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Abstract

This manuscript consists of two parts. At first, we introduce a mini-
mum set of the recent developments on the structure on the moduli space
of abelian varieties over fields of positive characteristic. Next we explain
an analysis of the structure of the moduli space of supersingular abelian
varieties with endomorphism structure.

0 Introduction

Our main subjects are to investigate the relations between the geometry on the
moduli spaces Ag 4, of polarized abelian varieties constructed in [17] or their
variants and the arithmetic of some algebraic groups.

It has been important to investigate how we can write the geometical struc-
ture on Ay 4, in terms of the arithmetic of some algebraic groups. Many sub-
jects in attempts to prove Langlands’ conjecture may be in this category in a
certain sense. On supersingular loci, we already know various beautiful con-
nections between the geometry on the space and arithmetic of quaternion uni-
tary groups. We shall give detailed accounts hereinafter. Conversely we expect
that geometrical arguments make it possible to investigate the number theoretic
problems on A, g, intuitively.

On the geometrical side, we have two important structures on Ay 4. One is
a stratification by the isogeny classes, which has been investigated since many
years ago. The other one was introduced by F. Oort and T. Ekedahl recently,
called Ekedahl-Oort stratification, which is defined by the polarization types on
p-torsion points of abelian varieties.

In §1, we review such stratifications and state known results. At the last
of §1, we shall describe some prospects (philosophy ?). In §2, we explain the
structure of the moduli space Sy 1, of principally polarized supersingular abelian
varieties with endomorphism structure of algebraic number field L. Finally I
announce that there were many mistakes in my speech and apologize for that.



1 Background and known results

1.1 Isogeny classes

We fix a rational prime p once and for all throughout this paper. Take a perfect
field K of characteristic p. Let X be an abelian variety over K. Then we have
p-divisible group ¢,(X) = lim X[p*]. We set

Ax = W(K)[F,V]/(FV —p,VF —p,Fa=a"F,Va=a" V,Ya€ W(K)),

with the Frobenius 7 over F,. We define A to be a p-adic completion of Ag.
Dieudonné module is a left A-module finitely generated as W (K)-module. If
a Dieudonné moduli is free as W (K)-module, we call it free. There is a func-
tor called Dieudonné functor D from the category of p-divisible groups to the
category of free Dieudonné modules. Then the Dieudonné module D(X) :=
D(pp(X)) has to be isogenous to one of the following forms:

(A10®401)%7 @ P (Ama ® Anm) ® AFS, 1)

(m,n)=1
with Am = A/(F™ — V™).

Definition 1.1 Let X be an abelian variety of dimension g. Assume g >2. X
is called supersingular (resp. superspecial) if the following equivalent conditions
are satisfied:

1. X is isogenous (resp. isomorphic) to E9 for a certain supersingular elliptic
curve E,

2. D(X) is isogeous (resp. isomorphic) to A?} .

For an abelian variety X, we get a concave line graph, called Newton polygon,
from (0, 0) to (2g, g) in R x R by drawing vectors (m+n, n) for every component
A n of D(X) which is supposed to be isogenous to the form (1).

For each Newton polygon (3, we can define the closed subscheme Wjy of
Ag 1,1 which parametrizes abelian varieties with Newton polygon above 3. On
the dimension of the strata Wp, F. Oort proved in [22]:

Theorem 1.2 For each Newton polygon (B, the dimension of each irreducible
component of Wy is equal to §A(B), where

AB) ={(z,y) €ZxZ| y<g9,y<z<g(z,vy) is above B}.

Furthermore, T. Ekedahl and F. Oort showed the connectedness of Wj in
[4]-

F. Oort conjectures that if Wj is not a supersingular locus Sy, then W is
irreducible.
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1.2 Ekedahl-Oort stratification

Every aspects in this subsection was exploited by F. Oort and his colleagues.
Please see [23] and so on for detailed arguments. Let X be a principally polarized
abelian variety over field of charactristic p. We denote by W the set of words
generated by V and F~!. We can show that there is a filtration of X [p]:

0=NoCN1 C---CN, C---C Ny = X[p]

such that {N;} = {wX|[p]lw € W}. We define v : {1,2,---,2r} — {1,2,--- , T}
by VN; = N,y and p: {1,2,---,2r} — {1,2,--- ,2g9} by tk N; = p®) . From
the above filtration, we construct the sequence:
with ¢(0) = 0, satisfying ¢(i) < (i + 1) < (i) + 1 by

p(p(i)) = p(p(i) +1) = - -- = p(p(i + 1))
if v(i) = v(i + 1) and

e(p(3)) < (p() +1) <--- < p(p(i + 1))

if v(1) < v(i +1). A sequence ¢ = (p(1),9(2), - ,#(g)) is said to be an
elementary sequence if it satisfies ¢ (i) < (i + 1) < (i) + 1.
g
Set || = le(i)-
==
We denote by S, the locally closed subscheme of Ay 1,n which parametrizing
the abelian varieties with elementary sequence .

The a-number of an abelian variety X over a perfect field K of characteristic

p is defined as
a(X) = dimg (ay,, X),

where a,, is the kernel of the Frobenius map F : G, — G,. It is checked that
a(X) is equal to g — p(g) if X is in S, (K).

We denote by T, the closed subscheme of A, ; , consisting of abelian va-
rieties of a-number > a. :

F. Oort has proved

Theorem 1.3 1. S, is quasi-affine.
2. dim S, = |p|.
8. Agin =118, and S, # 0 for all elementary sequences .
©

4. We denote by 0S, the boundary Sg — Sy in Ag,l,;,, we have
8S, =[S,
@’

the union taken over all ¢’ such that ¢’ # ¢ and SeNSy #0.
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5. Sfo,o,--- 0,1} is connected and contained in Sqg NTy_y .
6. Non ordinary locus Ty n = Ag,1,n — S(1,2,-- 9} 15 geometically irreducible.
In [5], G. van der Geer obtained a generalization of 6 in the above theorem:

Theorem 1.4 For any a < g, the locus T, 1 is irreducible.

1.3 Supersingular loci

In the book [16], K.-Z Li and F. Oort investigate the supersingular locus S.
The main theorem says

Theorem 1.5 There is a quasi-finite surjective morphism defined over Fp2

v H'P;,,, — S,

neA

where A is the set of isomorphism classes of polarization 1 on a superspecial
abelian varieties E9 satisfying kern = E9[F971] and Py.p s the moduli space
of some filtrations of supersingular Dieudonné modules. P, , is a smooth irre-

ducible variety defined over Fpz2 of dimension [9;-] .

If we substitute Q for L in §2, we will get precise definitions and an outline of
the proof. Because we shall show analogous results in case with endomorphism
structure in §2. As for supersingular locus, we already obtain some relations
between the geometry and the arithmetic of some algebraic groups:

1. the number of irreducible components of S, which equals f{A is equal to
the class number of a certain quaternion unitary group;

2. the sum of reciprocals of the degrees of the maps from P, ,, to irreducible
components of S, is equals to the mass which is calculated by the mass
formula;

3. the problem on the field (Fj or F,2) of definition of each irreducible com-
ponent is translated into that of Hecke operator of the same group. The
number of irreducible components defined over F,, is written by class num-
ber and type number [11].

