REMARKS ON POSITIVE MAPS ON SELFDUAL CONES

岩手大・人文社会科学部 三浦 康秀 (YASUHIDE MIURA)

ここではヒルベルト空間における selfdual cone を保存する意味での正値写像および作用素の順序 (△) に関する基本的な性質を考える。内容は [MI] を部分的に含む。

§1. Introduction

Let \mathcal{H} be a separable complex Hilbert space with an inner product (,). A convex cone \mathcal{H}^+ in \mathcal{H} is said to be selfdual if $\mathcal{H}^+ = \{\xi \in \mathcal{H} | (\xi, \eta) \geq 0 \ \forall \eta \in \mathcal{H}^+ \}$. The set of all bounded operators is denoted by $L(\mathcal{H})$. For a fixed selfdual cone \mathcal{H}^+ , we shall write

$$A \leq B$$
 if $(B-A)(\mathcal{H}^+) \subset \mathcal{H}^+, A, B \in L(\mathcal{H})$.

Since \mathcal{H} is algebraically spanned by \mathcal{H}^+ , the relation ' \unlhd ' defines the partial order on $L(\mathcal{H})$.

Recall a selfdual cone associated with a standard von Neumann algebra in the sense of Haagerup [H], which appears in the form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ where \mathcal{M} is a von Neumann algebra on \mathcal{H} and J is an isometric involution related to a selfdual cone \mathcal{H}^+ in \mathcal{H} . For example, $\ell^{2+} = \{\xi = \{\lambda_n\} | \lambda_n \geq 0\}$ is a selfdual cone associated with an abelian standard von Neumann algebra ℓ^{∞} . Then, for $A = (\lambda_{ij}) \in L(\ell^2)$, $A \geq O$ if and only if $\lambda_{ij} \geq 0$ for $i, j = 1, 2, \cdots$.

Moreover, suppose that $(\mathcal{H}, \mathcal{H}_n^+, n \in \mathbb{N})$ and $(\tilde{\mathcal{H}}, \tilde{\mathcal{H}}_n^+, n \in \mathbb{N})$ are matrix ordered Hilbert spaces. Here \mathcal{H}_n^+ denotes a selfdual cone in $\mathcal{H}_n = M_n(\mathcal{H})$. A linear map A of \mathcal{H} into $\tilde{\mathcal{H}}$ is said to be n-positive(resp. n-co-positive) when the multiplicity map $A_n(=A\otimes \mathrm{id}_n)$ satisfies $A_n\mathcal{H}_n^+\subset \tilde{\mathcal{H}}_n^+$ (resp. ${}^t(A_n\mathcal{H}_n^+)\subset \tilde{\mathcal{H}}_n^+$). Here ${}^t(\cdot)$ denotes a set of all transposed matrices. When A is n-positive(resp. n-co-positive) for all

 $n \in \mathbb{N}$, A is said to be completely positive (resp. completely co-positive). Put, for $A \in L(\mathcal{H})$

$$\hat{A}\xi = AJAJ\xi, \quad \xi \in \mathcal{H}.$$

It is known that if, in a matrix ordered standard form $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ as introduced in [SW2], $A \in \mathcal{M}$ then \hat{A} is completely positive, and we shall write $\hat{A} \succeq_{cp} O$.

§2. Positive maps associated with selfdual cones

We obtain the following proposition for a general selfdual cone in a finite dimensional Hilbert space. In particular, when \mathcal{H}^+ is associated with an abelian von Neumann algebra, that is, a matrix is entrywise positive, it is known as the Peron theorem(see, example [HJ, Corollary 8.2.6]).

(2.1). Let \mathcal{H} be an n-dimensional Hilbert space with a selfdual cone \mathcal{H}^+ . If A is an injective linear operator on \mathcal{H} satisfying $A \supseteq O$, then there exist a number $\lambda > 0$ and a non-zero element $\xi_0 \in \mathcal{H}^+$ such that $A\xi_0 = \lambda \xi_0$.

