goboboooboo 12590 20020 1-10

AN APPLICATION OF THE MOND-PECARIC METHOD
TO OPERATOR CONVEX FUNCTIONS

KEEHEKRFE BHIER (Masatoshi Fujii)
Department of Mathematics, Osaka Kyoiku Un1vers1ty

BAtK¥ 2 & (Sang Hun Lee)
Department of Mathematics, Kyungpook Natlonal University

KREE ALK TSRS R (Yuki Seo)
- Tennoji Branch, Senior Highschool, Osaka Kyoiku University

ABSTRACT. As a converse of the arithmetic-geometric mean inequality, Specht
estimated the upper bound of the arithmetic mean by tlie geometric one for
positive numbers: For z;, - - € [m, M) w1th M>m > 0,

"‘xl ...‘zn S u < Mh(1)~/$1

where h = ¥4 and M, (1) is the Specht ratio.

In this report, we show some order relations between the arithmetic mean
AV, B, the power mean (A"V,B") # and the chaotically geometric mean AQ, B
of positive operators A and B, i.e., AQqB = e(l=)logd+alogB for o ¢ [0,1].
Among others, we show an operator version of Specht’s theorem: If 0 < m <
A, B < M for some scalars 0 <m < M and h = —f;f—, then

Mi(1)™'A Oy B< AVqs B< Mu(1)A 0o B
holds for all a € [0, 1).

1. INTRODUCTION

This report is based on the paper [2].
In 1960, as a converse of the arithmetic-geometric mean inequality, W.Specht

[11] estimated the upper bound of the arithmetic mean by the geometric one for

positive numbers: For z,,--- ,z, € [m, M] with M > m > 0,
(1) "xl...inSEH-—'.r;t_xl<Mh(l)1ﬂ/w STy,
where h = ‘—-—(> 1) is a generalized condition number in the sense of Tunng [13]

and the Specht ratio Mj(1) is'defined for A > 1 as

(h = 1)hFT

Mi(1) = elogh

(h>1) and M;(1)=1.



It yields a rich hervest in operator theory. J.IFujii, S.Izumino and Y.Seo [1]
showed an operator version of Specht’s theorem (1): Let A be a positive operator
on a Hilbert space H satisfying 0 <m < A < M for some scalars 0 < m < M.
Then

(2) (Az,z) < My(1) exp(log Az, z)

holds for every unit vector z in H. As a matter of fact, if we fmt A = diag(z1, 22,
<~ ,z,)and z = 7‘;(1,1,- -+,1), then we have (1).

Also, we recall the geometric mean in the sense of Kubo-Ando theory [6]: For

two positive operators A and B on a Hilbert space H, the geometric mean and

arithmetic mean of A and B are defined as follows:
Af, B=A3(A"5BA"%)*A? and AV, B=(1-a)A+aB

for a € [0,1]. Like the numerical case, the arithmetic-geometric mean inequality
holds:

(3) A} BSAV,B forallac0,1].

Tominaga [12] showed the following inequality as a reverse inequality of the
noncommutative arithmetic-geometric mean inequality which differs from (2): Let
A and B be positive operators on a Hilbert space H satisfying0 < m < A,B< M
for some scalars 0 <m < M and 0 < @ < 1. Then |

(4) A Vaz B S Mh(l)A ua B1

where h = };‘n‘— It is considered as another operator version of Specht’s theorem

(1). |
On the other hand, M.Fujii and R.Nakamoto discussed the monotonicity of a
family of power means in [3] recently. For fixed A, B > 0, we put

F(r) = (A" V4 B")7 (r £0), = ¢'64 Vo 6B (1 — ).

Then the power mean F(r) is monotone increasing on R under the cﬁa.otic order
X>Y,ie,logX >logY for X, Y > 0, [3, Lemma 2]. In particular, A §, B =
el°g4 Va logB 5 called the chaotically o-geometric mean. In general, it does not
concide with A {, B.