T. Ibukiyama and K. Hashimoto completely calculated the class number in
case ¢ = 2 in [7). Moreover T. Ibukiyama completely classifies finite groups
G such that G devides P, , and P, ,/G is the normalization of an irreducible
component in [10]. At the same time, he calculated the number of irreducible
components with each finite group above. Such results are obtained purely by
the calculus of algebraic groups.
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1.4 Some prospects

We expect that following three subjects are closely related and each relation
can be written down in terms of some algebraic groups:

1. the analysis of the singularities on S,
2. the determination of the structure of S; N S,
3. the explicit calculation of the number of rational points on S,.

We have a strategy to resolve such questions, although we can not explain
it in detail now. The fundamental idea is to find good division of Sy and
analyze each fragment. There are some steps which are difficult w1thout level
structure. Therefore I think deep investigations on these problems should be
number theoretic.

Since we had one result in the way of these studies, we introduce it below.
It seems to be new. Let Sy(a) be the moduli space of principally polarized
supersingular abelian varieties with a-number greater than or equal to a, i.e.,
Sg(a) = Sy N T, 1. Then we have

2 _ 2
dim S, (a) = [Q—-Z—f—l] .

In the book [16], they have calculated the dimensions for @ = 1,2,g — 1. In
case a = g, it is a well-known fact (note that X is superspecial iff a(X) = g).
Since a(X) = g — ¢(g), I think this observation is the first step to investigate
the above problems.

2 Moduli of supersingular abelian varieties with
endomorphism structure

We fix an algebraic number field L with involution * once and for all throughout
this paper.. Take a prime ideal p in the integer ring Op of L lying over p.
Let L, be the p-adic completion of L and O, the ring of integers in L,. dp
denotes the degree of the extension L, over Qp, f, the relative degree and €p
the ramification index. If L/Q is a Galois extension, then dy, fp and e, are
independent of the choice of p. Then we frequently abbreviate these to d, e and
f. We fix a uniformizer m of Op. Let k be the residue field of Oy, and ¢q the
cardinal number of k. For a field K containing k, we denote by ¢ the Frobenius
map of K over k and by Ogp the unramified extension of O, with residue field K,
i.e.,, W(K)®wx) Op. For any group scheme G with a left O, (resp. OL)-actlon
6 a.nd for any ideal a of Op (resp. Oy), we set

Gla] = ﬂ Ker(0(a) : G — G). (2)

a€a
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Definition 2.1 A p-divisible group G over K consists of a system of finite group
schemes {G;}ien over K with left Op-action § and Oy-linear homomorphisms
¢t : G; — Gy satisfying

(i) p := O(r) : Giy1 — G; is surjective, and
(ii) ¢ : Gi = Giy1[p'] is an isomorphism for any i.
We set
Ag = Oglf, 0]/(fo — g, of — g, fa — a°f, va - a®"'v, Va € Og) 3)
and
Ag = limAg /p* Ak (4)

Definition 2.2 A Dieudonné Ogp-module is a left Ap-module M finitely gen-
erated as Op-module. If M is free as Ogp-module, we call M free.

Definition 2.3 Let M be a Dieudonné Og-module. The dual Dieudonné Og-
module M* is defined by Homo,, (M, Ogp) with actions of f and v:

(f¥)(z) = P(oz)°, (09)(z) = Y(fz)° (5)

for any ¥ € Homo,, (M,Og) and z € M. We also define the Cartier dual iM b
of a Dieudonné Op-module M by Homo,, (M, frac (Og)/ Osp) with actions of f
and v as above.

Suppose K is perfect.- We introduce a contravariant functor D, which is
called Dieudonné functor from the category of p-divisible groups over K to that
of free Dieudonné Og-modules over K.

Definition 2.4 Dieudonné functor Dy is a contravariant functor from the cat-
egory of p-divisible groups over K to that of free Dieudonné Ogp-modules over
K defined as follows. Let G = {G;} be a p-divisible group over K. Then G; is
decomposed into the infinitesimal part Gi*f and the étale part G¢* [1, p.34]. Put
M(Girfy = Homo, (G™, Og) and M(GEt) = M((G$*)P)*. Here Homo, (-, —)
means the set of Op-linear homomorphisms defined over K between commuta-
tive formal groups over K. It has a canonical Dieudonné Og-module structure.
The functor D), is the limit of M.

In the same way as (1, Theorem (Manin) p.85], we obtain

Proposition 2.5 Assume K = K. Every Dieudonné Ogp-module is isogenous
to a direct sum of {Ax}, A= s/r, (r,8) =1, 7 > 1 with A\ = Ag/(f" —7°,0"
774=%). Furthermore, A, is free if and only if 0 < X\ < d. We call X the slope
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Definition 2.6 Let K be an arbitrary field. A free Dieudonné Ogp-module M
is called supersingular (resp. superspecial) if M is isogenous (resp. isomorphic)
to A?/gg over K for some g. We call g the genus of M.

An abelian variety over K with endomorphism structure is an abelian variety
X over K with Op-action 6 : Op — Endg X. Let ¢, (X) := limX[p*] be the
p-divisible group over K and Dy (X) := Dp(pp(X)) the Dieudonné Og-module
associated to X. We define the isogeny class of X by determining which class in
Proposition 2.5 Dy (X) belongs to for each p lying over p. We can easily check
that the following p-adic analogue of Tate’s theorem [28] holds: if K is a finite
field, .

Homo, (X,Y) ®z Z, =~ () Homa,, (D, (Y), Dy (X)) (6)
p

for any two abelian varieties X and Y over K. Refer to [29, p.525], for example.
Therefore, the above definition of isogeny classes is equivalent to the usual one
if K is finite.

Definition 2.7 Let X be an abelian variety over K with endomorphism struc-
ture. We say X is supersingular (resp. superspecial) at p if Dp(X) is so. And
X is called supersingular (resp. superspecial) if X is so at every p lying over p.

Remark 2.8 The notion of supersingularity is equivalent to the usual one, i.e.,
X is isogenous to the product of supersingular elliptic curves over an alge-
braically closed field. '

Let I (resp. I2) be the set of the primes p stable under the involution
(resp. the set of representatives of the quotient by the action * of the primes p
unstable under the involution *). Set r; the number of I;, then r; + 275 is the
number of the whole of the prime ideals of L lying over p.

Dy (X) (resp. Dy(X)@D,- (X)) has the Manin symmetry condition for p € I
(resp. p € I2), i.e., Dy (X) (resp. Dy (X) ®D,-(X)) is isogenous to the following
form : ,

DA ® As,-5) & (44, /2)®. | (7)

For an abelian variety with endomorphism structure, we are able to draw T1+7T2
pictures of Newton polygons of Dieudonné Og-modules. We denote by X? the
dual abelian variety of X and define the endomorphism structure on X! by
6(z*)*. If we write X?, it is supposed to have this endomorphism structure.

