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Abstract : We consider the following bi-criteria scheduling problem first.

(1) There are two identical machines ( or m identical machines ) and n jobs to be processed
by either of these two machines. Each machine processes at most one job at a time and each
Jjob is processed on at most one machine at a time.

(2) There exists the set of resources and for each resource fuzzy bound is given which limits the
total amount of the resource available at any given time. That is, available limit of each
resource is flexible and is represented by the membership function which reflects the
satisfaction degree of available limit for the resource.

(3) For the processing of each job, unit processing time of either machine and unit of the resource
is required. That is, two jobs whose resource required sum is not over available limit are
processed simultaneously.

(4) Under above setting, we consider two objectives, i.e., minimum satisfaction degree of the
fuzzy bounds to be maximized and maximum completion time C,, . to be minimized. That is,
we optimize the limit vector and corresponding schedule to this vector. Usually we cannot
optimize both objectives at a time and so we seek some non-dominated solutions,

Secondly we fuzzify the requirement of resource and it is assumed to be a fuzzy. Under this
further fuzzified model, we seek non-dominated solutions based on the result of the first problem.

(5) We generalize the above problem to m identical machines.

1. Introduction

Any task, besides processors, may require for it’s processing some additional scarce
resources. In a scheduling model resources are notified as resource types, resource limits
and resource requirements. There exists a tradition of works which have tried to apply
fuzzy set theory in scheduling. Fuzzy constraints offer a very flexible method to devise
composite and realistic objective functions.

In this paper, we introduce fuzzy constraints about available limits of resources to the problem
considered by Garey Johnson [2]. Section 2 formulates a bi-criteria scheduling problem and
Section 3 proposes solution procedure for the problem. Next in Section 4 we further assume
resource requirements are fuzzy numbers and we investigate this problem and seek non-
dominated solutions based on the result of the first problem. Section 5 generalizes to m
identical machines (introducing a fuzzy constraint about available limits of resources to the
problem considered by Blazewicz et al [1]). Continued by definitions and solution procedure for the
generalized model in Section 6 and 7. Finally drawing a conclusion in Section 8.

2. Problem formulation

We consider the following bi-criteria scheduling problem first.
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1. There are two identical machinesM,, M and n jobs {J,,J,,--,J,} to be processed by
either of these two machines. Each machine processes at most one job is processed on at
most one machine at a time.

2. There exists the set of resources {R,,R,,*+,R,} and for each resource R, fuzzy bound

B, is represented by the following membership function which reflects the satisfaction

J

degree of available limit B for each resource R;.

1 (B,<L))
(B)=41 B, -1, (L,<B,<U,)
4;(B;)=41-  <B, <U,
J J Uj—Lj J J J
0 (B,2U,)

3. For the processing of each job J;, unit processing time of either machine and 7; unit of
the resourceR; is required. That is, two jobs J, and J, satisfying
r,+n,<B,j=Ll:s are processed simultaneously.

4. Under above setting, we consider two objectives, i.., minimum satisfaction degree 4,,, of

the fuzzy bounds for the simultaneously processed job pairs to be maximized and
maximum completion time C,_ to be minimized. That is, we optimize the limit vector

B=(B,,B,,---,B,) and cormresponding schedule 7to this vector. Usually we cannot
optimize both objectives at a time and so we seck some non-dominated solutions defined as
 follows. Solution (B',7,) dominates solution (B?,7,) means:
min, 1,(BY) 2 min,pt,(B?), C o)) < C ()
and at least one inequality hold without equality. Solution (B, 7) is called non-dominated if
there exists no solution that dominates (B, 7).

3. Solution procedure for the first problem
We calculate all pair-wise sum

r* =r +r,i,k=1-,ni<k,j=1:s and comesponding minimum satisfaction degrees
p* =min, p (r*). Sorting all 0 < #* <1 in a non-increasing order, let the result be as
follows:

#0 -=—l>ﬂl >.'.>#M >#m+l E()
where m is the number of different ,uj." between 0 and 1.

[Solution Algorithm 1]

Step 1: Set B® =(L,,L,,---,L,)and find 7,by solving corresponding ordinary problem P,
using the solution procedure of Garey and Johnson [2). Then, set DS = {(B°,7,)} and
1=1. Go to step 2.

Step 2: Calculate Bj. = ,u;.' (#'), j =1,-+-,s, solve corresponding ordinary problem F,



under the resource limit B' = (B, -+, B!) and obtain corresponding schedule 7, .

If(B', 7,) is not dominated by any other solution in DS , let DS = DSU{(B', 7,)} and

go to step 3. Otherwise go to step 3 directly.
Step 3: Set I =1+1.1If ] =m+1, terminate (DS is the set of some non-dominated solutions).
Otherwise return to Step 2.

Now we briefly survey the algorithm by Garey and Johnson Algorithm [2].