In this report, we want to consider an operator version of Specht’s theorem (1)
on the chaotically geometric mean. We show some order relations between the
power mean, the chaotically geometric mean and the arithmetic mean, which are
based on the Mond-Pecarié metho.d ([8, 9, 10]). As a result, we obtain Specht’s
type theorem on the chaotically geometric mean. Finally, we state an order
relation between the geometric mean and the chaotically geometric one.

Concluding this section, we have to mention that almost all results in this
report are based on our previous result [8, Corollary 4] coming from the Mond-
Pecarlc method Namely this note might be understood as an application of the

Mond-Peéari¢ method.

2. RESULTS

Firstly, we shall show an order relation between the chaotically geometric mean
and the arithmetic one, which is considered as another operator version of Specht’s

theorem (1).

Theorem 1. Let A and B be positive operators on a Hilbert space H satisfying
0<m< A,B< M for some scalars0 <m < M, h = -f-:— and 0 < a < 1. Then

1

Mh(l)AOaB < AVaB < My(1)A0B.

Though the power mean F(s) converges to AQ,B as s — 0 in the strong
operator topology, it is not generally monotone increasing on (0,1] under the

usual order. However, we have the following result.

Theorem 2. Let A and B be positive operators on a Hilbert space H satisfying
0<m< A B< M for some scalars 0 <m < M and 0 < a < 1. Then
1
M,,(l)M,,(s)I/
where h = ¥ and My(s) = My (1).

F(s) € 40.B < My(F(s) for s> 0,

The power mean F(r) is not monotone increasing on (0,1]. So, we shall show

an order relation between the operator function F(s) and the arithmetic one.



Theorem 3. Let A and B be positive operators on a Hilbert space H satisfying
0<m< A, B<M for some scalars 0 <m < M and 0 < a < 1. Then
1
) Kb, F(r) < AV.B < K (F, DEE)  foro<r<l,
- _

where h = Y4 and the Ky Fan-Furuta constant K, (h,r) ([5, 7] ) is defined as

(r—1y-' (A =1y
7 (h= 1)k — )

(6) K,.(h,r)= forr > 1.

Next, we shall investigate an order relation between the geometric mean and

the chaotically geometric one. -

Theorem 4. Let A and B be positive operators on a Hilbert space H satisfying
0<m < A,B < M for some scalars0 <m < M, h:l-]‘,;'f- and 0 < a < 1. Then

1 . 2
mAuaBSAOaBSMh(l)AuaB

3. PRELIMINARIES_ FOR PROOFS

We need some preliminaries in order to prove our results..
Let A be a positive operator on a Hilbert space H satisfying 0 <m < A SM
for some scalars 0 < m < M, and let f(t) be a real valued continuous convex

function on [m, M]. Mond and Pec¢ari¢ [9] proved that

M H(A=2) < (f(A)z,5) S Aom, M, £)f (A2, 2))
holds for every unit vector € H, where |
(8) - |
A(m, M, f) = ma.x{f:t) (f(AQ : i(m)(t -m)+ f(m)) it € [m, M]} -

In fact, by the convexity of f(t), we have f(t) < ﬂ‘—;}%’fn‘ﬁ)-(t —m) + f(m) for all

t € [m, M]. Therefore, by the definition of A(m, M, f), it follows that

M)
M

holds for every unit vector z € H and hence we have (7).

(F(A)2,2) < LI (s 2y ) 4 fm) < A, M, (A, 2)

The following result is a generalization of (7) and based on the idea due to

Furuta’s work [4, 5]. We here cite it for convenience:



Theorem A ([8]). Let A; (j = 1,2,--- ,k) be positive operators on a Hilbert
space H satisfying 0 < m < A; < M for some scalars 0 < m < M. Let f(t) be
a real valued continuous convex function on [m, M|, and let z,,-- -,z be vectors
in H with T, || ; ||>= 1. If f(t) satisfies either (i) f(t) > 0 or (ii) f(£) < 0
on [m, M|, then |

~ k

. S k
(9) 2 (f(Ay)zs,35) < Mm, M, £ (R (Aj25,25))

Jj=1 J=1
holds for A > 1 in case (i), or 0 < A < 1 in case (i), where A = A(m, M, f) is
defined as (8). '