Proposition 2.9 D,(X)! ~ D,.(X?).

Definition 2.10 A polarization on (X,0) is a polarization 7 : X — X? satis-
fying 8(z*) = ! 0 6(z)* o7 for all z € Or. In other words, a polarization on
(X, 6) is an Op-linear polarization on X. ‘
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Let us translate the notion of polarization on (X, 8) to that of quasi-polarization
on D, (X). For each p, a polarization 7 on (X, 8) induces homomorphism ¢y (n) :
©p(X) — @p(X*), which induces the homomorphism Dp() : Dp(X t) — Dp(X).
Let (,)p.n be the image of Dp(n) by the injection

Hom ag (Dp(X*), Dp(X)) > Homoy, (D (X?) @05, Dy (X*), Op). ()

Then the - quasi-polarizations (,)p and (,)p-, satisfy the nontrivial relation
given by the identity (ii) of the following proposition.

Proposition 2.11 The O;b-bilinear form (,)p n induced by a polarization 1 on
(X, 0) is non-degenerate and satisfies

(7‘) (fxv y)P,ﬂ = (x'l uy)g,m (ﬂZL', y)P,"T = (x’ fy)g;r; ’

(zi) (x’ y)pv" = —(y’ x)P' e

Given a field K of characteristic p, let S, L(K) be the category of supersingu-
lar abelian varieties over K with endomorphism structure and Sp, .(K) ® Z,p
the category with the same objects as Sp,L(K) and the morphisms defined by
Homp (Y, X) ®z Z,, for X,Y € Ob(S,,L(K) ® Zy). In this section, we suppose
K is an algebraically closed field. For an abelian variety X over K of dimension
n, the cup product induces the trace map

tr: AZH! (X/W(K)) ~ W(K)[-n]. 9)

crys

A. Ogus proved the following result, which he called Torelli’s theorem (Theorem
6.2 and Lemma 6.4 in [21]).

Theorem 2.12 Assumen > 2. The functor (D, tr) gives a bijection between the
set of isomorphism classes of Sn,(K) and of supersingular Dieudonné modules
of genus n with trace map. Besides, for two objects X,Y of Sn,o(K), we have

Hom(X,Y) ®z Z, ~ Hom4 (D(Y), D(X)). (10)
We remark that this theorem gives an anti-equivalence between S, o(K)®Z,

and the category of supersingular Dieudonné modules of genus n without trace
map if n > 2.

The purpose of this section is to show an analogue in case with endomor-

phism structure. Let X be an object of S, L(K). By the above theorem, we
obtain the injection 8 : O ® Z,, —» End 4 D(X). Using O ® Zp = ®pOpep with
idempotents ep, we get the decomposition

D(X) = PD(X), (11)
P

with D(X), = e, D(X). Since the Op-action commutes with A, D(X), becomes
a Dieudonné module. Moreover, D(X), has to be supersingular. By the above
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theorem, X is decomposed as [1, Xp such that D(X,) ~ D(X),. Since D(X,)
has a left Op-action, we get a Dieudonné Og-module D), (Xp). Dp(X,) is not
other than D,(X) constructed as above. Set
he
N 1+ 2ry

(12)

Then dim X, = n for all p.
There exists a trace map tr, completing the following diagram

tr’

EndALp Dp(Xp) - Dy (Xp) —:_* Ogp

l l lNL,/Qp (13)

tr

EndaD(X) —Y— AD(X,) —% W(K).

where v, and v are the reduced norms.
Let g, = n/d, (resp. 2n/dy) if d, is odd (resp. even).

Theorem 2.13 Suppose g, > 2. The functor (D, try) defines the bijection
between the set of isomorphism classes of {X € S, p(K)|X = Xp} and of
Dieudonné Og-modules of genus gp with trac map. Therefore @, Dy(—,) gives
an anti-equivalence between S, 1 (K) ® Z, and the category of direct sums of
Dieudonné Og-modules without trace map, except for p-components of which g,
is one.

Let M be a superspecial Dieudonné Og-module. Set O, = W(K') ®wx) Op
with

P quadratic extension over k d odd, ' (a)
k d : even,
and if K contains k’,
O [f, 0] /(f — v) d : odd
H :=Endy,(A ~ pLb ’ 15
ndag (Aa/2) {O,, d : even. (15)

From now on, K is supposed to contain k’.
When d is odd, there exists a conjugation map —: H — H sending a + bf
to a® — bf. We define the norm map Nm : H — O, by Nm(z) = Tz, which is

surjective. .
" Let us define an H-module attached to M as
i = {xeMl(f—n);r:O} d : odd, (16)
{z € M|(f — 7 %)z = 0} d : even,

which is called the skeleton of M. Thén M is free as O:,—module.
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Definition 2.14 An involution * on L, is defined as
(1) the involution naturally induced by the involution * on L for p € I, and

(2) the trivial one for p € I>.

Lemma 2.15 A quasi-polarization (,)p n, on M induces a quasi-polarization on
M

()p: M ®0, M — O, (17)
satisfying either of the following conditions, depending on the parity of d.
(1) If d is odd,
() (,)p is an alternating O, -bilinear form,

(i) (fz,y)p = (z,09)3, (0T, 9)p = (z,fY) .

(2) If d is even, (,)p s skew-hermitian, i.e., (z,y)p = —(y,Z);-

The above pairing (, ), on M induces a pairing on M:
(lp: MM — Og, (18)

by extending W (K)-bilinearly. We note that this is a pairing as a W (K)-module.
For M a quasi-polarized submodule of a quasi-polarized superspecial Dieudonné
Oxp-module N, we can define a pairing (, ), on M, which is W(K)-bilinear.

We say * is unramified (resp. ramified), if L, is an unramified (resp. rami-
fied) extension over *-invariant subfield of Ly.

Proposition 2.16 Let {M,(,),} be a quasi-polarized superspecial Dieudonné
Og-module. Then we have a decomposition:

MM OM,®--- & M,y,, (M, M), =0, if i#j, (19)

with indecomposable quasi-polarized Dieudonné Ogp-modules M;. Here M; are
given as follows.

(1) For odd d, each M; is either
(i) M; = Apx ~ Agq/2 such that (z,fx), = "¢, €7 = —c € Op — 70,
or

(u) M; = AszA‘By = A?/22 such that <IL', y)P =x", (12, fz)P = (y7 fy)P =
(z,fy)p = (v, fz)p = 0.

Here z,y are in the skelton M.
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(2) For even d and non-trivial x, the description of M; depends on the rami-
fication of x:

£ 3

(a) if * is unramified, M; = Apz ~ Agyo such that (z,z)p = 7", &* =
—£€0, -0, (xe M),

(b) if * is ramified, M; = Apz ~ Aqjs such that (z,z)p, = 7"e, &*
€O, — 10, (x € M). In this case, r has to be odd.

2') For even d and trivial , we have M; = Apx ® Agy ~ A®2 such that
¢ B B d/2
(z,y)p =7" (x,y € M) for any 1.