Proof. Put

$$V = \cos{\{\xi \in \mathcal{H}^+ | \|\xi\| = 1\}},$$

where co denotes the convex hull. Consider the map r defined by

$$r(\xi) = \frac{A\xi}{\parallel A\xi \parallel}, \xi \in \mathcal{V}.$$

By assumption r maps \mathcal{V} to itself. Note that $0 \notin \mathcal{V}$. Because, by the Carathéodory theorem(see, for example [La, Theorem 2.23]) any element $\xi \in \mathcal{V}$ can be expressed as

$$\xi = \lambda_1 \xi_1 + \dots + \lambda_s \xi_s,$$

where $\lambda_1, \dots, \lambda_s > 0, \xi_1, \dots, \xi_s \in \mathcal{H}^+$ with $\|\xi_1\| = \dots = \|\xi_s\| = 1$ and $1 \leq s \leq n+1$. It follows that $\xi \geq \lambda_1 \xi_1(\mathcal{H}^+)$, and so $\|\xi\| \geq \|\lambda_1 \xi_1\| = |\lambda_1| > 0$. Since a convex hull of a compact set is compact [La, Theorem 2.30], it follows from Schauder's fixed point theorem [Sd, Satz I] that there exists an element $\xi_0 \in \mathcal{V}$ satisfying $r(\xi_0) = \xi_0$. Hence $A\xi_0 = \|A\xi_0\| \xi_0$. \square

The following fundamental proposition is valid for a general selfdual cone. It says that the order ' \leq ' is different from the usual order ' \leq ' based on positivity of hermitian operators in point of compatibility with product.

- (2.2). (cf. [IM, Proposition 1]) Let \mathcal{H} be a Hilbert space with a selfdual cone \mathcal{H}^+ . Then for bounded operators on \mathcal{H} we have the following properties:
 - (1) If $O \subseteq A_1 \subseteq B_1$ and $O \subseteq A_2 \subseteq B_2$, then $O \subseteq A_1A_2 \subseteq B_1B_2$. In particular, if $O \subseteq A \subseteq B$, then $A^n \subseteq B^n$ for every natural number n.
 - (2) If $O \subseteq A \subseteq B$, then $O \subseteq A^* \subseteq B^*$.
 - (3) If $A, A^{-1}, B, B^{-1} \supseteq O$ and $A \subseteq B$, then $B^{-1} \subseteq A^{-1}$.
 - (4) If $O \subseteq A \subseteq B$, then $||A|| \le ||B||$.

Proof. We sketch a proof which is similar to [IM].

- (1) By assumption $A_i(\mathcal{H}^+) \subset \mathcal{H}^+$ and $(B_i A_i)(\mathcal{H}^+) \subset \mathcal{H}^+$ hold for i = 1, 2. Since $B_1B_2 - A_1A_2 = B_1(B_2 - A_2) + (B_1 - A_1)A_2$, we obtain the desired inequality.
- (2) Let $A(\mathcal{H}^+) \subset \mathcal{H}^+$. Then we have $(A^*\xi, \eta) = (\xi, A\eta) \geq 0$ for all $\xi, \eta \in \mathcal{H}^+$. The selfduality of \mathcal{H}^+ shows that $A^* \supseteq O$. Exchanging the role of A and B A we obtain the desired property.
 - (3) If $A \subseteq B$, then $B^{-1} = A^{-1}AB^{-1} \subseteq A^{-1}BB^{-1} = A^{-1}$ from (1).
- (4) For $A \supseteq O$, put $||A||_{+} = \sup\{||A\xi||_{;} ||\xi|| \le 1, \xi \in \mathcal{H}^{+}\}$. Suppose $O \subseteq A \subseteq B$. Note that if $\eta \xi \in \mathcal{H}^{+}$ for $\xi, \eta \in \mathcal{H}^{+}$, then $||\xi|| \le ||\eta||_{!}$. Since $||A||_{+} \le ||B||_{+}$, it suffices to show $||\cdot||_{+} = ||\cdot||_{!}$. It is known that any element $\xi \in \mathcal{H}$ can be written as $\xi = \xi_{1} \xi_{2} + i(\xi_{3} \xi_{4}), \xi_{1} \perp \xi_{2}, \xi_{3} \perp \xi_{4}$, for some $\xi_{i} \in \mathcal{H}^{+}$. Then $||\xi||^{2} = \sum_{i=1}^{4} ||\xi_{i}||^{2}$. Noticing that $A \supseteq O$, we see that

$$|| A\xi ||^{2} = \sum_{i=1}^{4} || A\xi_{i} ||^{2} - 2(A\xi_{1}, A\xi_{2}) - 2(A\xi_{3}, A\xi_{4})$$

$$\leq || A(\xi_{1} + \xi_{2}) ||^{2} + || A(\xi_{3} + \xi_{4}) ||^{2} \leq || A ||_{+}^{2} || \xi ||^{2}.$$

