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REMARKS ON POSITIVE MAPS ON SELFDUAL CONES

BFEK - AXHSHFEE =M MNFH (YASUHIDE MIURA)

TIZTREARN FZEMIZEBIT B selfdual cone 2 REFET IR COEMEBERS
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=118

§1. INTRODUCTION

Let H be a separable complex Hilbert space with an inner product (, ). A
convex cone H* in H is said to be selfdual if Ht = {¢ € H|(£,7) > 0 Vp € HY}.
The set of all bounded operators is denoted by L(H). For a fixed selfdual cone
H*, we shall write

A<dB i (B-A)HY)CH* A BEeLH)

Since H is algebraically spanned by H1, the relation ‘<’ defines the partial order
on L(H).

Recall a selfdual cone associated with a standard von Neumann algebra in the
sense of Haagerup [H], which appears in the form (M, H,J,H*) where M is a
von Neumann algebra on H and J is an isometric involution related to a selfdual
coneH* in H. For example, 2+ = {£ = {\,.}|\n > 0} is a selfdual cone associated
with an abelian standard von Neumann algebra £*°. Then, for A = ()\;;) € L(£?),
AP O if and only if A\;; > 0fori,5 =1,2,---.

Moreover, suppose that (H, H},n € N) and (H, H}, n € N) are matrix ordered
Hilbert spaces. Here H;} denotes a selfdual cone in H,, = M,(H). A linear map A
of H into H is said to be n-positive(resp. n-co-positive) when the multiplicity map
An(= A ®id,) satisfies A, HF C H (resp. *(A.H}t) C H}). Here *(-) denotes

a set of all transposed matrices. When A is n-positive(resp. n-co-positive) for all



n € N, A is said to be completely positive(resp. completely co-positive). Put, for
A e L(H)

At = AJAJE, tcH.
It is known that if, in a matrix ordered standard form (M, H, H;}) as introduced

in [SW2], A € M then A is completely positive, and we shall write A > O.

§2. POSITIVE MAPS ASSOCIATED WITH SELFDUAL CONES

We obtain the following proposition for a general selfdual cone in a finite di-
mensional Hilbert space. In particular, when H* is associated with an abelian
von Neumann algebra, that is, a matrix is entrywise positive, it is known as the

Peron theorem(see, example [HJ, Corollary 8.2.6]).

(2.1). Let H be an n-dimensional Hilbert space with o selfdual cone H*. If A
i an injective linear operator on H satisfying A > O, then there ezist a number
A >0 and a non-zero element &y € Ht such that Aty = A\&,.
Proof. Put

V =co{¢ € H*|| € ||I= 1},

where co denotes the convex hull. Consider the map r defined by

_ A
O =167

By assumption r maps V to itself. Note that 0 ¢ V. Because, by the Carathéodory

,EEV.

theorem(see, for example [La, Theorem 2.23]) any element ¢ € V can be expressed

as
§=)‘l€1+"'+/\s§s,

where Aj, -+, A > 0,61, &, € HY with || & =+ = & |[=1and 1 < s <
n+ 1. It follows that £ > A& (H™), and so || € ||>]] M1é1 ||= |A1| > 0. Since
a convex hull of a compact set is compact [La, Theorem 2.30], it follows from
Schauder’s fixed point theorem [Sd, Satz I] that there exists an element &, € V
satisfying r(§o) = €. Hence Ay =|| A& || &. O

The following fundamental proposition is valid for a general selfdual cone. It
says that the order ‘Q’ is different from the usual order ‘<’ based on posxt1v1ty of

hermitian operators in point of compatibility with product.
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(2.2). (cf. [IM, Proposition 1]) Let H be a Hilbert space with a selfdual cone H.
Then for bounded operators on 'H we have the following properties:
(1) IfOQ A; 9By and O 94 A; 9 By, then O 9 A, A, 4 By B,. In particular,
if O A A B, then A™ 4 B™ for every natural number n.
(2) f O AQ B, then O 4 A* 4 B*.
(3) IfA,A"1,B,B~' > O and AL B, then B-1 9 A-1.
(4) fOQALB, then || A||<|| B

Proof. We sketch a proof which is similar to [IM].