Assume K is a perfect field containing k’. Let X be a supersingular abelian
variety of dimension n over K with endomorphism structure. Assume X = X,,.
Set g = n/d (resp. 2n/d) if d is odd (resp. even).

Proposition 2.17 Let X be as above. There exist a superspecial abelian variety
Y and Op-linear isogeny ¢ : Y — X satisfying the following universal property:
for any superspecial abelian variety Z and any Op-linear isogeny ¢ : Z — X,
there is, up to isomorphism, a unique O -linear isogeny, ¢ : Z — Y such that

Y=pod.

This proposition essentially follows from the lemma below. Its proof is similar
to that of [16, Lemma 1.8].

Lemma 2.18 For two superspecial Dieudonné Oy-modules contained in a cer-
tain Dieudonné Op-module, their intersection and sum are also superspecial.

This lemma is an analogy of [15, Lemma 1.3].‘ We can prove this in the same
way.

Notation 2.19 By the above lemma, we have the biggest superspecial Dieud-
onné Og-module Sp (M) contained in M and the smallest one S°(M) containing
M, in M ®oy, frac Og, for any supersingular Dieudonné Ogp-module M.

Define a left Agp-ideal by

I— (f,0) d : odd, (20)
"G, 7%, 0) d : even. ’
For convénience, we set
2
, q d : odd,
= 21
e {q d : even. (21)

By definition, we have the following proposition.

Proposition 2.20 We obtain f9-1S(M) = So(M) and f9~1S°(M) = S)(M).
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Remark 2.21 When d is even, 121 M is superspecial.

When * is ramified, we denote by Op,” the unramified quadratic extension of
O,. In the other cases, we set O," = O, for convenience. Set

d .
R— (')gl;;/1rd d : odd, (22)
Op/n2 d : even.

Definition 2.22 A rigid PFTQ over K is a filtration of quasi-polarized Dieud-
onné Og-modules {My C M) C --- C My} such that

(i) Mg—1 ~ A;o/92 and M{_, = f9 1 My_1,

(ii) IM; C M;_; and M;/M;_, is a free R-module of rank 3,
(iii) I'M; C MY,
(iv) M; = Mp + f9~1"*M,_,. The last condition is called rigidity.

Proposition 2.23 Suppose K is perfect. Assume p is odd. For any principally
quasi-polarized supersingular Dieudonné Ogp-module of genus g, there is a rigid
PFTQ {Mo C M; C ---C My_1} such that Mp ~ M.

Proof. We prove this lemma by induction. Set N = S°(M). There is a su-
perspecial Dieudonné Og-module N’ of genus 2 such that N = N’ ® N” and
for some superspecial Dieudonné Og-module N” of genus 2 containing N', we
have Nt = #»N™ (n < dg if d is odd and 2n < dg if d is even) and N is not
in 7N"”. We can choose the generators z,y of N”’ such that

(ZL‘,.’B)p = (Z‘, f-’l")P = (y’ y)P = (ya fy>P = 0" (23)
There is a self-dual complex
C :0— Apn"y - M — Apz — 0. (24)

Since (z, M N Agpy) € Og, we get M N Apy = Apn™y. Hence M’ = H'(C') isa
principally quasi-polarized supersingular Dieudonné Ogp-module of genus g — 2.
By induction, M’ has a rigid PFTQ {My C --- C M,_3}. Let My, be the
submodule in M ®o,, (frac Ogp) generated by x, 7"f~9+!y and f~'M,;_;. Put
M; = M + {9717 M,_;. Then these satisfy all conditions of the definition of
rigid PFTQ. §
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2.1 Moduli of rigid PFTQs

In this section, we ihvestigate a local chart of the moduli space Dy of principally
quasi-polarized supersingular Dieudonné Og-modules of genus g in the similar
way as in [16, Chapter 7].

In the case when d is odd, we can do almost in the same way as in [16].
Let Ny be the moduli space of all of rigid PFTQs. If d is odd, N, is smooth
and irreducible, but not so if d is even. In this section, we. restrict ourselves
to investigating the case that d is even, * is not trivial and p is odd. Let
S be a reduced k-scheme. Let W(Os) be the sheaf of Witt rings [26]. Set
Ogp = W(Os) O®w(k) Op, Rs = R® Og and Agp = W(Og) - H. In this section,
we abbreviate M (") to M (i.e., for example f : M — M means § : M9 — M)
and Oglu, Aplu to Op, Ag for any open subscheme U of S. We can define
Dieudonné Og-modules over S in an analogeous way as in (16, 5.4].

Definition 2.24 A rigid PFTQ over S is a filtration {MoCcM,C---C My_1}
of Dieudonné Og-modules over S such that

(1) Mgy =~ A?/gg and M;—l = 971 My,

(i) IM; C M;_; and M;/M;_, is a locally free Rg-module of rank ¢,
(ii) I'M; C M} =: M},
(iv) M; = My + fg—l-ng_l (I‘igidity).

Definition 2.25 For a Dieudonné Og-module M over K, the a-number of M
is the length of M/IM, denoted by a(M).

Let ® be the set of H ®o, OP"-basis O = {zo,z1,72,... yTg—2,Tg—1} Of
M,_; ®o, O,” such that for all i, (T:, 19 12g_1_j)p = €b;; with € as in
Proposition 2.16 (2). We call an element of ® a standard basis.

Definition 2.26 For a given standard basis © = {zo,z1,--- ,24-1}, U® is the
set consisting of rigid PFTQs {My C --- C M,_1} with basis © of M,_1 such
that My has a basis of following type:

wi = Y oi;f'x;

Jj2i
with a; = 1 and a,; € Agp.
Now we want to show that any rigid PFTQ
M={MyC---C My_1}

is contained in U® for some ©. This is shown by several steps.
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Claim 1 : For given 90, there is a basis © = {zo,--- ,Zg-1} € ® such that the
natural map My — Ao is surjective.

Proof. Let {Mp C --- C My_1} be a rigid PFTQ. We take a basis &' =
{zh,--+,7)_y} € . Since M°/M* ~ R and M = M° N fM,_,, there is an
element v of M? generating M°/M!. Then v can be written as

v = Y0Zp +’71.’L'l1 +---+ ’79_1.’1:;_1

and vy; € 7Oy for some 1i.

We define © by setting zo = T}, Tg—1 = T, _;_;; Ti = Tg, Tg_1_; = Tg_ and
x; = :c; for all § #0,i,9 — 1 —i,g — 1. By dividing v by +;, we have wo which
generates M®/M! and has z¢-coefficient 1. | '
Claim 2 : For given 9 and a basis © = {z¢,---,Z4-1} € ® satisfying the
condition that the map My — Agqzo is surjective, we can define a derived rigid
PFTQ M of genus g — 2.
Construction and proof. From the surjection My — Apxo, we have the self-dual
complex

Cp:0— Aspf-"'lzg_l — Mo — Apzo — 0.

Since (zo, Mo N Apzge_1)p € Op, we have Mp N Apzg—1 = Agpf9~1z,_;, which
implies M}, := H'(Cj) is a principally quasi-polarized supersingular Dieudonné
Og-module of genus g — 2. We have also a complex

Ci1:0— Apfd™?zg_y — My — Apzo— 0.

