Ure = u in L%(0,T; H}(Q))-weak, in L*(Qr) and a.e. in Qr (2.21)

Vrg — ][u in L*(0,T; H'())-strong , (2.22)
Q :

where 4,4, V,, are solutions of {S;,}, i.e., (2.1)-(2.4) with (2.18).

As in Section 2.3, we may consider the parabolic obstacle problem in this form, by
choosing
F(z,t,u,v) = g7 (z,t) — g7 (z,t) H(u) , (2.23)

where H is the Heaviside function and we prescribe, for instance,
g€ L*(Qr) and 1wy € Hy(Q), uo>0. (2.24)

Similarly, to the elliptic problem, the weak maximum principle implies that u > 0 a.e.
in Qr in all the three problems. In fact, if u solves (2.1), (2.5) or (2.7) with f € F(u)
given by (2.23), we find u~ = 0 by integrating in Q; = Q2 x]0,¢[ the respective equation
multiplied by —«~, from

l/lu_(t)|2+g/ |[Vu~|? < 6,u‘-u_+/ aVu-V(-u)~ <0
2 Ja Q¢ Qt ¢

since v~ (0) = ug = 0, H(u)u~ = 0 and g*(—u~) < 0. Here we have also denoted a as
the coefficient a(v,.), a(v.) or a( f,u) corresponding to each one of the three cases.

Since Oyu € L?(0,T; H*(f2)) and this space contains L?(Q7) we may now conclude
that, if (Urs, V7o) (resp. (ur,&;) or u) solve the system {S;,} (resp. {S;} or {S}), then
U, (Tesp. u,, u) also satisfies the parabolic variational inequality

u € L*(0,T; Hy(Q)) nCO([O,T];L2(Q))‘, u(t) €K ae t€]0,T[, u(0)=uy, (2.25)
/8tu —u) /aVu-V(go-—u)Z/g(go—u), VoeK, ae te]0,T[, (2.26)
Q Q
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where the first integral is understood in the sense of duality between H~1(2) and H}(Q).
Actually, it also holds in L? under additional regularity assumptions on the coefficient a
and on the data g, uyg.

Therefore, the existence results and the asymptotic convergences, such as the one in
Proposition 2.3, also hold for the evolutionary obstacle problem.

With respect to uniqueness results, as observed in [HR] for the nonlocal problem {S}
it is sufficient to assume the Lipschitz condition (1.22) on the coefficient a, now without
restriction on the constant o/, and also a Lipschitz property on the nonlinearities f(u,v).
It is easy to extend this result to the case of monotone discontinuities in u, as in the case
of the obstacle problem:

If(x t,u,v) — f(z,t,u w)’ (gz (z,t) + C, |u|) lv —w|, (2.27)
/@ tu,0) - fz,t,2,0)] (w—2) < 0, (2.28)

for a.e. (z,t) € Qr, u,v,w,z € R, where C; > 0 is a constant and g, € L*(Qr), g2 > 0.

Proposition 2.4. Under the additional assumptions (1.12), (1.27) and (2.28) there
exists at most one solution u to the nonlocal problem (2.7),(2.2) with (2.20), in particular,
also to the variational inequality (2.26) with a = a( {,u).

Proof: We remark first that {,u € L°°(0 T) and then also f € F(u, fyu) is in
L2(QT) Now if % is another solution with f € F(u, {,u), for § € L*(Qr) such that
g € F(u, f, 1), we obtain, using the assumptions (2.28) and (2.27)

U-De-0 < (-De-1 < (a+0ul) | fu- {a|n-a.

Then, integrating the difference of the equations (2.7) for v and %, multiplied by their
difference u:

/Qam +/ﬂa|Vﬁl2 < a'|£a|]Ava-vu]+|£ln|/ﬂ(gr,+02|u|) i,

where a = a( f,u) and we have used (1.12). Then, recalling the Poincaré inequality
and that | {, 7| < |Q|2(f,u?)"/?, we easily conclude the uniqueness with a standard
application of Gronwall inequality. m

Remark 2.1. For the shadow system {S,} this uniqueness results still hold exactly
under the same assumptions, since the £, being independent of z and solving (2.6),
allow the same proof as in Proposition 2.4. However, for the initial reaction—diffusion
system {S,,} additional assumptions on the regularity of u are required. For instance, if
Vu € L*®(Qr) the same Gronwall type argument still applies.
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Remark 2.2. As in the elliptic case, for general discontinuous nonlinearities, the
parabolic problem may also exhibit multiplicity of solutions, as a counter example of
[HR] shows for the nonlocal Neumann problem.