(1) By assumption A;(H*) C H* and (B; — A;)(Ht) € H* hold for i = 1,32.
Since B1B; — Ay A; = By(By—A3)+(B; —A;)A;, we obtain the desired inequality.

(2) Let A(H*) C H*. Then we have (4*¢,n) = (£, An) > 0 for all ¢, € H+.
The selfduality of H+ shows that A* > O. Exchanging the role of A and B — A
we obtain the desired property.

(3) ¥ A< B, then B~! = A~'AB~! 9 A-1BB~! = A~! from (1).

(4) For A 2 O, put || A [l4+= sup{]| 4¢ [;;|| € II< 1,§ € H*}. Suppose
O 9 A 9 B. Note that if n — ¢ € H* for £,n € H*, then || £ ||<|| n ||. Since
I A ll+<|l B |l+, it suffices to show || - ||+=]|| - || It is known that any element
€ € H can be written as §{ = & — & +4(€ — €4), & L &, €3 L &4, for some &; € HF.
Then || € ||I>= i, || & |I?. Noticing that 4 > O, we see that

4
I AE N = || A& |I? —2(At1, ALs) — 2(As, Ay)

=1

S AG +&) 1+ 1 A + &) IP<N A RN €117

It follows that || A ||<|| A4 |l+. The converse inequality is trivial. O

(2.3). Let (M, H,J,H*) be a standard form of a von Neumann algebra. For a
selfadjoint element A € MU M/, the following conditions are equivalent:

1) A2 0.

(2) A€ Z(M) and A> 0.

Proof. (1)= (2): Since A & O if and only if JAJ B O, it suffices to investigate
the case A € M. Suppose A B> 0, A € M. Since any element of H can be written
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as £ + in with J¢€ = £, Jn = n, it follows that for such elements £,n
JAJ(€E +1in) = JA(E —in) = JAE +iJAn = A(€ +in).

Hence A € Z(M) and A* = JAJ = A. Choose an arbitrary element { € H. Then
one can write as £ = §; — & + (€3 — &4), & € HT such that M& L ME, ME L
M¢E,. We then have

(AE,€) = (Al — Aby +1(Als — Aly), 61 — L +1(€3 — &4))
4
=Y (46,620

i=1
because (A€, &2) = (As, &) = 0 and ((A(& —€2), &3 —¢,) is a real number. Hence
(2)= (1): It is immediate. O

(24) Suppose that A € L(H)* has a closed range in which AHY is a selfdual

cone. Then we obtain the following properties:

(1) Under the condition that H is a facially homogeneous selfdual cone in 'H,
if AD O, then for all A € R, A* > O.

(2) For a matriz ordered standard form (M, H,H}), if A> O and the support
projection of A is completely positive, then for all X € R, Ar >, 0.

Here the inverse for a not invertible A is taken as reduced by the support projection

of A.

Proof. (1) Let P denote the support projection of A. By assumption we obtain
that P > O and PHt = AH*. Hence, by [I, Proposition 11.1.6], PH* is facially
homogeneous. Since A = PA = AP and PA maps PH* onto itself, it follows
from [I, Corollary I1.3.2] that there exists a derivation § € D(PH*)* such that
PA|py = €. Hence

A*=PeMPRO

for every real number .
(2) Put N = PM|py. Since P is completely positive, we see from [MN,
Lemma 3] that (N, PH,P,H}) is a matrix ordered standard form. It follows



from [C, Theorem 3.3] that there exists an element B € Nt such that PA =
BJP'H+BJP1.‘+P. Hence

A* = BAJpy+ B Jpy+ P B, O

for every real number A\. 0O

A simple counter-example can show that it is essential in the above proposition

for AH* to be selfdual. In fact, we obtain the following remark:

Remark. In the case C"*(non-negative entries), a necessary and sufficient condi-
tion for A € M} to enjoy AC™* = C™* is that A is a non-singular positive definite
diagonal matrix. We obtain the following facts:

(1) In the case C**, if A € M} and A > O, then there exists a real number
s > 1 such that A* > O for all X € [s, 4+00).

(2) In the case C**,if A € M}, AD O,det A # 0 and AC*t G C** then
there exists a real number s’ < 0 such that A* £ O for all A € (—oo0, s'].

