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Weak Solutions and Their Numerical Analysis of Nonlinear Parabolic
Equations of Fourth Order based on FEM

MEAFEARBENEN E 4% (Quan-Fang Wang)
P KFLFER i §— (Shin-ichi Nakagiri)

1 Introduction

In this paper we investigate the weak solutions and their numerical analysis of nonlinear
parabolic equation of fourth order. In recent years, there are many mathematical literature con-
cerning with nonnegative or positive solutions to fourth-order parabolic equations (cf. [1], [3]).
However, the study of numerical analysis of nonlinear fourth order parabolic equations is few.
In [5], we studied abstract nonlinear parabolic equations having uniform Lipschitz continuous
nonlinearities, but the fourth order equations are not treated in [5]. The purpose of this paper
is to study the weak and numerical solutions of fourth order parabolic equations which include

nonlinear gradient and Laplacian terms.
Let  be an open bounded domain of R™ and 9Q = I' be the piecewise smooth boundary of
Q. Let T>0,Q = (0,T)xQand & = (0,T) xI'. We consider the following nonlinear parabolic

equation of fourth order

-‘;—’: + A(a(t, z)Ay) = f(t,z,y, Vy, Ay) inQ, | - (L

where a € C([0,T); L®(R)) satisfies a(t,z) > A > 0 for all (t,z) € Q and f € L>2([0,T] x Q x
R xR"xR) is a nonlinear forcing function. The initial condition is given by y(0, ) = yo(z) in Q.
The attached boundary condition is given by the one of the following four types of conditions
(cf. Dautray and Lions [2]).

Case 1 (Dirichlet boundary condition) y(t,z) = -g,:y(t, z)=0 on I B (1.2.1)
Case 2 (Neumann boundary condition) Ay(t,z) = %Ay(t, z)=0 on % (1.2.2)
Case 3 (Mixed boundary condition, A) y(t,z) = Ay(t,z) =0 on X; (1.2.3)

Case 4 (Mixed boundary condition, B) -g—z-(t, z) = %(a(t, z)Ay(t,z)) =0 on X. (1.2.4)

We explain the content of this paper. In section 2, we prove the existence and uniqueness
theorem of weak solutions for the problem (1.1) with one of (1.2.1)-(1.2.4). At the same time we
give the estimate of weak solutions with respect to initial values and forcing terms. After this,
we study the numerical analysis of the problem based on the finite element method in section 3.
As numerical simulations we consider the special case where a(t,z) = 1 and f(t, z,y, Vy, Ay) =
asiny + Bsin Vy + ysin Ay.



92

2 Existence and Uniqueness of Weak Solutions

In this section, we study the existence and uniqueness of weak solutions for the initial-boundary
value problem (1.1) with one of (1.2.1)-(1.2.4). In order to solve the problem in the framework
of variational method due to Dautray and Lions [2], we introduce two Hilbert space H = L?(Q)
and the maximum domain H(A;Q) = {¢ € L%(Q) | Ad € L2(Q)}. H(A; ) is a Hilbert space
with the inner product (¢, Va@an) = (6,9) + (Ap, Ay), where (, ) is the inner product of
H = L*(). We now take the pivot Hilbert space (specified later) V such as H3(Q) C V C
H(A;Q). Thus V is a closed subspace of H (A; ) equipped with the norm

1
I8 = o + 180202, 191 = ([ 16(a)as)”. )
We note that the norm || - || is equivalent to the norm of H 2(Q2), i.e. there exists a ¢; > 0 such
that
Il 2y < arllgll, Vo € H*(Q). (2.2)

For such a V' we define the space
W(0,T)={g| g € L*(0,T;V),g' € L*(0,T;V")}. (2.3)
We introduce the bilinear form
| alt; 6, ) = /ﬂ a(t,2)Ad(x)Ap(z)dz, Vé,% €V C H(A; Q). (2.4)

associated with the fourth order differential operator A(a(t, z)A). It is clear that a(t; ¢, ¢) >
A|A¢|?, Yt € [0,T]. Further we suppose that for any ¢ € H(A;Q) the function f(¢;¢)
f(t,z, ¢, Ve, A@) defines a function in H = L*(Q) for each ¢ € [0, T). Here we take V as follows
for the case 1-4.
Case 1: V = HZ(), Case 2: V = H(A;Q),
0
Case3: V={¢€H(AN)|gr=0}, Cased: V={¢cH®AN)| %"Hp ~0}.

