Ooo0o0oOoDoOoooO 12550 20020 46-54

Scaling Limit of a Dirac Particle
Interacting with the Quantum Radiation

Field
Asao Arai (FrHEIR)*

Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan

E-mail: arai@math.sci.hokudai.ac.jp

Abstract

A quantum system of a Dirac particle — a relativistic charged particle
with spin 1/2 — interacting with the quantum radiation field is considered
and an effective particle Hamiltonian is derived as a scaling limit of the total
Hamiltonian of the system.
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1 Introduction

We consider a quantum system of a Dirac particle — a relativistic charged parti-
cle with spin 1/2 — interacting with the quantum radiation field with momentum
cutoffs. The total Hamiltonian H of the system is of the form:

a Dirac operator| + [the free Hamiltonian of the quantum radiation field

+ |a perturbation term

Here, as usual, the perturbation term is given by the minimal interaction of the Dirac
particle with the quantum radiation field. This is a well known model in relativistic
quantum electrodynamics (QED), although rigorous mathematical analyses of it
have been only recently initiated (3, 4, 5].
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In this note we focus our attention on scaling limits of H and derive an effective
particle Hamiltonian, which is a modified Dirac operator containing fluctuation ef-
fects due to the interaction of the Dirac particle with the quantum radiation field.
Such an effective Hamiltonian may be used as an approximate quantum mechanical
particle Hamiltonian of the total Hamiltonian.

We remark that scaling limits in nonrelativistic QED have been discussed in
[1, 7, 8, 9]. The present work may be regarded as a first step towards extensions of
those studies to relativistic QED.

2. Description of the Model

2.1 The Hamiltonian of the Dirac particle

We denote the mass and the charge of the Dirac particle by m > 0 and ¢ € R\ {0}
respectively. We consider the situation where the Dirac particle is in a potential
V which is a Hermitian-matriz-valued Borel measurable function on R3. Then the
Hamiltonian of the Dirac particle is given by the Dirac operator

Hy(V):=a-p+mB+V (2.1)
acting in the Hilbert space |
Hp = ®4L2(R3) (2.2)

with domain D(Hp(V)) := &*H'(R®) N D(V) (H'(R?®) is the Sobolev space of
order 1), where a; (j = 1,2,3) and 3 are 4 x 4 Hermitian matrices satisfying the
anticommutation relations

{aj7 ak} = 25jka ja k= 1,2,37 i ‘ (2.3)
{aj7 IB} =0, ﬁz =1, ] =1,2,3, (2.4)

{A, B} := AB + BA, 6; is the Kronecker delta,
P = (p1,P2,p3) := (—tDy, 1D, —iDs) (2.5)

with D; being the generalized partial differential operator in the variable z;, the
j-th component of £ = (z,,72,73) € R?, and a - p := Z?ﬂ a;p;.
2.2 The quantum radiaiton field

We use the Coulomb gauge for the quantum radiation field. The Hilbert space of
one-photon states in momentum representation is given by

Hon := L*(R?) @ L*(R?), (2.6)

47



where R3 := {k = (k;, k;, k3)|k; € R, j = 1,2, 3} physically means the momentum
space of photons. Then a Hilbert space for the quantum radiation field is given by

Frad = @;.f:o (®: ph) (27)

the Boson Fock space over over My, where ®” denotes n-fold symmetric tensor
product of Hy, and ®2H,,), := C.

We denote by a(F) (F € Hpn) the annihilation operator with test vector F on
Frad- By definition, a(F) is a densely defined closed linear operator and antilinear
in F. The Segal field operator

(2.8)

is self-adjoint [11, §X.7], where, for a closable operator T, T denotes its closure. For
each f € L*(R3), we define

a(f) := a(£,0), a®(f):= a(0, ). (2.9)

The mapping : f — a)(f*) restricted to S(R3) (the space of rapidly decreas-
ing C°-functions on R?) defines an operator-valued destribution (f* denotes the
complex conjugate of f). We denote its symbolical kernel by a()(k): a")(f) =
J a®)(k) f(k)*dk.

We take a nonnegative Borel measurable function w on R3 to denote the one
free photon energy. We assume that, for almost everywhere (a.e.) k& € R3 with
respect to the Lebesgue measure on R?, 0 < w(k) < oco. Then the function w
defines uniquely a multiplication operator on M, which is nonnegative, self-adjoint
and injective. We denote it by the same symbol w also. The free Hamiltonian of
the quantum radiation field is then defined by

Hya := dT(w), (2.10)

the second quantization of w. The operator H;.4 is a nonnegative self-adjoint oper-
ator. The symbolical expression of Hraq is Hraa = Y2, [ w(k)a (k)*a) (k)dk.