Indeed, let A € M, be entrywise positive and positive semi-definite. We nia.y
assume | A ||= 1. Let 1,a;,- - ,a,»,0 < m < n — 1, be distinct eigenvalues of
A. Since A can be diagonalized by a real orthogonal matrix, each entry of A* is

written in the form

fA)=ap+ alaf‘ +--- +ama$‘n

for some real numbers a;. Then ay must be positive, since A™ > O for all n € N
by (2.2) (1) and 0 < ax < 1,1 < k < m. From the continuity of the function we
can find a number s > 1 such that f(A) > 0for all A > s. So (1) holds. Suppose, in
addition, that A is non-singular and AC"*t ¢ C*t. If A= D> O for some \q > 0,
then A= > O for all¢ € N. From (1), A®* > O for a large £ € N. This implies
that A% is diagonal, and so is A, a contradiction. Therefore, (2) holds.

(2.5). For a matriz ordered standard form (M, H, H}), suppose that A € L(H),
and B € M is an injective operator with a dense range. Then, O I A < B if and
only if there ezists an element C € Z(M) with O < C < I such that A=CB. In

particular, if M is a factor, then one can choose a scalar A\ with 0 < X\ <1 such

that A = \B.
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Proof. Consider the polar decomposition B = U|B| of B. By assumption U is a
unitary element of M, and so U > O and U* > O by (2.2). Hence we may assume

Bl
B to be positive semi-definite. Let B = / AE) be a spectral decomposition
0

I Bl . A A
of B. Put P, = ] dE) for n € N. Then one sees that P, /' I and P,AP, d
1

P,BP, by (2.2). Since P,BP, is invertible on P,H, where the inverse shall be
denoted by (P,BP,)™!, we have

There then exists an element c,, in an order ideal Zp ;4 of a selfdual cone PHt
with || ¢, ||< 1 such that PoAP,(P,BP,) 1t = cuf for all ¢ € P,H. By [I,
Theorem VI.1,2 3)] we obtain that ¢, € Z(PaM|p »)*. Since P.Z(M)P, =
Z(ﬁ’an’n), we can find an element C,, € Z(M) such that ¢, = pnCnI:"nE for all
¢ € P,H. Since P,B = BP,,n € N, we have

pn+1Cn}1Pn+1§ =P Apn+1(13n+11§13n+1)—115n§
= An+1APn(PnB-Pn)_1£ = pnCnPn£

for all £ € P, H. Since {PnCnPn} is a bounded sequence, one can define
C¢ = lim P,CoPt, €€ H.
Thus C € Z(M),0 < C < I and we get

A=s lim P,AP,

= s lim P,C,.P,AP,
= CB.

The converse implication is immediate. Indeed, if C € Z(M) with O < C < I,
then I — C > O, and sol — C > O. Hence B— CB = (I - C)B > O. This
completes the proof. O '



§3. COMPLETE ORDER OF OPERATORS

Consider two matrix ordered standard forms (M®), H®) ’HSH) and (M®),
H®, H{D¥) with respective canonical involutions J1) and J). For an arbitrary
element £ € H(, let R¢ be a right slice map of H®) ® H®) into H(® such that

Re(¢'®@7') = (¢, 6,6 e HD,n' e HD.
For any element z € H(V @ H(?), we put
r(z)€ = Rjyae(z), € € HO.

Then r(z) is a map of Hilbert-Schmidt class of H() to H(?). A set of all maps
of Hilbert-Schmidt class of H1) to H(? is denoted by HS(HY), H(®). A set of
all completely positive maps of (K, HOH) to (H®, HPF) in HS(HW, H®) is
denoted by CPHS('H(IH", H®t). Here Hs,l)+,,n € N, means a family of the self-
dual cones associated with M@’ that is HOY = {*[€:17 =1 1li5]7 =1 € HPF).
We shall write H()+ ® H(®)* for a selfdual cone associated with a von Neumann

tensor product M™) ® M®@) . It was shown in [MT, SW1] that
CHO* @ HD+ = {2 € HOD @ HD|r(z) € CPHS(HWF , HO+)).