It follows that $||A|| \le ||A||_+$. The converse inequality is trivial. \square

- (2.3). Let $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ be a standard form of a von Neumann algebra. For a selfadjoint element $A \in \mathcal{M} \cup \mathcal{M}'$, the following conditions are equivalent:
 - (1) $A \supseteq O$.
 - (2) $A \in Z(\mathcal{M})$ and $A \geq O$.

Proof. (1) \Rightarrow (2): Since $A \supseteq O$ if and only if $JAJ \supseteq O$, it suffices to investigate the case $A \in \mathcal{M}$. Suppose $A \supseteq O$, $A \in \mathcal{M}$. Since any element of \mathcal{H} can be written

as $\xi + i\eta$ with $J\xi = \xi$, $J\eta = \eta$, it follows that for such elements ξ, η

$$JAJ(\xi + i\eta) = JA(\xi - i\eta) = JA\xi + iJA\eta = A(\xi + i\eta).$$

Hence $A \in Z(\mathcal{M})$ and $A^* = JAJ = A$. Choose an arbitrary element $\xi \in \mathcal{H}$. Then one can write as $\xi = \xi_1 - \xi_2 + i(\xi_3 - \xi_4), \xi_i \in \mathcal{H}^+$ such that $\mathcal{M}\xi_1 \perp \mathcal{M}\xi_2, \mathcal{M}\xi_3 \perp \mathcal{M}\xi_4$. We then have

$$(A\xi,\xi) = (A\xi_1 - A\xi_2 + i(A\xi_3 - A\xi_4), \xi_1 - \xi_2 + i(\xi_3 - \xi_4))$$
$$= \sum_{i=1}^4 (A\xi_i, \xi_i) \trianglerighteq O$$

because $(A\xi_1, \xi_2) = (A\xi_3, \xi_4) = 0$ and $((A(\xi_1 - \xi_2), \xi_3 - \xi_4)$ is a real number. Hence $A \ge O$.

 $(2) \Rightarrow (1)$: It is immediate. \square

(2.4). Suppose that $A \in L(\mathcal{H})^+$ has a closed range in which $A\mathcal{H}^+$ is a selfdual cone. Then we obtain the following properties:

- (1) Under the condition that \mathcal{H}^+ is a facially homogeneous selfdual cone in \mathcal{H} , if $A \supseteq O$, then for all $\lambda \in \mathbb{R}$, $A^{\lambda} \supseteq O$.
- (2) For a matrix ordered standard form $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$, if $A \supseteq O$ and the support projection of A is completely positive, then for all $\lambda \in \mathbb{R}$, $A^{\lambda} \trianglerighteq_{cp} O$.

Here the inverse for a not invertible A is taken as reduced by the support projection of A.

Proof. (1) Let P denote the support projection of A. By assumption we obtain that P extstyle O and $P\mathcal{H}^+ = A\mathcal{H}^+$. Hence, by [I, Proposition II.1.6], $P\mathcal{H}^+$ is facially homogeneous. Since A = PA = AP and PA maps $P\mathcal{H}^+$ onto itself, it follows from [I, Corollary II.3.2] that there exists a derivation $\delta \in D(P\mathcal{H}^+)^+$ such that $PA|_{P\mathcal{H}} = e^{\delta}$. Hence

$$A^{\lambda} = Pe^{\lambda\delta}P \trianglerighteq O$$

for every real number λ .