L
Put M := HY(C;;,). Note M} = H°(Cy) = H'(C;). Since (f*+'zo, Mi11 N
Amxg_ﬂp € ng, we have M N Amz‘g_l = (Mo + fg—2—ng_1) n Aq;a:g_l =
Apf9~27*z,_,. Therefore M] is a quasi-polarized supersingular Dieudonné Ogp-
module of genus g — 2.

We show that 90 := {M} C --- C M_;} is arigid PFTQ of genus g—2. First
of all, we show that M;_a is a superspecial. We have My_» = My + fMy_1 =
Agwo + fMy_1, because Mo/M' = R < Wo > and M?! = My N §M,_,. Hence
ker(My_2 — Agzo) = fMy_1, so we obtain M;_3 = Ap < fz1,---,§Tg-1 >,
which is superspecial. Next, we show that the rigidity: M} = Mo+§937*M,_5.
In fact,

M] = ker(Mi;1 — Apzo)/Apf'™'zs1
= ker(Mo + {77 *My_1 — z4-1)/ Apf* >z
= ker(Mo — ApTo)/Mo N Apf?™ > *zg_1 + 773" M,_,
= My + 9737 M,_;.

The rigidity implies that IM! C M!_, and I'M’; C M". Finally M}/M]_, ~
R9i follows from the exact sequence

0 — HY(C;) » H'(Cjy,) — R® — 0
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induced by the commutative diagram:

Cz 0 —— Aspfg_l-i:l,'g-l _— M, — Aspl‘() — 0
Ci+1 0 e Aing_.z—i.’L‘g_l ——— M’H—l — A;pmo _— O
0 —— R —— R®H 0 —— 0.

Claim 3 : Under the same notation and assumptions as the above claim 2, for
an standard basis © = {Z, - - - ,Tg—2} of genus g — 2 such that Mt € U®, we can
construct a basis ©’ of genus g from the data 9, ©, © such that M € U,

Construction and proof. By the hypothesis, M is generated by following forms

9—2 '
w; = Zagjfj with o} ; = 1 and o}; € Ap (25)
j=i

fori=1,2,---,9 — 2. Then Mp is generated by wo, {9 *z4_1 and the lifts w;
of w;. If we put

o= {ZL'(], Tt )xg—l} = {x07§17f2) e 7Tg—27 zg—l} € éy

then we can see that My has a basis {wo, w1, -+, wy—1} which are written as
w; = E ai; ;. |
Jj2i

Summing up the proceeding claims, we have the following.

Lemma 2.27 For any rigid PFTQ 9M = {M,, - - -, M,_.}, there erists a stan-
dard basis © such that M € U®.

Lemma 2.28 Let MM = {M,, C, M,_1} be a rigid PFTQ. If M € U®, then M®
is generated by frwo, 1wy, - -+, fwi_1, Wi, Wit1, -+ , Wg_1 as an Ag-module.

Corollary 2.29 For any rigid PFTQ MM = {Mp C --- C My_1}, we have a
short exact sequence: '

0— M=1ME L MMt L R 0.

Proof. Since we have M* = My N §*M,_;, the injectivity of f is clear.

By Lemma 2.27, there is a standard basis © such that 9t € U®. From the
above lemma, M*/M**! is a free R-module generated by fiwo, f* twy, - - - , fwi_;
and w;. Hence the cokernel of Mi=1/M¢ S5 Mi/M#+1 is a free R-module of rank
1 generated by w;. |}



Lemma 2.30 U® is an open subscheme of Ny and U © depends only on © mod p

Proof. For a given © € &, the condition {Mp C M; C --- C My_,} € U® is
equivalent to the property that the natural maps

coker(Mi~1/M* 1 M /M) o §M,_, /f+M,_, — R(z; mod p)

are surjective for all <. This is an open condition and depends only on z; modulo
p- I .

We denote ® modulo m by ®. Then {® is finite. In fact ® is containd in
the set of subsets with g elements of My_; ®o, Op" /n(My_1 ®o, Op") which
is finite.

The above lemma says that for © € ®, we have an open subscheme U © of

N,.

Proposition 2.31 [J U © _, N9 is a finite open covering.
eced

Let ﬂ,en be the category of pairs of filtrations of Dieudonné Ogp-modules
{MyC---CM;_3;Mp C---C My} (26)
such that

(a) {Mg C --- C M,_3} is a rigid PFTQ and Mg has generators {w(} as in
(25),

(b) {M,, C --- C M,_;} is a filtration of quasi-polarized Dieudonné Og-
modules such that
(bl) M,_, is superspecial,

(b2) IM;C M;_; (m<i<g)and M;/M;_, isa locﬂly free R-module
of rank 1, :

(b3) ’'M; c M* =M} (m<i<y),
(b4d) M; =M, + 97 17* M,y (m<i<yg),
(c) there is a surjection M,, — Agpz and an isomorphism

M/ , ~MnN M/Ac,pfg'l_iy (max(m,1) <i< g-—2) (27)

compatible with the filtrations where M is the submodule generated by
T1,---,Tg-2,Y in M, -1,

(d) IM; N M/Agf9 'y C M]_, (max(m,2) <i < g — 2) under the isomor-
phism (27).

For the natural truncation map t,, : US_, — 4€ we have the following.
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Lemma 2.32 Fiz an element v,, € M,, with z-coefficient 1. There is a bijec-
tion from the set

tm ({MyC---C My_3; My C --- C Mg_1}) (28)
to the set consisting of

V= Uy + ﬁg—mfg—m-lxg—m 4.4 :39-2f9—m_1$g_2 + ﬂfg—m—ly € Mm
(29)

modulo f9~™Mg_, satisfying the following (A) and (B).

(A) (f — m%)v mod Agpy € M),_3 and (b — 7%)v mod Apy € M), _3 only
when m > 3,

(B) (v, I 1v), € Ogp.
(Whenm = 1, (29) means v = vy + B9~ 2y € M;.)

Lemma 2.33 Assume m > 3. Under the notations of the above lemma, (A)
and (B) is equivalent to (A) and (B’) (v, n%(m- Do), € Og.

Remark 2.34 When * is trivial, the very similar argument shows that (A) and
(B) is equivalent to (A) and (B’) (z, 73 (™= Dfv), € Op.

Let v,, = x+Cy+ZC,x, be as in Lemma 2.32. We can find pg_m, - -, pg—2

such that by choosing A1,- -+, Ag_m—1, A}, -+, Ag—m—1 € Asp, we obtain
(f=7%)om (mod Agy) — 5 Ao = ¥ wfs~™z,
j<g-m j2g-m s
(7% — 0)um (mod Agy) — 3 A = 30 pd 9™, (30)
j<g-m i2g-m

In fact, we can take u; and A; satisfying the first equation and \; € Ampf.
Multiplying = ’-’n we get the second equation.