Garey and Johnson Algorithm
Begin
Construct an » node (undirected) graph G with each node labeled as a distinct job and
each edge joining J, to J, ifand onlyif r; + r; < B, j=1,2,--,5;
Find a maximum matching M of graph G;
Put the minimum value of schedule length C._ =n— W ;

Process in parallel the pairs of jobs joined by the edges comprising set M and process
other jobs individually;

End,

>

Note that a maximum matching M of graph G is the subset of edges satisfying the
following conditions;
(1) at mostone edge in M is connected to each node,
(2) the cardinality | M | is maximum
and both jobs corresponding to those nodes connecting to each matching edge can be processed at
a time. :

Now we can show the following complexity of the algorithm 1.

Theorem 1
Using the algorithm in Even and Kariv [1] for the maximum matching, Algorithm 1

finds some non-dominated solutions in at most O(n*’) computational time if s < n>*.
Proof: (validity) Validity is clear from the above discussion.
(Complexity) The number m is O(nz) and for each fixed bound B, corresponding

ordinary problem can be solved in O(n**) computational time by using the algorithm in [2] .
Determination of all 4™ takes at most O(n**) since the number of r}* is O(n**), that of
#,(r) also O(n**) and each 1™ is minimum among O(s) < O(n*°) number 7 if s <n*®,
Sorting these 4™ takes at most O(m logm) = O(n* logn) . So the complexity of algorithm 1 is
atmost O(n**). Q. E.D.

4. Further fuzzified problem
Now we further fuzzified the problem and consider the case that each resource requirement is a
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fuzzy number 7. Then from the extension principle [3], each pair-wise sum T, + 71, is also fuzzy
number and denoted by 'Fj"’ . Here fuzzy number A isdefinedtobe a fuzzy set whose
membership function 4 (x) satisfies the following conditions (for details, see [3]):

1. (normality) There exists a unique ¢ such that z.(c) =1.

2. (convexity) Each @ between 0 and1, a level set 4, = {x| u;(x) > a} is convex, that is,

one continuous interval.

3. (upper semi-continuity) Membership function z(x) is upper semi-continuous.
The agreement index l(?jik B ;) of a fuzzy number 7';"‘ with regard to the fuzzy set B ; is
defined to be a ratio, that is, (area surrounded by x axis, the membership function 4;(x) of B f
and that of 'Fj“ ) / (area surrounded by x axis and membership function of 7';"‘ )€ [0, 1]. Further
the agreement index «(7;,B,) of a fuzzy number 7, with regard to the fuzzy set B, is defined to
be a ratio, (area surrounded by x axis and 4; (x))/ (area surrounded by x axis and 4;, (x)) very
similarly and assumed to be 1. We calculate h* = min jt(?;.i",Bj ),i,k=1,---,n,i <k.Now we
construct # graph G* = (V,E") as follows: ¥V =(J,,J,,+,J,) is the job set and
E"={(J,,J)|h* 2hi k=12 i<k}.

For the G”, we calculate the maximum cardinality matching by using the algorithm in [1]. Then
we find the schedule that minimizes C,,, under the condition “minimal

agreement index b, among the simultancously processed job pairs is not less than 4 by using
the algorithm in [2]. Under above setting we seck the non-dominated schedules with respect to &
to be maximized and C,... to be minimized since again, there may not the unique solution
optimizing both objectives at a time. Then as Algorithm 1, we obtain the following algorithm.

[Algorithm 2 for the second problem]
Step 1: Sorting all #* such that0 < h* <1, let the result be
hy=1>h >--->h, >h,, =0
where ¢ is the number of different 4#* such thatO <A™ <1. Set /=0 and DS=¢.
Go to step 2.
Step 2: Construct h, graph and calculate the maximum cardinality matching for A, graph.
From this maximum cardinality matching, construct the schedule 7' with minimum
C,, value = C'_ . If there exist a schedule 7*e DS such that CL, <C,,, then

go to Step 3 directly. Otherwise, set DS=DSU{z'} and go to Step 3.

Step 3: Set /=/+1. If I=t+1, terminate. Otherwise return to Step 2.
Theorem 2
Algorithm 2 finds some non-dominated schedules in at most O(n**)
computational time if each agreement index can be calculated in a constant time and s < n*’.

Proof: Validity is clear from the above discussion and the proof of complexity is similarly done
Algorithm 1. Q. E.D.
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5. Generalized Problem

We consider the following bi-criteria scheduling problem.

1. There are m identical machines M,,M,,---.M, and n jobs {J,,J,,---,J,} to be processed by
any of these machines. Each machine processes at most one Job at a time and each job is
processed on at most one machine at a time.

2. There exists the set of resources {R.,R,,---,R;} and for each resource R,, fuzzy bound
B , which gives the total amount of the resources available at any given time. That is, available
limit of each resource is flexible and 1§j is represented by the following membership function
which reflects the satisfaction degree of available limit B, for each resource R, .

1 _ (B,<L)
H,(B)= I-U’_L’ (L,<B,<U)
J J
0 (B,2U,)

3. For the processing of each job J,, unit processing time of either machine and r, unit of the
resource R, is required where r,is non-negative integer. That is, subset of jobs
iseesJ, ) satisfying 52,7, <B,, p<m, j=1,--,s can be processed simultaneously.