(2) Put $\mathcal{N} = P\mathcal{M}|_{P\mathcal{H}}$. Since P is completely positive, we see from [MN, Lemma 3] that $(\mathcal{N}, P\mathcal{H}, P_n\mathcal{H}_n^+)$ is a matrix ordered standard form. It follows

from [C, Theorem 3.3] that there exists an element $B \in \mathcal{N}^+$ such that $PA = BJ_{P\mathcal{H}^+}BJ_{P\mathcal{H}^+}P$. Hence

$$A^{\lambda} = B^{\lambda} J_{P\mathcal{H}^{+}} B^{\lambda} J_{P\mathcal{H}^{+}} P \trianglerighteq_{cp} O$$

for every real number λ . \square

A simple counter-example can show that it is essential in the above proposition for $A\mathcal{H}^+$ to be selfdual. In fact, we obtain the following remark:

Remark. In the case \mathbb{C}^{n+} (non-negative entries), a necessary and sufficient condition for $A \in M_n^+$ to enjoy $A\mathbb{C}^{n+} = \mathbb{C}^{n+}$ is that A is a non-singular positive definite diagonal matrix. We obtain the following facts:

- (1) In the case \mathbb{C}^{n+} , if $A \in M_n^+$ and $A \supseteq O$, then there exists a real number $s \ge 1$ such that $A^{\lambda} \supseteq O$ for all $\lambda \in [s, +\infty)$.
- (2) In the case \mathbb{C}^{n+} , if $A \in M_n^+$, $A \supseteq O$, $\det A \neq 0$ and $A\mathbb{C}^{n+} \subsetneq \mathbb{C}^{n+}$, then there exists a real number s' < 0 such that $A^{\lambda} \not\trianglerighteq O$ for all $\lambda \in (-\infty, s']$.

Indeed, let $A \in M_n$ be entrywise positive and positive semi-definite. We may assume ||A||=1. Let $1,a_1,\dots,a_m,0\leq m\leq n-1$, be distinct eigenvalues of A. Since A can be diagonalized by a real orthogonal matrix, each entry of A^{λ} is written in the form

$$f(\lambda) = \alpha_0 + \alpha_1 a_1^{\lambda} + \dots + \alpha_m a_m^{\lambda}$$

for some real numbers α_k . Then α_0 must be positive, since $A^n \supseteq O$ for all $n \in \mathbb{N}$ by (2.2) (1) and $0 \le a_k < 1, 1 \le k \le m$. From the continuity of the function we can find a number $s \ge 1$ such that $f(\lambda) > 0$ for all $\lambda \ge s$. So (1) holds. Suppose, in addition, that A is non-singular and $A\mathbb{C}^{n+} \subsetneq \mathbb{C}^{n+}$. If $A^{-\lambda_0} \trianglerighteq O$ for some $\lambda_0 > 0$, then $A^{-\ell\lambda_0} \trianglerighteq O$ for all $\ell \in \mathbb{N}$. From (1), $A^{\ell\lambda_0} \trianglerighteq O$ for a large $\ell \in \mathbb{N}$. This implies that $A^{\ell\lambda_0}$ is diagonal, and so is A, a contradiction. Therefore, (2) holds.

(2.5). For a matrix ordered standard form $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$, suppose that $A \in L(\mathcal{H})$, and $B \in \mathcal{M}$ is an injective operator with a dense range. Then, $O \subseteq A \subseteq \hat{B}$ if and only if there exists an element $C \in Z(\mathcal{M})$ with $O \subseteq C \subseteq I$ such that $A = C\hat{B}$. In particular, if \mathcal{M} is a factor, then one can choose a scalar λ with $0 \le \lambda \le 1$ such that $A = \lambda \hat{B}$.

Proof. Consider the polar decomposition B = U|B| of B. By assumption U is a unitary element of \mathcal{M} , and so $\hat{U} \trianglerighteq O$ and $\hat{U}^* \trianglerighteq O$ by (2.2). Hence we may assume B to be positive semi-definite. Let $B = \int_0^{\|B\|} \lambda dE_{\lambda}$ be a spectral decomposition of B. Put $P_n = \int_{\frac{1}{n}}^{\|B\|} dE_{\lambda}$ for $n \in \mathbb{N}$. Then one sees that $\hat{P}_n \nearrow I$ and $\hat{P}_n A \hat{P}_n \trianglelefteq \hat{P}_n \hat{B} \hat{P}_n$ by (2.2). Since $\hat{P}_n \hat{B} \hat{P}_n$ is invertible on $\hat{P}_n \mathcal{H}$, where the inverse shall be denoted by $(\hat{P}_n \hat{B} \hat{P}_n)^{-1}$, we have

$$O \leq \hat{P}_n A \hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} \leq \hat{P}_n.$$