Thus
r: HO @ H® - HS(HW, H?)

is an isometry mapping H()+ ® H®+ onto CPHS(HW+' H2)+).
Indeed, r is isometric. Suppose that HS(H(), H(?) has an inner product

o0

(A,B) = ) (Aex, Bey),

k=1

where {e;} is a complete orthogonal basis of H(1). Noticing that {J(Ve;} is a
complete orthogonal basis of H(!1), we obtain for a complete orthogonal basis { fi}
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for ¢,4,i',7'=1,2,---. e
Therefore, (r(MMQM@)r=1 HS(HM), H®)), 1(JORT@)r—1, CPHS(HW+',
HP*)) is a standard form. Using the Radon-Nikodym theorem for L?-spaces [S,

Theorem 1.2], we obtain the following theorem:

(3.1). Let (M, H,H}) be a matriz ordered standard form. Then (r(M'@ M)r1,
HS(H,H), r(J ® J)r~1,CPHS(H*,H*)) is a standard form which is isomor-
phic to ( M' @ M,H QR H,J @ J,HT ® HT) by the identification r : HOH —
HS(H,H)defined as above. If A,B € HS(H,H)satisfies O ., A 1, B, then
there ezists an element C € M' ® Mwith O < C < I such that A =rCr~1B.

(3.2). Ifin (3.1) M is an injective factor (or semi-finite injective von Neumann
algebra) on a separable Hilbert space H, then the above statement is valid for
A € L(H) instead of A € HS(H,H).

Proof. Suppose that M is the von Neumann algebra in the statement. There then
exists an increasing net {E;} of completely positive projections of finite rank on
‘H which converges strongly to 1 by [M1, Theorem 1.4]. It follows that O d,
E;A 4., E;B. Hence

Tr(A*E;A) < Tx(B*E;B) < Tr(B*B).

Considering a limit with respect to ¢, we have Tr(A*A) < +o0. Using (3.1) we
obtain the desired result. [l
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(3.3). For a matriz ordered standard form (M, H, H}), any element A € HS(H)

can be uniquely decomposed into the following:
A=A, - Ay +i(A; — Ay)

where Ay L Ay, A3 | A4, A; € CPHS(H?).

The proof of the above proposition is immediate from a decomposition theorem

of vectors in the ordered Hilbert space.

§4. DECOMPOSITION OF POSITIVE MAPS

The purpose of this section is to show that any order isomorphism between non-
commutative L2-spaces associated with von Neumann algebras is decomposed into
a sum of a completely positive and a completely co-positive maps. The result is
an L? version of a theorem of Kadison [K] for a Jordan isomorphism on operator
algebras.

We first generalize a theorem of A. Connes [C] for the polar decomposition of

an order isomorphism, to the case where a von Neumann algebra is non-o-finite.

(4.1). Let (M, H,J, HY) and (M, H, J, Ht) be standard forms, and A be a
linear bijection of H onto H satisfying AH* = H*. Then for a polar decomposition
A =U|A| of A we obtain the following properties:
(1) There ezists a unique invertible operator Bin M* such that |A| = BJBJ.
(cf. [I, Corollary I1.3.2])
(2) There ezists a unique Jordan *-isomorphism a of M onto M such that

((X)E,6) = (XU, UTYE)
forall X € M, € € HT.

Proof. (1) Let M be non-o-finite. Choose an increasing net {p;}ie1 of o-finite
projections in M converging strongly to 1. Put ¢; = p;Jp;J. By [[C, Theorem
4.2] ¢7H* is a closed face of H*. Since A is an order isomorphism, A(giH*) is
a closed face of H*. There then exists a o-finite projection p) € M such that
A(giH*) = g/H* where ¢! denotes plJ piJ. Hence ¢!Ag; is an order isomorphism
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of ¢;H* onto ¢/H*. These cones appear respectively in the reduced standard
forms (¢;Mgqi, ¢iH, ¢iJgi, ¢iHT) and (¢!Md!, ¢'H, ¢'Jq!, ¢/HT). Put A; =
(¢iAq¢i)*qiAgi. Then A; € ¢;M*g; is an order automorphism on ¢;H*. By [C,
Theorem 3.3] there exists a unique invertible operator B; € ¢;M*tgq; such that
A; = B;J;B;J;, where J; denotes ¢;J¢;. Taking a logarithm of both sides, we have
log A; = log B; + Ji(log B;)J;. Since {A;} is a bounded net, {log B;} is bounded.