(2.5)

Now we give the definition of weak solutions for the problem (1.1) with one of (1.2.1)-(1.2.4),
and shortly we shall call the problem (P). ‘

Definition 1 A function y is said to be a weak solution of the problem (P) if y € W(0,T) and
y satisfies

{ WO, Pvry +ai90)8) = (0, ) orall §€V in the semse of DOT), ;¢
y(O) = Yo,

Where V is given by the one indicated in (2.6), the symbol (-s*)v*,v denotes a dual pairin
between V and V', and D’(0,T) denotes the space of distributions on (0, 7). ‘
Assume that f: [0,T] x @ x R x R® x R — R satisfy

(i) f(-,z,y,&,n) is measurable on [0,T]foreachz € Q, yeR, €€ R" and n € R;
(i) £(-,,¢,7) is measurable on Q for each ¢ € [0,T], y € R, £ € R" and n € R;
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(iii) there is a ¢ € L*(Q) such that for V(t,z) € Q, Vy,9',§, ¢ € R, vn,n' € R®
‘ |f(ta$,y,§,77) - f(taxaya §I,77')'| S c(t,m)(ly - y’l + |§ - f’l + |7I - 77,|);
(iv) there is a y € L(Q) such that |f(t,,0,0,0)| < ~(t,x), V(t,z) € Q.

Theorem 1 Aséume that f satisfies (i)-(iv). The‘n‘for yo € L2(Q), there exists a unique weak
solution y € W(0,T) of (P) such that y € L®(0,T;L*(Q)) N L*(0,T; H*(R)). Further the
estimate

ozt + W zimryy < Cllwol + MZsgeap(Clelm@)  @7)
holds for some C > 0 indenpent of yp.

Proof. Define the function f : [0, T]xV — H by f(t, ¢)(z) = f(t, ¢(x), Vé(x), Ad(z)), a.e. z€
Q. Then by (iii) and (2.2), we have

1Ft,w) = F(t ) |® = |f(ty1) — Fw)lh
/Q|f(t,-"3, y1, Vi, Ay1) — £(t, 2,2, Vi, Aye)|*dz

IA

2llcl|E (@) /ﬂ(lyl — 32 + Vi1 — Vip|® + |Ay1 — Byz[*)de

2lleF @y llvr — v2lifrz(y < 268 llellioe(gyllvn — 22ll*- (2.8)

IA

This proves that the nonlinear term in (2.6) satisfies the uniform Lipschitz continuity. Hence
by Wang and Nakagiri [5], there exists a unique weak solution y € W(0,T) of the problem (P)
under the assumptions (i)-(iv).

Next we shall prove the estimate (2.7). Taking ¢ = y in the weak form (2.6) and integrating
them on [0, t], by (iii), (iv) and (2.8) we have

1 t 1 t t
S +4 [ 1agde < SWOP+ [ 17(ei) - S0 Iu(e)lds + [ 17 0llu(s)lds
~ 1 rt ‘ t . »
< WO +Vaaldz@ [ Il lu@lds + [ 1r(a,)lly(s)lds.

Hence, for any € > 0, we have | |

Ly@P +(4=e) [ lo@lPds < Hunft + Mol + Cellelime +2) [ o)ds. 29

L A y LU 5 liLz@) T \ZClCliL=(Q) 0 y - &
By setting € = 2 and applying the Bellmann-Gronwall inequality to (2.9), we have

lw® 1 + 19132010y < Cllwol* + Ill72(q))ezp(Cliclie(q)), Yt € [0,T] (2.10)

for some C > 0. Hence (2.7) follows. This completes the proof.
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3 Numerical Analysis based on FEM

In this section, we study the numerical analysis of one dimensional nonlinear fourth order
parabolic equations (1.1) based on the finite element method. We construct a rather complete
and effective algorithm for approximate solutions by using the cubic base functions for each
type of boundary conditions. The difference depends on the choice of the basis of V. Using
Mathematica, we give several figures of weak solutions for different types of initial data, forcing
functions and physics parameters.

Let 0 = 29 < ) < -+ < Ty < Zn41 = | be a partition of the interval [0,1] into subinterval
Ie = [xe—1,Te] Of length he = 2o — 2,_1,6 =1,2,--- N + 1. Let Vi be the set of functions such
that ¢ is cubic on each I, and is continuous on [0,]. Then it is clear that V,, C HZ(0,1). Let us in-
troduce the base functions 1¢ defined by cubic interpolation functions, which can be expressed as

( YPi(z) =1- %(z —ze)2 + -hz—3(x —z.)3,
)= 520 - @ =0 + p(z = 2],

J

¥5(z) = hz(z ze)? - hi(x—ze?