There then exists an element c_n in an order ideal $Z_{\hat{P}_n\mathcal{H}^+}$ of a selfdual cone $\hat{P}\mathcal{H}^+$ with $\|c_n\| \le 1$ such that $\hat{P}_n A \hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} \xi = c_n \xi$ for all $\xi \in \hat{P}_n \mathcal{H}$. By $[\mathbf{I}, \mathcal{H}^+]$ Theorem VI.1,2 3)] we obtain that $c_n \in Z(\hat{P}_n \mathcal{M}|_{\hat{P}_n \mathcal{H}})^+$. Since $\hat{P}_n Z(\mathcal{M}) \hat{P}_n = Z(\hat{P}_n \mathcal{M} \hat{P}_n)$, we can find an element $C_n \in Z(\mathcal{M})$ such that $c_n \xi = \hat{P}_n C_n \hat{P}_n \xi$ for all $\xi \in \hat{P}_n \mathcal{H}$. Since $P_n B = B P_n$, $n \in \mathbb{N}$, we have

$$\hat{P}_{n+1}C_{n+1}\hat{P}_{n+1}\xi = \hat{P}_{n+1}A\hat{P}_{n+1}(\hat{P}_{n+1}\hat{B}\hat{P}_{n+1})^{-1}\hat{P}_n\xi$$
$$= \hat{P}_{n+1}A\hat{P}_n(\hat{P}_n\hat{B}\hat{P}_n)^{-1}\xi = \hat{P}_nC_n\hat{P}_n\xi$$

for all $\xi \in \hat{P}_n \mathcal{H}$. Since $\{\hat{P}_n C_n \hat{P}_n\}$ is a bounded sequence, one can define

$$C\xi = \lim_{n \to \infty} \hat{P}_n C_n \hat{P}_n \xi, \ \xi \in \mathcal{H}.$$

Thus $C \in Z(\mathcal{M}), O \leq C \leq I$ and we get

$$A = \operatorname{s-}\lim_{n \to \infty} \hat{P}_n A \hat{P}_n$$

$$= \operatorname{s-}\lim_{n \to \infty} \hat{P}_n C_n \hat{P}_n A \hat{P}_n$$

$$= C \hat{B}.$$

The converse implication is immediate. Indeed, if $C \in Z(\mathcal{M})$ with $O \leq C \leq I$, then $I - C \geq O$, and so $I - C \geq O$. Hence $\hat{B} - C\hat{B} = (I - C)\hat{B} \geq O$. This completes the proof. \square

§3. Complete order of operators

Consider two matrix ordered standard forms $(\mathcal{M}^{(1)}, \mathcal{H}^{(1)}, \mathcal{H}_n^{(1)+})$ and $(\mathcal{M}^{(2)}, \mathcal{H}_n^{(2)+})$ with respective canonical involutions $J^{(1)}$ and $J^{(2)}$. For an arbitrary element $\xi \in \mathcal{H}^{(1)}$, let R_{ξ} be a right slice map of $\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}$ into $\mathcal{H}^{(2)}$ such that

$$R_{\xi}(\xi'\otimes\eta')=(\xi',\xi)\eta',\xi'\in\mathcal{H}^{(1)},\eta'\in\mathcal{H}^{(2)}.$$

For any element $x \in \mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}$, we put