Indeed, we have in a standard form that a map
1
X —éx = §(X+JXJ)

is a Jordan isomorphism of a selfadjoint part of M into a selfadjoint part of a
set of all order derivations D(H*) by [I, Corollary VI.2.3]. It is known that
any isomorphism of a JB-algebra into another JB-algebra is isometry(see [HS,
Proposition 3,4.3]). Hence

Iox lI=l X1, X e Ms.a.

Thus {log B;} is bounded. It follows that {p;(log B;)p;} is bounded because p; Mp;
and ¢;Mgq; are *-isomorphic. Therefore, one can find a subnet of {p;log B;p;}
which converges to some element C € M* in the o-weak topology. We may index

the subnet as the same ¢ € I. We then have for £,7 € H

((C+JCJT)g€,qin) = lim((pi(log B:)p; + Jpi(log B:)piJ)g;€, 4;m)
= ((log B; + J;(log B;)J;)a;€,9;1)
= lim(log A;q;¢, ¢jm)
= (log A* Ag;€, g;n), / S i

using the facts that ¢; X¢; J¢; X q; Jq; = p; X p; Jp; X p;Jq; for all X € M, and under
the strong topology {A4;} converges to A*A; hence {gi(log A,-)q;}' converges to
log A*A. Since | ;g ¢i'H is dense in H, we obta,in‘the equality C+JCJ = log A*A. J
Therefore, € JeCJ = A*A. Thus there exists an element B € M™ such that
|A| = BJBJ. Since, in addition, ¢;Bq;Jq;Bq;Jg¢; = q;|A|q;, one ea,si‘lfyﬁ’seés the

invertibility and the unicity of B using the same properties as in the o-finite case.



(2) From (1) we have U = AB~'JB~!J. It follows that U is an isometry
satisfying UH* = H*. Let p; and ¢; be as in (1). There then exists a o-finite
projection p, € M such that U(g:Ht) = ¢/H* with ¢} = plJp.J. Using also
[C, Theorem 3.3], one can find a unique Jordan *-isomorphism a; of ¢;Mg; onto
gl Mg} such that

(2i(gi X )6, €) = (6 XaU'E,UTE)

for all X € M,¢ € ¢/H*. Fixed now X € M,.. Since piMp) and ¢\Md!

are *-isomorphic, there exists a unique operator Y; € piM,...p! such that Y;| "=
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@i(¢i X ¢i). Using an isometry between the Jordan algebras, one sees that {a;(¢iXg:)}

is a bounded net, because || a;(¢;:X¢) ||=|| ¢:X g [I<|| X ||,4 € I. Thus {Y¥;} is
bounded. We may then say that {Y;} converges to some operator Y € M,, in
the o-weak topology. We then have for £ € Ht

(Yq€, ¢j€) = him(Yigjé, gj¢€) = lim(ei(9: X 9:)q3¢, 95€)
= lim(g: Xq:U ™" ¢3¢, U™ gj¢)
= (XU1q;¢, U™ g}¢).

Taking a limit with respect to j, we obtain
(YE,6) = (XUTIEUTYE)

for all £ € H*. It is known that any normal state on the von Neumann algebra M
is represented by a vector state with respect to an element of Ht (see [H, Lemma
2.10 (1)]). Therefore, the above element Y is uniquely determined. Moreover, we
have ¢'Y ¢! = a;(¢;X¢;). It follows that {a(qiXq;)} converges to Y in the strong
topology. Hence one can define a(X) =Y for all X € M. It is now immediate
that a(X?) = a(X)? for all X € M, , . Considering the inverse order isomorphism
U-!, we have a(M) = M. This completes the proof. O

In the following proposition we deal with a reduced matrix ordered standard

form by a completely positive projection.

(4.2). With (M, H,H}) a matriz ordered standard form, let E be a completely
positive projection on H. Then (EME, EH, E,H}) is a matriz ordered standard



Proof. The statement was shown in [MN, Lemma 3] where M is o-finite. In the
case where M is not o-finite, since E is a completely positive projection, there
exists a von Neumann algebra A such that (N, EH, E,H;) is a matrix ordered
standard form by [M2, Lemma 3]. Hence EM|gy = N and (EME, EH, E,H})

is a matrix ordered standard form by using the same discussion as in the proof in

M3]. O

Now, we shall state the decomposition theorem for an order isomorphism be-

tween non-commutative L2-spaces.