We note that Theorem A is a reverse inequality of the following known inequal-
ity, eg. [10]: Notation as in Theorem A and let f(?) be a real valued continuous

convex function on [m, M]. Then

- . | . ,
(10) f(ZI(ijj,:c,-)) < Y (f(Aj)zj, ;).

i=1
- For the power function f(t) = t?, we know the following fact by Furuta [5],
which is a reverse inequality of the Hélder-McCafthy,inequality:

Theorem B . Let A be a positive operator on a Hilbert space H satisfying 0 <
m < A< M for some scalars 0 <m < M andputh:%. For eachp>1
(11) | | (Apxa‘m) S K+(h1p)(Ama$)p

holds for every unit vector x € H where the Ky Fan-Furuta constant K, (h,p) is
defined as (6).

We obtain a complement of Theorem B by itself.

Lemma 1. Assume that the conditions of Theorem B hold. If0<p<1, then
K, (b, ]—lj-)"’(Aa:, 2)? < (APz,3) < (As,z)?
holds for every unit vector z € H.

Proof. Since 0 < p < 1, we have 1 < % and so Theorem B implies that

| (Al/pxa .'E) < K+ (ha l/p)(Axa x)l/p‘



Replacing A by AP, we have (Az,z) < K, (h?,1/p)(APz,z)'/? and by raising both

sides to the power p we obtain the desired result. O

Moreover, by Theorem B, Furuta [5] showed the following Kantorovich type

order preserving inequality.

Theorem C . Let A and B be positive operators on a Hilbert space H satisfying
0<m< A,B< M for some scalars 0 <m < M. If0 < A < B, then

AP S K+(hap)Bp fOT‘ a'llp > 1)

where h = M4,
m

4. REVERSE INEQUALITY ON OPERATOR CONVEXITY

In this section, by virtue of Theorem A, we shall estimate the bounds of the

operator convexity for convex functions.

Lemma 2. Let A and B be positive operators on a Hilbert space H satisfying
0 <m < AB < M for some scalars 0 < m < M. If f(t) is a real valued
continuous convez function on [m, M| such that f(t) > 0 on [m, M|, then for

each0<a<l

(12) m f(AV.B) < f(A)V.f(B) < A(m, M, f)f(AV4B),

where \(m, M, f) is defined as (8).

Proof. For each 0 < a < 1 and unit vector ¢ € H, put A, = A, A; = B,

21 = /I =z and z; = y/az in Theorem A. Then we have
(1= @)(f(A)s, ) + a(f(B)z,2) < Mm, M, f)F(1 ~ a)(Az,z) + a(Bz, z)).
Hence it follows that |
(1 - @)f(4) + af(B))a, ) < A(m, M, f){((1 — a)A + aB)z, z))
< A(m, M, ) (f((1 - @)A + aB)z, 2)
and the last inequality holds by the convexity of f(t). Therefore we have
F(A)Vaf(B) < X, M, f)f(A V.. B).



Next, since f(t) is convex, it follows from (10) that

(1= a)(f(A)e,2) + o f(B)z,2) 2 f((1 - a)(Az,2) + o(Bz, z)).

Since 0 < m < (1 — a)A+ aB < M, it follows from (7) that
f((1 - a)(Az,z) + o Bz,z)) = f(((A Va B)z,z))

1
Z m(f(A Vo, B):L',.'D)

holds for every unit vector £ € H. Therefore we have
1

oI f(AV.B) < f(A)V.f(B).

O

We have the following complementary result of Lemma 2 for concave functions.

Lemma 3. Let A and B be positive operators on a Hilbert space H satisfying
0 <m < A,B < M for some scalars 0 < m < M. If f(t) is a real valued
continuous concave function on [m, M] such that f(t) > 0 on [m,M], then for

each0<a<l

1
(13) i M) f(AV.B) > f(A)V.f(B) > #(m., M, f)f(AV,B),

where

u(m, M, ) = min{ 75 (f B =T 4 — my +f(m)) te [m,Ml} -

Next, consider the functions f(¢) = ¢" on [0, o0). Then f(t) is operator concave

if 0 < r <1, operator convex if 1 < r < 2 and f(t) is not operator convex though
f(t) is convex if r > 2. By Lemmas 2 and 3, we obtain the reverse inequalities

on operator convexity and operator concavity for f(t) =t".