$$r(x)\xi = R_{J^{(1)}\xi}(x), \xi \in \mathcal{H}^{(1)}.$$

Then r(x) is a map of Hilbert-Schmidt class of $\mathcal{H}^{(1)}$ to $\mathcal{H}^{(2)}$. A set of all maps of Hilbert-Schmidt class of $\mathcal{H}^{(1)}$ to $\mathcal{H}^{(2)}$ is denoted by $HS(\mathcal{H}^{(1)},\mathcal{H}^{(2)})$. A set of all completely positive maps of $(\mathcal{H}^{(1)},\mathcal{H}^{(1)+'}_n)$ to $(\mathcal{H}^{(2)},\mathcal{H}^{(2)+}_n)$ in $HS(\mathcal{H}^{(1)},\mathcal{H}^{(2)})$ is denoted by $CPHS(\mathcal{H}^{(1)+'},\mathcal{H}^{(2)+})$. Here $\mathcal{H}^{(1)+'}_n$, $n \in \mathbb{N}$, means a family of the self-dual cones associated with $\mathcal{M}^{(1)'}$, that is $\mathcal{H}^{(1)+'}_n = \{^t[\xi_{ij}]_{i,j=1}^n | [\xi_{ij}]_{i,j=1}^n \in \mathcal{H}^{(1)+}_n \}$. We shall write $\mathcal{H}^{(1)+} \otimes \mathcal{H}^{(2)+}$ for a selfdual cone associated with a von Neumann tensor product $\mathcal{M}^{(1)} \otimes \mathcal{M}^{(2)}$. It was shown in [MT, SW1] that

$$\mathcal{H}^{(1)+} \otimes \mathcal{H}^{(2)+} = \{ x \in \mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)} | r(x) \in CPHS(\mathcal{H}^{(1)+}, \mathcal{H}^{(2)+}) \}.$$

Thus

$$r:~\mathcal{H}^{(1)}\otimes\mathcal{H}^{(2)} o HS(\mathcal{H}^{(1)},\mathcal{H}^{(2)})$$

is an isometry mapping $\mathcal{H}^{(1)+} \otimes \mathcal{H}^{(2)+}$ onto $CPHS(\mathcal{H}^{(1)+},\mathcal{H}^{(2)+})$.

Indeed, r is isometric. Suppose that $HS(\mathcal{H}^{(1)},\mathcal{H}^{(2)})$ has an inner product

$$\langle A,B\rangle = \sum_{k=1}^{\infty} (Ae_k,Be_k),$$

where $\{e_k\}$ is a complete orthogonal basis of $\mathcal{H}^{(1)}$. Noticing that $\{J^{(1)}e_k\}$ is a complete orthogonal basis of $\mathcal{H}^{(1)}$, we obtain for a complete orthogonal basis $\{f_k\}$

$$\langle r(J^{(1)}e_{i} \otimes f_{j}), r(J^{(1)}e_{i'} \otimes f_{j'}) \rangle$$

$$= \sum_{k=1}^{\infty} (r(J^{(1)}e_{i} \otimes f_{j})(e_{k}), r(J^{(1)}e_{i'} \otimes f_{j'})(e_{k}))$$

$$= \sum_{k=1}^{\infty} (R_{J^{(1)}e_{k}}(J^{(1)}e_{i} \otimes f_{j}), R_{J^{(1)}e_{k}}(J^{(1)}e_{i'} \otimes f_{j'}))$$

$$= \sum_{k=1}^{\infty} ((J^{(1)}e_{i}, J^{(1)}e_{k})f_{j}, (J^{(1)}e_{i'}, J^{(1)}e_{k})f_{j'})$$

$$= \sum_{k=1}^{\infty} ((e_{k}, e_{i})f_{j}, (e_{k}, e_{i'})f_{j'})$$

$$= \delta_{ii'}\delta_{jj'}$$

for $i, j, i', j' = 1, 2, \cdots$.

Therefore, $(r(\mathcal{M}^{(1)} \otimes \mathcal{M}^{(2)})r^{-1}$, $HS(\mathcal{H}^{(1)}, \mathcal{H}^{(2)})$, $r(J^{(1)} \otimes J^{(2)})r^{-1}$, $CPHS(\mathcal{H}^{(1)+1}, \mathcal{H}^{(2)+1})$) is a standard form. Using the Radon-Nikodym theorem for L^2 -spaces [S, Theorem 1.2], we obtain the following theorem:

- (3.1). Let $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ be a matrix ordered standard form. Then $(r(\mathcal{M}' \otimes \mathcal{M})r^{-1}, HS(\mathcal{H}, \mathcal{H}), r(J \otimes J)r^{-1}, CPHS(\mathcal{H}^+, \mathcal{H}^+))$ is a standard form which is isomorphic to $(\mathcal{M}' \otimes \mathcal{M}, \mathcal{H} \otimes \mathcal{H}, J \otimes J, \mathcal{H}^+ \otimes \mathcal{H}^+)$ by the identification $r: \mathcal{H} \otimes \mathcal{H} \to HS(\mathcal{H}, \mathcal{H})$ defined as above. If $A, B \in HS(\mathcal{H}, \mathcal{H})$ satisfies $O \trianglelefteq_{cp} A \trianglelefteq_{cp} B$, then there exists an element $C \in \mathcal{M}' \otimes \mathcal{M}$ with $O \leq C \leq I$ such that $A = r\hat{C}r^{-1}B$.
- (3.2). If in (3.1) \mathcal{M} is an injective factor (or semi-finite injective von Neumann algebra) on a separable Hilbert space \mathcal{H} , then the above statement is valid for $A \in L(\mathcal{H})$ instead of $A \in HS(\mathcal{H}, \mathcal{H})$.

Proof. Suppose that \mathcal{M} is the von Neumann algebra in the statement. There then exists an increasing net $\{E_i\}$ of completely positive projections of finite rank on \mathcal{H} which converges strongly to 1 by [M1, Theorem 1.4]. It follows that $O \leq_{cp} E_i A \leq_{cp} E_i B$. Hence

$$\operatorname{Tr}(A^*E_iA) \leq \operatorname{Tr}(B^*E_iB) \leq \operatorname{Tr}(B^*B).$$

Considering a limit with respect to i, we have $Tr(A^*A) < +\infty$. Using (3.1) we obtain the desired result. \square

(3.3). For a matrix ordered standard form $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$, any element $A \in HS(\mathcal{H})$ can be uniquely decomposed into the following:

$$A = A_1 - A_2 + i(A_3 - A_4)$$

where $A_1 \perp A_2, A_3 \perp A_4, A_i \in CPHS(\mathcal{H}^+)$.

The proof of the above proposition is immediate from a decomposition theorem of vectors in the ordered Hilbert space.

§4. DECOMPOSITION OF POSITIVE MAPS

The purpose of this section is to show that any order isomorphism between non-commutative L^2 -spaces associated with von Neumann algebras is decomposed into a sum of a completely positive and a completely co-positive maps. The result is an L^2 version of a theorem of Kadison [K] for a Jordan isomorphism on operator algebras.

We first generalize a theorem of A. Connes [C] for the polar decomposition of an order isomorphism, to the case where a von Neumann algebra is non- σ -finite.

- (4.1). Let $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ and $(\tilde{\mathcal{M}}, \tilde{\mathcal{H}}, \tilde{J}, \tilde{\mathcal{H}}^+)$ be standard forms, and A be a linear bijection of \mathcal{H} onto $\tilde{\mathcal{H}}$ satisfying $A\mathcal{H}^+ = \tilde{\mathcal{H}}^+$. Then for a polar decomposition A = U|A| of A we obtain the following properties:
 - (1) There exists a unique invertible operator $Bin \mathcal{M}^+$ such that |A| = BJBJ. (cf. [I, Corollary II.3.2])
 - (2) There exists a unique Jordan *-isomorphism α of $\mathcal M$ onto $\tilde{\mathcal M}$ such that

$$(\alpha(X)\xi,\xi) = (XU^{-1}\xi,U^{-1}\xi)$$

for all $X \in \mathcal{M}, \xi \in \tilde{\mathcal{H}}^+$.

Proof. (1) Let \mathcal{M} be non- σ -finite. Choose an increasing net $\{p_i\}_{i\in I}$ of σ -finite projections in \mathcal{M} converging strongly to 1. Put $q_i = p_i J p_i J$. By [[C, Theorem 4.2] $q_i \mathcal{H}^+$ is a closed face of $\tilde{\mathcal{H}}^+$. Since A is an order isomorphism, $A(q_i \mathcal{H}^+)$ is a closed face of $\tilde{\mathcal{H}}^+$. There then exists a σ -finite projection $p_i' \in \tilde{\mathcal{M}}$ such that $A(q_i \mathcal{H}^+) = q_i' \tilde{\mathcal{H}}^+$ where q_i' denotes $p_i' J p_i' J$. Hence $q_i' A q_i$ is an order isomorphism