(4.3). Let (M, H,H}) and (M, H,H}) be matric ordered standard forms. Sup-
pose that A is a 1-positive map of H into H such that AH*' is a selfdual cone in
the closed range of A. If both the support projection E and the range projection
F of A are completely positive, then there ezists a centeral projection P of EME
such that AP is completely positive and A(E — P) is completely co-positive. 7

In particular, if A is an order isomorphism of H onto H, then there exists a
centeral projection P of M such that AP is completely positive and A(1 — P) is

completely co-positive.

Proof. We first consider the case where A is an order isomorphism. Let U, B and
a be as in (4.1). It follows from a theorem of Kadison [K] that there exists a

central projection P of M satisfying

a: Mp— A;fa(p), onto *-isomorphism

a: M;_p — My1-p), onto *-anti-isomorphism.

Indeed, a(P) is a central projection of M. Since a preserves a *-operation and
power, a(P) is a projection. Suppose that @) is an arbitrary projection in M. Since
a is order preserving, we have a(QP) < a(P) and o(Q(1 — P)) < a(l1 — P). It
follows that two projections a(P) and a(QP) are commutative, and so are a(1—P)
and a(Q(1 — P)). Hencea(Q) = o(QP + Q(1 — P)) and a(P) commute. Since
o is bijective, a set a(Q) generates a von Neumann algebra M. Therefore, o(P)

belongs to a center of M. Now, there then exists a unique completely positive

161



isometry u : PH — a(P)H such that
w(PHY) = ao(P)H') and o(z)=uzu™!, z€Mp

by [M3, Proposition 2.4] which is also valid for the non-ofinite case. Hence
(UzU™1,¢) = (uzu~'€,6),z € Mp,£ € a(P)H*. We have from the unicity
of a completely positive isometry UP = u. Note that a(P)UP = UP. Indeed, we
have for ¢, € a(l1 — P)YH* the equality

| PU=Y¢ |[2= (UPU~¢,€) = (a(P)t, ) = 0.

This yields PU~'a(1—P) = O, and so PU~! = PU~'a(P). Therefore, we obtain
that AP = UBJBJP = uBJBJP and AP is completely positive. ’

We next consider a *-isomorphism o' : My_p — M/ _ «(p) defined by o (X) =
Ja(X)*J,X € Mi_p. There then exists a unique completely positive isometry
v: (1 — PYH — a(1 — P)H such that

v(1—PYH* = (1 - o(P))H* and o'(z)=vzv™!, z€ M;_p.

Then we have a(z) = Jvz*v~1J ,x € Mj_p. Note that the complete positivity
above means vn(1 — P),H} = (1 — a(P)).H;', where H}' denotes the selfdual
cones associated with M’'. Hence v is a completely co-positive map under the
setting (M, H, H}) and (M, H, H;}). Hence

(UzU7E, €) = (Jvz*v™ ¢, €)
= (jE') vz*v_ljﬁ)
= (vzv~ ¢, €)

for all z € M;_p,£,€ (1 — PYHt. It follows that U(1 — P) = v. We conclude by
the equality A(1 — P) = vBJBJ(1 — P) that A(1 — P) is completely co-positive.

We now consider a general A. Since AH* C H*, we have AH* c FH*. Since
F is a projection, F'H™ is a selfdual cone in F'H. It follows from the selfduality of
AHY that AH* = FH*. This yields from (4.2) that FAE is an order isomorphism
of EH onto FH in the sense of matrix ordered standard forms (EME, EH, E,H})
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and (FMF, FH, F,H}). Using the first part of the proof, we obtain the desired
result. Indeed, there exists a central projection P € EME such that FAP is
completely positive and FA(E — P) is completely co-positive under the reduced

matrix ordered standard forms. We obtain the inclusion
YAn(En — P)HT) = Y(FoAn(E, — P)HY) c F,HE c 7.

This completes the proof. [

Finally, the author wishes to express his sincere gratitude to Professor Y.

Katayama for having pointed out the problem of Section 4 to him.
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