Lemma 2.35 When m > 3, (A) is equivalent to the following equations

i — = -
{,Bj '",Bj . = Qg T —

i _ (g—-m<j<g-2) - (31)
By =B; =TT —H

with variables T and 7', and (B’) is equivalent to the following equation. When
m<g-—1,

26 = -2 Z CiBg—1-i — € V(vm, W%(m_l)”m)p (32)

1<i<m
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and when m = g — 1, taking vy_1 =z,

2=~ BiBy_1-s- (33)
- 1S9-2
In case of m = 2, there are two equations coming from
(v,fv)p €Op and (v,vr’ffv)p € Ogp; (34)

explicitly, when g > 3, we have two equations

{ﬁj B =GBz = Glpa—e X m’ (35)
| 28 = —201Bg2 — £ Hv2, T303),,
and when g = 3, taking v2 = T, we get

{§E+ gy o0
When m = 1, we have .

28 = e~ (o1, v, (37)

Remark 2.36 In the even case, different from the odd case, there are two
equations in (A). Only when * is non-trivial, we need the second equation for
m = 2 in each case. Otherwise, the second equation for m = 2 is automatically
satisfied, i.e., (v,w’%v), = 0, because (z,y)p = — (¥, T)p-

Lemma 2.37 We have equalities as sets:

M? ﬂAq; < ':1:,5,:1:,-4.1,- e, Tgl1 > = Om[ﬂ < Wi, - ,Wg—1 >
= Ap < wj, - ,Wg_1 > .

Proof. The first equality implies the second one, because the first term is an
Ag;-module It is obvious that the first term contains the middle term. We
sha.ll ‘prove the first term is contained in the middle term by induction. For
i =.g — 1, this is obvious. Assume that it holds for i + 1. Put M (i) = Ap <
x,,x,ﬂ, N Smce Min M@Gi)/MH+n M(i) = R < w; >, we get

M ﬂM(z) = Ogp < w; > +M1 N M(5).

Take element v of M*N M{i). Then v = aw; + m with a € Os_p and m € M**1n
M(3). There is b € Ogpf such that m = bw; + m’ with m’ € M+ n M(i + 1).
By the hypothesis of induction, we have m’ € Og|f] < wiy1,---,wg—1 >, which
implies v € Oplf] < wi, -+, wg-1>. 1§
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Since we have (f — %)wz 1€ M'NAg < x4, ,T4—1 >, We can write as

d
(f=72)wi—y = 1iw; + Tii+1Wit1 + -+ Ty g—1Wg1

for some 7; ; € Ogp[f]. We note that 7 in Lemma 2.35 is equal to 71,g—m. Then
we also have ,

4 /
(2 = O)wi1 = 7w + 7, Wi + -+ T, we 1

—C
1 / — T
with 77 .- =7 7.
We can write w; as

w; = fiz; + ZZ (k)fk:cj,

i>tk=1

j-1 .
ie,a;; = E ,B(k.)f". Note that a; ; make sense modulo f*~7 Ag in the definition

of U®. We can choose ﬂ( ) such that ﬁ(k) w(R) for all i + 7 < g — 1, with
“Teichmiiller lift” w : R — Os_'p and

(Wi, wg—1-j)p = ize.

Lemma 2.38 We have T; ; = Tq_j g of * is trivial and Ti j = —Tg_j g_; if *
s not trivial.

Deﬁmtxon 2.39 We define a set J conszstmg of maps J : {1,2,---,g -1} —
{0,1,---, 2} satisfying

(1) J(@) = J(g —1),

(2) J(i) < § - J(i+1) fori< [%1],
and if x is trivial

(3) J(1) = § - J(2).

Definition 2.40 For J ¢ J, we define t;; (1 <14,5 < g—1) in the following
way:

(0) t‘i,j =0 'Iaf’l. >j:

(1) tii=J(@) foralli=1,---,g—1,

(2) tij=5%~J@i+1) foralli<j<g—1-—i,

(8) tig—1-i = & — J(i) (resp. 2) if x is non-trivial (resp. trivial),
(4) ti,g—‘i = 01

149



(5) tij =tg—j,g—i-

Definition 2.41 For J € J, N_,,J is the moduli space of rigid PFTQs {M, C
.-+ Mg_1} satisfying the image of the map

f—n? : coker(M*~2/M*! — M*~1/M*) — coker(M*~!/M* - M*/M**!) ~ R
is contained in 73~ JWR.

Definition 2.42 We set

d(J) = Z ti,j-

i+j<g

Proposition 2.43 Let J be an element of J. NgJ is a smooth scheme of di-
mension d(J). Choose an irreducible component Ng""" of .N'g" and set

| L

Jeg

Then we obtain a quasi-finite surjective morphism
N; — Dy.

Proof. The dimension of Af_,;’ is the sum of the number of the parameters defining
Ti,;- Therefore it is suffices to show that ord, 7; ; < 2 —t;;. By Lemma 2.35
and Definition 2.40, we can verify it. In order to show the last statement, we
need more preparations, so we omit it. |

2.2 Coarse moduli Spaces

Let R generally be a ring of finite type over Z with involution *. Let Ay 4 nv & be
the functor mapping locally noetherian scheme S to the set of abelian schemes
X over S of dimension g with injective ring homomorphism R — Endg(X),
R-linear polarization of degree d*> which Rosati involution induces * on R and
level structure o1,---,02¢ : Z/NZ — X[N], i.e., these are injective and the
images generate X3[N] at each geometric point 5 € S.

The functor Ay 4 n® has a coarse moduli scheme Ay 4 N =. Moreover if
N > 3 it has a fine moduli space. This can be proved as in [17, Theorem 7.10,
Appendix to Chapter 1,2].

We denote by Sy 4~ = the supersingular locus of Ay g4 N R, i.e., the reduced
closed subscheme of Ay 4 N, = Whose closed points consist of supersingular points.
Here we use the fact that supersingularity is a closed condition [13, Corollary
2.3.2).

Return to our situation, i.e., let R be Oy, and the polarization principal. S, 1,
denotes the coarse moduli space of principally polarized supersingular abelian
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varieties with endomorphism structure. From now on, we are going to investi-
gate the moduli space over [F),.
The endomorphism structures on a superspecial abelian variety

9:L — End’(E™) (38)

are all equivalent by the Skolem-Noether theorem. Since End(E™) is a maximal
order in End’(E™), 6 : L — End°(E™) induces an inclusion Oy, — End(E™).
From now on, we fix a 6. Let A be the finite set of equivalence classes of
polarizations on a superspecial abelian variety with endomorphism structure L
satisfying ep kern = E™[f9~1].

Let G be a flat finite commutative group scheme over a scheme S. We say
G is an a-group, if the relative Frobenius and the relative Verschiebung vanish
on G. This is equivalent to that G is locally a product of a, ([15], p-339). An
(@, Op)-group is an a-group with Op-action of which Dieudonné Ogp-module
corresponding via Dieudonné functor is a finite R-free module. Here R is one
defined in (22). We say that G has an (@, Op)-rank r, if the corresponding
Dieudonné Og-module is of R-rank r.