¢4(3) -—-(:z: -"’e)2 h2(.1:—:1:e)3

0.5 1

The Hermite cubic interpolation functions satisfy the following interpolation properties

¢f(xe) = 11 ¢f($e) = 0 (1' # 1)’
¢§(:17)+1) =1, 1!’55;&1) =0 (#3),

=Y =0 G#2) @1
Gk G-

4) )Iz e+1 =0 (i ¢4)

We give the analysis only for the Case 1: V = HZ(0,l). We omit others cases here. Case 1
corresponds to the following one dimensional initial boundary value problem

X+ Alalt2)A9) = (62,9, Y5, 89), in (0,1) x (0,T),

v(6,0) = 22,0 = y(t.0) = Z(t,n =0, on (0,7), (3.2)
¥(0,z) = yo(z), a.e. on (0,1).
4
The e-th element of approximate solution for (1.1) is defined by y§(t,z) = E{f(t)w/;f(x), e=

=1
1,2,---,N. Then the total approximate solution can be represented as

N N 4
w(t,z) =Y vilt,z) =Y Y &@)vE(z) eV CV, Vte[0,T],
e=1

e=1li=1
where yf, e =1,2,---, N satisfies
{ (WR)'s ¥5) + (alt, ) Ayf, AY5) = (f(t, - vk, ViR, AYE), ¥5), (3.3)
(5 (0), ¥5) = (yo, ¥5)-
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We can rewrite (3.3) as follows:

4 4
Z&f’(t)("pfa d)ze) + Zéf(t)(a’(t’ )A"/)fa A¢;) - (f(t’ '»yi’ Vyﬁ, Ayf’.)ﬂ/’f) =0,
i=1

1=1

Zﬁz(o) 1/’171/"3)_(1!011/)])1 e=1 2,"',N.

(3.4)

By the interpolation properltles (3.1), we set ¢ = 0, Y = 0 and Vyi = 0,Vy} = 0. For
s1mphclty we denote Vi = ¢ and A’l/) . Then the first equation of (3.4) can be written as

Zf ¢1J+Z£z¢t]_f] —0 (35)
where o
"/)1_1 (1/)1,’1/)3)’ ¢z_1 (a‘(t7 )1/":: 71/};':)7 f]e = (fe(t"’ yzs yhe,y-he), ¢;)
Now we set .
= (W5, ¥5)o1354 € Maxa(R),
®°(t) = (alt, )95, ¥9){01254 € Maxa(R),
=9(t) = [€5(1), 65(2), €5(2), E5(0)]T € Maxa(R),
YOe = [('yO, 1/);.3)7 (yo,'*ﬁg), (yO’ "/’g)’ (yO) ¢Z)]T € M4XI(R)'
- 4 -
(F(t,- )& 1/’;»2& (t)T/’uZ{z (£)95), %)
=1 'L"‘ 1—
4
(f(t &z (t)"r/)z ’ z 61 (t)"nbz ’ E fz ")bz "/)2)
Fe(t,E5(t)) = = € Mo (R).
(f(ta K] Z €f(t)¢fa E é.f(t)'lpi ’ Z £i (t)"/"i )7 "/)3)
i=1 i=1 =1 B
4 4 4
(ft,-, S e)ve, 3 & (t)s, > E5(0)%5), %5)
L =1 1=1 t= J
Then (3.5) can be rewriten as |

Weze () + ®¢(t)2°(t) — F°(t,=°%(t)) = 0. (3.6)
We get the whole assembled system equation ' v
U= (t) + ®E(t) — F(¢,E(t) =0. (3.7)

Here in (3.7), by taking into account of boundary condition in (3 2), we set
E =[0,£2,3,€4, 65,86, -1 E2n -3, §an—-2, 2N -1, €2N, 0, Ean+2],

where
EL=¢€=06=6, &= =4, £4=£1=£%
boiz=62=¢71 £y = 4— =& b =871 =6, L= vl=¢,i=3,.,N
bony =N =N oy =N =€), v = N =0, o2 =€),

In what follows we set he = h and a(t,z) = 1. The components of F can be approximated
by applying the 6-th order Gauss-Legendre quadrature at six points pf,p5,- -, p¢ with weights
w$, w§, - - -, wg on each interval I.. Then ¥, ® and F can be calculated as follows:
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We can solve the degenerate first order differential equation (3.7) by taking the re
f ¥, ® and F and using the Runge-Kutta method of fourth order.
Simulation results

. Case of f(t,z,y, Vy, Ay) = asiny. Let I =1 and yo(z) = sin(nz).

Fig.1 a = 0.0001 ' Fig2 a=0.5

£

Fig.3 a =1.0 Fig4a=5.0

2. Case of f(t,z,y, Vy, Ay) = Bsin(Ay). Let I = 1 and yo(z) = cos(nz).

Fig.3 =05 Fig4 =10

98
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3. Case of f(t,z,y, Vy, Ay) = vsin(Ay). Let I = 1 and yo(x) = sin®(nz).
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