4. Under the above settings, we consider two objectives, i.e., minimum satisfaction degree u in Of
the fuzzy bounds for the simultaneously processed job subset to be maximized and maximum
completion time C e to be minimized. That is, we optimize the limit vector B=(B,,B,,--,B,)
and corresponding schedule 7 to this vector.

6. Non-dominated Schedule and Elementary Instances
Usually we cannot optimize both objectives at a time and so we seek some non-dominated
solutions defined as follows.
Solution (B', 7,) dominates solution ( B, x, ) means:
min ,p,(B',)2min pu (B*,) , C ma(7,)<C mal 7, )

and at least one inequality hold without equality. Solution (B , 7 ) is called non-dominated if there
exists no solution that dominates (B, z ).

Further we define elementary instances. For this purpose, first we divide the jobset into & classes
K,K,, K, according to the resource requirement vector jobJ,, r=(r,,7,,---,7,)",
i=1,---,n where T denotes the transpose and k the number of different resource requirement
vectors. That is,
all jobs in the class K, have the same resource requirement vector r'=(7,,7,, ,%,)",
£=12,--.k. Let n,=[K,| and v=(n,,n,,--,n,)".
An elementary instance is defined to be a subset of jobs J.={n.J 0, . J,, ) satisfying the
resource limit conditions,

Yry<B, j=l--sand it is denoted by the corresponding elementary vector
b,=(,,,b,)" where b_, g=12,---.k is the number of jobs in J, belonging to the classk, .
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Vector b, is enough to describe the elementary instance since all jobs in each class is considered
to be the same identical job. Note that job set {J,,J,,---,J,} is a union of elementary instances
and each schedule is constructed from clementary instances since all jobs which are executed at
the same time form an elementary instance.
For fixed resource limits, maximum eclementary instances defined as follows are to be
considered. :
Elementary instance b= (b,,5,,--,b,)" is called to be maximal if there exists no elementary
instance b'= (', ,---,b', )" satisfying b',2b,,£=12,---,k and at least one equality holds without
equality.
For fixed available limit vector B=(B,,---,B,,--+,B,), let maximum elementary instances be
b,.b,,--,b;, where I is the number of maximum elementary instances. By using maximum
clementary instances, we formulate the C mo minimization problem P.when available limit of
each resource is fixed.

P, : Minimize zf?:, e,

subjectto T4 ,e,b, 2V, e,e,, -+, e; : nONnegative integers

P, can be solved in a linear time with respect to input size of P, if upper limit of I is fixed and
applying the result due to Lenstra et al [5].

7. Solution Procedure
Since resource requirements are honnegative integers, nonnegative integer available of each
resource is enough to be considered. That is,

B,=L,,L,+1,--U;~1, j=12-s
Let 4, =H; &, +q9), ¢=12,-,U,~-L,~1, j=12,--,s First sortingall O<u, <1 in a non-
increasing order, let the result be as follows:

#o El>”l > >t >”a+l =0

where a is the number of different u,, between 0 and 1.
Now we are ready to describe our algorithm.

[Solution Algorithm]

Step 1: Set B°=(L,,L,,---,L;) and find =, by solving corresponding C mex minimization
problem P using the solution procedure of Lenstra [5]. Then set DS= {(B°,r,)} and £=1.

~ Goto Step 2.

Step 2: Calculate B; =|_p;‘(p‘ )J, j=12,---,s, solve corresponding C m minimization problem
P! under the resource limit B‘ =(B/,---, B) and obtain corresponding schedule 7, where|e|
means the grateset integer not greater than «. If (B‘,z,)is not dominated by any other
solution in DS, let DS = DSU{(B‘,7,)} and go to Step 3. Otherwise go to Step 3 directly.

Step 3: Set £=¢+1. If ¢£=a+1, terminate (DSis the set of some non-dominated solutions).
Otherwise return to Step 2.
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Theorem 3
Using the algorithm in Lenstra [5], our algorithm finds some non-dominated solutions in at most

O(maxin, logjz;(Uj —-L,)}x }Z;(Uj =L))

competion time if upper limit of elementary instances of each C . minimization problem P/ is
fixed constant.

Proof: Validity is clear from the above discussion and the proof of complexity is as follows:
Sorting 0< 4, <1 takes at most

O(max{n,zogi](uj ~L,)}x ﬁ](Uj -L)))
j= J=

computational time. The number of P/ is at most ¥’.,(U,-L,) and each problem P; can be
solved in at most O(n) using the algorithm in Lenstra et al [5] if upper limit of the number of
elementary instances is fixed for. Q. E. D.

8. Conclusion
In this paper, we have investigated two machine scheduling (and generalized m identical
machines) problem with fuzzy resource constraints and proposed solution algorithms for two
problems. But these algorithms are straightforward and so we should make refinements of them.
Our approaches to fuzzified scheduling models are relatively new. We should endeavor to peruse
this direction to other classical scheduling models with resource constraints and construct more
actual schedules applicable to real situations. ‘
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