Remark 2.1 Usually w is taken to be of the form wpny(k) := |k|, k € R3, but,
in this note, for mathematical generality, we do not restrict ourselves to this case.

There exist R3-valued continuous functions e(”) (r = 1,2) on the non-simply

connected space My := R3\ {(0,0, k3)|k3 € R} such that, for all k£ € M,,
(k) e (k) =6, e(k)-E=0, rs=1,2. (2.11)

These vector-valued functions e(") are called the polarization vectors of one photon.
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The time-zero quantum radiation field is given by

21/ 27r)3w k){ ket + r)(k)eik.z}’ J=L23

(2.12)
in the sense of operator-valued distribution.
Let o be a real tempered distribution on R3 such that
L ﬁ € L*(R?), (2.13)

\/{.4—.’,

where $ denotes the Fourier transform of p. The quantum radiation field with
momentum cutoff g is defined by :

A5(250) = 05(GY(=)) (2.14)

with G% : R® = Hpy, given by

o(k) el (k)e k= @(k)*e?)(k)e-*’“'*)
ey T Jw(k) '

Symbolically A;(z;0) = [ Aj(z — y)e(y)dy.

G2 (k) = (

2.3 The total Hamiltonian

The Hilbert space of state vectors for the coupled system of the Dirac particle and
the quantum radiation field is taken to be

F := Hp ® Fraa- ’ (2.15)

This Hilbert space can be identified as
®
F = L*(R3; ©*Fraa) = /Ra & Foaade (2.16)

the Hilbert space of @*Fraa-valued Lebesgue square integrable functions on R3 [the
constant fibre direct integral with base space (R3, dz) and fibre @*Fraq [12, §XII1.6].
We freely use this identification. The total Hamiltonian of the coupled system is
defined by

‘ \ , ,

H(V, 9) = HD(V) + Hyaa — qzajAj( ©30)- , (2.17)
=1 ‘

This is called a Dirac-Magwell operator [5]. The self-adjointness of H(V, ) is dis-

cussed in [4]. Here we present only a self-adjointness result in a restricted case.
We assume the following:
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Hypothesis (A)

(A.1) V is essentially bounded on R3.
(A.2) For s = -1,1/2, w*s € L*(R?) and |k|p/w, |k|d//w € L*(R3).

Theorem 2.1 [4, Theorem 1.4] Let D be a core of w and Fi%(D) be the subspace
algebraically spanned by vectors of the form a(Fy)*---a(F,)*Q, n > 0,F; € D,j =
1,---,n, where Q := {1,0,0,---} € Fraa is the Fock vacuum of Fraa. Then, under
Hypothesis (A), H(V, p) is essentially self-adjoint on [*C (R3)|®a FIB (D), where

®.lg means algebraic tensor product.

We denote the closure of H(V, g) by the same symbol.
The problem we consider here is stated as follows:

Problem

Find a family {H,(V, )}«>1 of self-adjoint operators on F which are obtained
by scaling prameters contained in H(V,p) with H.(V,p)|._, = H(V,0), a
family { E(x)}x>1 of self-adjoint operators on F, a unitary operator U on F, a
symmetric operator Vg on Hp and an orthogonal projection P acting on Frag
such that, for all z € C\ R

s lim (Ho(V; 0) — E(x) — 2)™' = U[(Hp(Veg) —2) ' @ PIU~".  (2.18)

This kind of limit is called a scaling limit. The change of the potential V — Vg
corresponds to taking out effects of the quantum radiaiton field on the Dirac particle
on a quantum particle mechanics level. The operator E(k) is a renormalization
of H.(V,p), which may be divergent as kK — oo in the sense that there exists a
common subset D C D(E(x)) for all sufficiently large « such that, for all ¢ € D,
|E(k)¢]|| & oo (k = o0). The operators V.g and Hp(V.g) are called an effective
potential and an effective Hamiltonian respectively. One may expect that Hp(Veg)
describes interaction effects of the quantum radiation field on the Dirac particle.

Remark 2.2 It has been shown that, in nonrelativistic QED, scaling limits indeed
give interaction effects of the quantum radiation field on non-relativistic charged
particles confined in a potential [1, 7, 8, 9].