- Remark 2.3. An interesting problem, only partly treated in special cases (see [CL]
and [CM]) is the asymptotic behaviour of the evolutionary case when ¢t — oo.

2.3. Extension to a unilateral problem

We consider now a nonlocal parabolic obstacle problem, where the diffusion coefficient
a = a(p) is a continuous strictly positive function, i.e. it satisfies (1.1) but it is supposed
independent of z and t. ‘ v

As in Section 1.3, we start with the obstacle problem (2.25),(2.26). Now we let a
depend on a second variable v,, or &, as in Section 2.1 with (2.3) replaced by

T OUro — 0 AVrg + Vrp = X({ura=0}) in Qr v ) (229)

or (2.6) replaced by
ré+& = f X = @ (®=0) in 0.7 (2.30)

respectively, with u,, solving (2.25),(2.26) for a = a(v,,) and u, solving (2.25),(2.26) for
a = a(§;), together with the boundary conditions (2.4) or (2.6).

It is then natural to study the asymptotic limits ¢ — oo and 7 — 0 and, in the second
case, obtain the parabolic nonlocal version of (1.29). This limit problem, for any

g=g(z,t) € L*(Qr) and wo€ Hy(), uo>0 inQ, (2.31)
corresponds to the nonlocal obstacle problem for u = u(z,t) > 0 satisfying (2.25) and
[oute-w+ [ alta=0)vu-Vie-u) > [ ale-w),
0 Q
Veoek, ae te]0,T]. (2.32)

Indeed, it is still possible to extend the previous results to this new problem (see [RS]
for the details) but the arguments are more delicate than in the elliptic problem. The
regularity C? of the boundary 952 and the nondegeneracy assumption

g#0 ae in Qr (2.33)

are also required in the following result of [RS]:
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Theorem 2.1. Under the previous assumptions, namely (2.31) and (2.33) there exist
solutions (Urq, Urg) € W. (QT)XW2 1(Qr), V¢ < 00, to the coupled problem (2.25),(2. 26)
(with a = a(v,0)), (2. 29) (2.4), such that as 0 — oo

u,e > u, in L*(0,T;Hy(Q)),
ve =& in L*(0,T; HY(Q)),

where (u.,&;) € W2 (Qr) x Wb(0,T) solve the coupled problem (2.25),(2.26) (with
a = a(&;)) and (2.30) with the initial condition of (2.6). Moreover, there exists at least
a solution u € W'(Qr) to the nonlocal obstacle problem (2.25),(2.32), which can be
obtained as the limit as 7 — 0 of solutions (u,,&,), i.e. such that

u, = u in L*(0,T; Hy(Q)) N W' (Qr) ,

& (u=0) = ][ Xfu=0} in L7(0,T), Vg<oo.wm
Q

Remark 2.4. Here W2!(Qr) = L*(0,T; W?#(Q)) N W*(0,T; LP()), 1 < p < oo,
and this result uses the regularity for the obstacle problem and the “a priori” LP-estimates
for the linear parabolic problems of second order (see [LSU]), as well as the extension of
the continuous dependence of the characteristic function x{,—o) of the coincidence set to
the evolutionary obstacle problem (see [R1]).

Remark 2.5. The extension of Theorem 2.1 to the case of a nonlinear coupling
9 = g(vr,) can be done easily up to the convergence ¢ — oo but presents a non obvious
difficulty in the second passage 7 — 0 (see [RS]). Therefore, the corresponding nonlocal
problem (2.32) with a nonlinearity of the type ¢ = g({u = 0)) seems to be an open
problem.
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