Definition 2.44 Let 7 be an element of A. A rigid PFTQ at p over S with
respect to n consists of polarized abelian schemes (Y;, 8,7;) of dimension n with
endomorphism structure satisfying Y; = (Y;), and Of-linear isogenies p; : Y; —
Yi—1 (0 < i < gp) satisfying pf om;_1 0 p; (0 < < gp) such that

(i) Yg,-1=E" xS,
(ii) ker p; is an (o, Op)-group of (a, Op)-rank i,
(i) ker(Yp, -1 = Yi) = ker(¥;, -1 = Yo) N Yy, 1[f 1] (0 < i < g5),
(iv) ng,-1 =n xS,
(v) kern; C ker =907 (0 < j < [i/2]).

Proposition 2.45 The category of rigid PFTQs at p with respect to 1 has a
fine moduli space Py, 1 5, which is a quasi-projective variety.

Proof. In the same way as the proof of Lemma 3.7 in [16]. }
Lemma 2.46 Py, L, is isomorphic to Ny, up to inseparable morphism.

Proof. We can show this in a similar way as in [16, 7.4, 7.5]. |}

Jiirr y) : J,irr 4
Let P} , and P’g, 1, be the schemes corresponding to NV and N,

respectively if dp is even. When d, is odd, we put P’y 1, = Py, L. Finally we
see that S, 1 ® F}, is realized by the quotient of the product of {P’y, 1. }nea:
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Theorem 2.47 Assume that p is odd only when there is p such that d, is even.
There ezists a surjective and quasi-finite morphism

H H P'gp.Lin = Sn,L ® Fp. (39)
neA pehulz

Proof. The surjectivity and the quasi-finiteness follow from Proposition 2.43. |

The results of the preceding section imply the following.
Theorem 2.48 Assume that p is odd only when dy is even.

(1) When d,, is odd, P'g, L n is irreducible and smooth, and we have

2
dimP'g, L = dp [%“] ‘ (40)

with g, = n/dy. The generic point of P'g, L n has a-number 1.

(2) When d, is even and * (the action on Ly in Definition 2.14 ) is non-trivial,
we have e
Plgp ,L’ﬂ = g;t'IT,n
JeJ
and the dimension of Pl s d(J) given in Definition 2.42 with g, =

9p,Lm
2n/d,.

9') When dy is even and x is trivial, then g, = 2n/d, has to be even and we
p P p

have T
4 —_ ing
P gp.Lin = H PlymLm
Jeg

and the dimension P’ ;:1,, is d(J) given in Definition 2.42

2.3 Class numbers and mass formulas

In this section, we relate the number of the isomorphism classes of L-linear
polarizations on (E™,0) with class numbers of unitary groups or quaternion
unitary groups. By Theorem 2.47, we can see that the number of the irreducible
components of our moduli space is equal to the class number mentioned above.

In this section, all schemes are supposed to be over F,. Let E be a supersin-
gular elliptic curve. Let E™ be a superspecial abelian variety with endomorphism
structure

6 : L — End’(E™). (41)
Set X = E"1x0+E"2x0xE+---+0x E*!. Then
¢x : E* — (E™)* (42)
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is a principal polarization. Set B = End’(E) ~ Qu,p and Op = End(E), which
is a maximal order of Endo(@. If we identify End®(E™) with M, (B), then the
Rosati involution by px is *(') on M, (B).

Lemma 2.49 If (E™,60) has an L-linear polarization n = ¢, then 0 is equiva-
lent to another endomorphism structure ¢’ satisfying

¢'(z*) =t0'(2). (43)
Proof. By the definition of the L-linearity of the polarization,

0(2") =05 0 6(2)" o o1
=(px' o) Hex' 0 8(2) 0 px) (@' © o) - (49)
=(px" 0 0c)T10(2) (%" 0 pr).

9 = px Yoy € M,(Op) satisfies g = tg > 0 [12, Proposition 2.8]. It is
well-known that for such g, there exists z € GL,(B) such that Tz = g. We
can easily see that z0(z*)z~! = {(z8(z)z~1). |

By this lemma, we can assume 6(z*) = '6(z). F denotes the *-invariant
subfield of L. Then F is a totally real number field. In fact, if F has a complex
place v, putting f'= 8(v/—1) € M, (Bgr) (/=1 € F, ~ C), then f = *f (since
F is *-invariant). Hence, we have —1 = f'f > 0, which contradicts. If  is
non-trivial, L is a quadratic extension of F. There exists an element o of L
such that L = F(a) and o* = —a. Then o? = —aa* is a negative element of
F, so L has to be a totally imaginary quadratic extension of a totally real field,
i.e., a CM-field. Hence we obtain

Lemma 2.50 If there is an L-linear polarization on (E™,8), the field L has to
be a totally real field or a CM-field. Moreover, x is trivial (resp. non-trivial) if
and only if L is a totally real field (resp. a CM-field).

The centralizer of §(L) in M,(B) is isomorphic to M,,(D) where D is L
(split case) or the division quaternion algebra L ®q B over L (non-split case)
and

2n : ’

Zaq D=L :

m = { E2 ! 7 -(45)
T_TL?Q if D : the division quaternion algebra over L.

The involution (') on M, (B) induces that on Cum,.(B)0(L), because we have
TO(z) = *(0(2*)z) = *(z8(2*)) = 0(z)'T for any = € Cum,.(B)0(L) and for any
z € L. From now on, we assume that * is trivial if D is a division quaternion
algebra over L. This holds automatically if the extension L /Q is non-split at
p. Then the involution on M,,(D) ~ Cp,(p)8(L) induced by *(') on M, (B)

is equivalent to *( ) where the second — is the main involution on D over F
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(resp. #) in case that D is a division quaternion algebra (resp. D = L). In
fact, generally the involution on central simple algebra is uniquely determined
up to equivalence by the involution on the center (Skolem-Noether’s theorem).
When D is a division quaternion algebra, the center D of M,, (D) is identified to
L® B -1, in M,(B). Therefore the involution *( ) induces the main involution
on the center D. Also in case that D = L, the same thing holds obviously.

For a prime ideal [ of F, we consider the set {f € My, (Op,)|f = tf}. On

this set, we define the local equivalence relation denoted by ~:
[ df _ .
f=f & '9fg=f, 39 € GLn(Op)). (46)

Lemma 2.51 Any f € M,,(Op,) satisfying f = tf is locally equivalent to a
representative f' given as follows:

(1) #D=L,
(i) if L/F is inert or split at |, we can choose f' = diag(I™),
(i) if L/F is ramified at [, we can choose
f' = diag(£™¢;), € € O, /N /R O],
where £ is a place of L lying over . Here r; has to be even;
(2) if D is a quaternion algebra over L = F,

(i) if D is split at |, we can choose f' = diag(I™),
(i) if D is non-split at |, we can choose f' = diag(A;) with A; = 1" or

( 0 f
! __ T
rer(58)
Let G be a finite subgroup in E™ satisfying
G ~GP. (47)

Let &g be the set of local equivalence classes (i.e., for all [, locally isomorphic
to ;) of € € M,,,(Op) such that £ =€ > 0 and kere ~ G.