3 Decomposition of the a-matrices and the Zit-
terbewegung

Let
Hp = HD(O) =a-p+mp.
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It is well-known [13] that Hp is bijective with
Hp' = Hp(p* + m*)™ = Hp(-A+m’)7,

where A := ?:1 D? is the generalized 3-dimensional Laplacian. Hence we can

define for j = 1,2,3

a; = ijSI, (3.1)
& = o;j—pHp’, (3.2)

so that
a; = a; + a;, (3.3)

which gives a decomposition of a;. The importance of the decomposmon (3.3) lies
in the facts stated in the following proposition:

Proposition 3.1 For j = 1,2,3, &; and G; are bounded self-adjoint operators on
Hp with ‘

lesll =1, &l =1,
where, for a bounded linear operator T, ||T|| denotes the operator norm of T. More-
over the following hold:

[6;,8] =0, {@,a}=0, (3.4)
[@;, Hp] =0, {&;, Hp}=0 on D(Hp), (3.5)
{&;, &} = 265 — 2p;p(P* + m*) 7, | (3.6)
aja = pip(p® +m?)7, (3.7)

As for self-adjoint operators, there exists a strong notion on commutativity and
anticommutativity respectively:

Definition 3.2 Let A and B be self-adjoint operators on a Hilbert space.
(i) We say that A and B strongly commute if their spectral measures commute.

(i) We say that A and B strongly anticommute if BetA c e Bforallt € R.
Property (3.5) holds in the strong form:

Proposition 3.8 For each j = 1,2,3, &; and Hp strongly commute, and &; and
Hp strongly anticommaute.

We remark that strong commutativity and strong anticommutativity of self-
adjoint operators allow one to develop rich functional calculi (see, e.g., [2] and
references therein).
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For a linear opeartor T on Hp we define
T(t) := e*HpTeitHD, (3.8)

the Heisenberg operator of T' with respect to the free Dirac operator Hp.
We have by Proposition 3.3

C—!J‘(t) = a,-, &j(t) = ezitHD&j = &je‘zi‘HD. (39)
Hence )
aj(t) =a; + &je‘z"HD. (310)

The second term on the right hand side corresponds to the so-called “Zitterbewe-
gung” (e.g., [13, p.19]). One may call (&;,&;,@&s) the macroscopic velocity of the
free Dirac particle [10].

4 Results

As afirst step to analyze the problem proposed in Section 2, we consider a simplified
version of the total Hamiltonian H(V, p):

3
H := HD(V) + Hpag — qz ajAj(O; 9)1 (41)
Jj=1
the Hamiltonain in the dipole approximation. Let
v (1)

A (2)
¢ 0F€; .
9g; :=G’f(0)=(\/:_), \/:7), j=1,23, (4.2)

Boi= =% > aa (LAY = L5 (-t iy (Z.2), @y

=1 =1

where ( -, - ) denotes the inner product of Hpp.
For k > 1, we define a scaled Hamiltonian H(k) by

H(R) 1= Ho(V) + £ — a5 3 2;45(05 ) (4.4

Let .
s\ R kh
hji = (w’w> _/R-" w(k)3 S |k|? dk, (4.5)
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provided that §/w®? € L?(R?), and

3
Q=Y hyaa (4.6)

=1

Then we can define a bounded self-adjoint operator

on Hp. Note that the right hand side is convergent in operator norm with

2n 3 ! .
> Risi ++ Rinjn@iy -+ - @€ V4Ve™ —QG, e, (4.7)

1 y‘n ’.71 Jn=1

nn|

2 ) 2
[Verll < “VHeq (z;=1||91/wll) -

Let . o
U= 12 ot (%) (4.8)

and P, be the orthogonal projection from F;aq onto the one-dimensional subspace
{29z € C} spanned by the Fock vacuum @ € Fra4.

Theorem 4.1 Assume Hypothesis (A) and 5/w?? € L*(R3). Let z € C\R. Then
s— lim (H(x) — kEo— & Z 8;4;(0; 0) — 2)~* = U(Hp(Ver) — 2)™* ® BU™L. (4.9)
=1

This scaling limit corresponds to taking out effects coming from the interaction
of the macroscopic velocity of the Dirac particle and the quantum radiation field.

We can also consider another scaled Hamiltonian. Let Ep be the spectral measure
of the free Dirac operator Hp and, for a constant L > 0, set

HE(V) := Ep([~L, 00))Hp Ep([-L, %)) + V. (4.10)

For a constant s > 0, we define

Hi(k) = HD(V) + K Hraa — qnzag (05 0) — —Z% (0; 0)- (4.11)

=1 =
Theorem 4.2 Assume Hypothesis (A) and §/w/? € L*(R®). Let z € C\R. iThen
s— '}LIEO(HL(K) —kEy—2) ' = U(HE(Veg) — 2) ' @ RU™". (4.12)

Theorem 4.3 Assume Hypothesis (A) and /w®/? € L*(R®). Let z € C\R. Then
s— lim lim (Hy(x) — £Eo — 2)” 1= U(Hp(Veg) — 2)" ' @ RU™. (4.13)

L—o00 K0

Proofs of Theorems 4.1-4.3 will be given elsewhere [6].
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