Lemma 4. Let A and B be positive operators on a Hilbert space H satiéfying
O<m$A,B§Mforsomescalar30<m<M and 0 < a < 1.
(i) If 0 < r < 1, then

(AV,B) > A"V,B" > K. (", %)%f(AvaB)’.
(i) If1 <r <2, then

(AV.B)" < A'V,B" < K,(h,7)(AV4B)".



(iii) If r > 2, then
il
Ky (h,r)
where b = ¥ and K, (h,r)is defined as (6).

AV,B) < A'V,B" < K, (h,r)(AV.BY,

Proof. Put f(t) = t" for r > 1 in Lemma 2, then we obtain A(m, M, f) = K, (h,r).
Also, in the case of 0 < r < 1, we have u(m, M, f) = K,(h",1/r)™" in Lemma
3. O

Though the power mean F(r) is monotone increasing under tle chaotic order,
F(r) is not monotone increasing for 0 < r < 1 under the usual order. By virtue
of Lemma 4, we see that F(r) is monotone increasing for r > 0 in the following

sense:

Lemma 5. Let A and B be positive operators on a Hilbert space H satisfying
0<m< A B<M for some scalars0 <m < M. Let0<r<sand0<a<]l.
(1) If0 < r <1, then
KW, 2 Ko (4, ) F(5) < F(r) < Ko (W, DF(s).
(ii)) If r > 1, then
K, (K, 2)™*F(s) < F(r) < F(s),
where h = ¥ and K, (h, r) is defined as (6).

Proof Since0 < £ <1and 0 <m* < A*,B° < M’ , we apply Lemma 4 to obtain
the following mequahty

(14) (A"V B’) > A'V,B" > K,(h", ) (A"V B’)'

If r > 1, then 1 > 1 > 0 and by raising both sides of (14) to the power 1 it

follows from the Lowner—Hemz Theorem that

2 e

(A'VaB")! 2 (AVLB) 2 Ky, 2)H 4V, B,

Also if 0 < r < 1, then { > 1 and by raising both sides of (14) to the power 1 it

3

follows from Theorem B that

K+(hr, %)(A’VGB")% > (ArVaBr)l/r > K+(hr, %)_IK.*.(hr, ;)—-‘L(A’VGB‘)%-



5. PROOF OF THE RESULTS

Finally, we give proofs of Theorems stated in section 2.

Proof of Theorem 2.
By (ii) of Lemma 5, if 0 < r < s and 0 < r < 1, then we have

(15)  Ka(b, D) KA, 2 R(s) < F(r) < Ky (W, 1) F(s).

Since lim, 10 K4 (", 2) = My(s) which is shown in [14], we have the desired

fesult as r — +0 in (15):

v 1 ‘
F(s) < B < M,(1)F fi .
ML () M, ()17 (s) S AQB < My (1)F(s) or s >0
O
- Proof of Theorem 3.
If 0 <r <1, then > 1 and by (iii) of Lemma 4 it follows that
L (AV.B)} < APV, B} < K, (h, 1) AV, B)*
R, [ AVeB)7 < ATVaB? < Ko ) (ATB)"
By replacing A and B by A" and B" respectively, we have
1 1 1 L
r "y < B < h’_ r aBr r,
(16) —-——K_,_(h, %)(A VaB")r < AV.B < K4 ( r)(A V.B")
Therefore, we have the desired result:
1 1 :
K, (h", ;)—IF('I‘) < AV.B < K, (h", ;)F(r)
O

. Proof of Theorem 1.
If we put 7 — 0 in (5) of Theorem 3, then it follows that K (h",1) — M,(1)

and (A'V,,B')% — A Qo B. Therefore we have
1
———AV,B < AQ,B < M}(1)AV,B,
3M,(0) < AQ x(1)
and hence
1
M, (1)

AQuB < AV,B < My(1)A0.B.

Proof of Theorem 4.
It follows from (3),(4) and Theorem 1. , O
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