Remark 2.52 If L/F is unramified (in particular, * is trivial), then £¢ consists
of one element for any G by the above lemma.

Lemma 2.53 There exists a canonical bijection between the set of the L-linear
isomorphism classes of polarizations 1 on (E™, ) satisfying G = kern and

U {f € M.,(Op)|f =*f >0, f is locally equivalent to €}/ ~ .
e€€c (48)

Here =~ is a global equivalence relation, i.e., f ~ f' means that there exists
g € GL,(Op) such that 'Gfg = f'.
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Proof. The injection NS(E™) — End(E™) sending ¢, to fr := px' o, induces
the map from

{polarization on E™ with kernel G} (49)
to
{f € M, (OB)|f =*f >0, ker f ~ G}. (50)

L-linearity of ¢, implies 6(2*) = f;'%0(z)fc. Now 6(z*) = *6(z). Therefore
fr € M (Op). Since pg+2 = g* 0 g 0 g for g € Auty(E™) ~ GL,,(Op),

Px 0pgr =px'oglopcog
=(px' 0 g' o ox)(wx' o r)g (51)
="g(¢x' o 9r)g.
Hence, we get the injection from
{L-linear polarization with kernel G}/ Auty(E™) (52)
to

{f € Mn(Op)If =*f >0}/ =. (53)

Every element of the image is locally equivalent to a certam € € £g. This
completes the proof. J

Let IIg be the set of isomorphism classes of polarizations on (E™, 6) with
kernel G. Let Ilg. be the subset of IIg consisting of polarizations corre-
sponding to f in the class e. We identify Ilg. with {f € M, (Op)lf =
tf > 0, f is locally equivalent to €} via the above lemma. Of course, IIg =
11 ceec Hg,e- For € € Eg, we define algebraic groups G, and G, over F by

Ge(F) = {9 € GL.(D)|*geg = X(g)e, A(g) € F} (54)
and |
Ge(F) = {g € GLm(D)|'geg = €}. (55)

Let Lfree be the set of free G.-lattices, i.e., zOF for some z € GL,,(D) satlsfymg
the locaI condition: for each finite place I of F

20D, = 1Op, (56)

with v € G.(F;). We define a global equivalence relation on [,geg by

zOB ~2'0% &8 39 € G(F), 0T = gz’ OT. (57)
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Proposition 2.54 There erists a bijection
~\LE: S Tlg (58)
that sends O} to f satisfying
‘Tex = Mf (59)

X
for some A € F[.

Proof. We begin with checking the well-definedness. Let zOT; be a free G-
lattice. By definition, z; = 6 for some v € G.(F}) and § € GL,,(Op,).
Putting A = I;I/\('y;) and f = A 'ZTex, we get f € lIg.. Let ;07 and

207 be two elements of Eg‘f Suppose they are equivalent, i.e., there exists
g € G.(F) such that

z:0p = 92205p. (60)
Let f; and f; be the corresponding elements of M,,(Op), i.e., satisfying that
tTiex; = \if; for some ); as above. Then v := :vl‘lg:r:g is in GL,,(Op) by (60).
The equation

A2A(9) f2 = M9)*Taeza = *T2'gegza = ¥ Tiez1y = M iy (61)

means that f; and f, are equivalent. Next, we see the injectivity. Let 1, z2, fi
and f» be as above. Suppose fi and f2 are equivalent, i.e., for some v €

f2 =" frv. (62)
Put g := z;vz; . It suffices to show g € G, (F), which follows from

'geg = Ty ¥ ey = MUE; T Aivaz ! = MPTG  farst = Mdae.
(63)

We can verify the surjectivity in the following way. Let f be an element of the
right side. Locally there exists § € GL,(O) such that fi = *d;8. Then, there
exists £ € GL,(D) such that

‘Tex = f. (64)
At any [,
‘T;e;x( =fi= tSE(J. (65)

This means that 4y = 267! is in ée(F() C G.(F).
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Corollary 2.55
e = 3 4 (~\ch). (66)
e€fc

Corollary 2.56 If M,,(D) is not a division quaternion algebm over F', we get
the tsomorphism

lg,.e ~ G(F)\G:(Ary)/U. (67)

that sends f to (1)1 in the proof of the above proposition. Here Ar s is the finite
adele ring and

U, = H éE(ODl)‘ ) (68)
l:finite place

Proof. It suffices to show that (%) in the rlght hand side defines a free G,-
lattice. This follows from Eichler’s theorem [3].

Remark 2.57 Let L¢ . be the set of G.-lattices, i.e., lattices © in D™ satisfy-
ing that for all finite places [ of L,

Or =105, ‘ (69)
with vy € G.(F). Then attaching O to (), we get an 1somorph1sm
~\Lg,e > Ge(F)\Ge(AF,s)/Ue (70)
with
Ue= [] Ge(0p). (71)
I:finite place

If the class number of M,,(D) is 1, then LE = L.

Example 2.58 If L = Q, then for any G, £; consists of one elements. The
number of elements of :

| ~\LES =~ \Lo e = Go(Q)\Ge(Ay) /UL (72)
is Hy(p,1) (resp. Hn(1,p)) [12, p.140] if &, is 1, (resp.

(L

—f ). (73)
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Lemma 2.59 Let 7 be an L-linear polarization, € the element of Exern, associ-
ated to 1, and £ € GL (D), gy := (1)1 € Ge(F)\G:(AF,s)/Ue as above. There
is a canonical isomorphism

Aut(E™, 1) ~ gy egn 'n ée(F ) (74)
that maps g to rgz~'.
By Corollary 2.56 and Lemma 2.59 the sum
1
Z —_— (75)
o TAutL(E™,n)

is equal to

ml)= 3 — (76)

9n€G(F\Ge(Ar,s)/0. #(gnUegn* N Ge(F))

on the same assumption as in Corollary 2.56.

Recall a general formula of G. Prasad [25, Section 4]. Let G be an abso-
lutely quasi-simple simply connected algebraic group over a totally real alge-
braic number field F. Assume that G, is compact for any archmedian place v.
Let P = [ anite place F1 be a product of paraholic subgroups P;. Then by G.
Prasad’s mass formula, we can calculate explicitly

1
m(P) = > T : (77)
giEG(F)\G(Ap,,)/Pu(giP 9; NG(F))

On account of this mass formula, we have a good 1ower (and upper) bound of
the class number:

BZ(Ge(F)) - m(Te) < # (Ce(FNG(AF,1)/Ts) - (78)

There are many examples of explicit calculations of mass formulas for £ =1,
see [8, Theorem 5.6] for L = Q, (7, Proposition 9] in the case that D is a
quaternion algebra over a totally real algebraic number field L = F. And there
are a few examples of explicit calculations of class numbers, see [9, §1 p.29] in
the case that L is an imaginary quadratic field remaining p, m =2 and € = 1,
and [7, Part II, p.696] (resp. [6]) in the case that D is a quaternion algebra over
Q and m = 2 (resp. m = 3).
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