of $q_i\mathcal{H}^+$ onto $q_i'\tilde{\mathcal{H}}^+$. These cones appear respectively in the reduced standard forms $(q_i\mathcal{M}q_i, q_i\mathcal{H}, q_iJq_i, q_i\mathcal{H}^+)$ and $(q_i'\tilde{\mathcal{M}}q_i', q_i'\tilde{\mathcal{H}}, q_i'Jq_i', q_i'\tilde{\mathcal{H}}^+)$. Put $A_i = (q_i'Aq_i)^*q_i'Aq_i$. Then $A_i \in q_i\mathcal{M}^+q_i$ is an order automorphism on $q_i\mathcal{H}^+$. By [C, Theorem 3.3] there exists a unique invertible operator $B_i \in q_i\mathcal{M}^+q_i$ such that $A_i = B_iJ_iB_iJ_i$, where J_i denotes q_iJq_i . Taking a logarithm of both sides, we have $\log A_i = \log B_i + J_i(\log B_i)J_i$. Since $\{A_i\}$ is a bounded net, $\{\log B_i\}$ is bounded. Indeed, we have in a standard form that a map

$$X \mapsto \delta_X = \frac{1}{2}(X + JXJ)$$

is a Jordan isomorphism of a selfadjoint part of \mathcal{M} into a selfadjoint part of a set of all order derivations $D(\mathcal{H}^+)$ by [I, Corollary VI.2.3]. It is known that any isomorphism of a JB-algebra into another JB-algebra is isometry(see [HS, Proposition 3,4.3]). Hence

$$\parallel \delta_X \parallel = \parallel X \parallel, \quad X \in \mathcal{M}_{s.a.}.$$

Thus $\{\log B_i\}$ is bounded. It follows that $\{p_i(\log B_i)p_i\}$ is bounded because $p_i\mathcal{M}p_i$ and $q_i\mathcal{M}q_i$ are *-isomorphic. Therefore, one can find a subnet of $\{p_i\log B_ip_i\}$ which converges to some element $C\in\mathcal{M}^+$ in the σ -weak topology. We may index the subnet as the same $i\in I$. We then have for $\xi,\eta\in\mathcal{H}$

$$\begin{split} ((C+JCJ)q_j\xi,q_j\eta) &= \lim_i ((p_i(\log B_i)p_i + Jp_i(\log B_i)p_iJ)q_j\xi,q_j\eta) \\ &= ((\log B_j + J_j(\log B_j)J_j)q_j\xi,q_j\eta) \\ &= \lim_i (\log A_iq_j\xi,q_j\eta) \\ &= (\log A^*Aq_j\xi,q_j\eta), \end{split}$$

using the facts that $q_iXq_iJq_iXq_iJq_i=p_iXp_iJp_iXp_iJq_i$ for all $X\in\mathcal{M}$, and under the strong topology $\{A_i\}$ converges to A^*A ; hence $\{q_i(\log A_i)q_i\}$ converges to $\log A^*A$. Since $\bigcup_{i\in I}q_i\mathcal{H}$ is dense in \mathcal{H} , we obtain the equality $C+JCJ=\log A^*A$. Therefore, $e^CJe^CJ=A^*A$. Thus there exists an element $B\in\mathcal{M}^+$ such that |A|=BJBJ. Since, in addition, $q_iBq_iJq_iBq_iJq_i=q_i|A|q_i$, one easily sees the invertibility and the unicity of B using the same properties as in the σ -finite case.

(2) From (1) we have $U = AB^{-1}JB^{-1}J$. It follows that U is an isometry satisfying $U\mathcal{H}^+ = \tilde{\mathcal{H}}^+$. Let p_i and q_i be as in (1). There then exists a σ -finite projection $p_i' \in \tilde{\mathcal{M}}$ such that $U(q_i\mathcal{H}^+) = q_i'\tilde{\mathcal{H}}^+$ with $q_i' = p_i'\tilde{J}p_i'\tilde{J}$. Using also [C, Theorem 3.3], one can find a unique Jordan *-isomorphism α_i of $q_i\mathcal{M}q_i$ onto $q_i'\tilde{\mathcal{M}}q_i'$ such that

$$(\alpha_i(q_iXq_i)\xi,\xi) = (q_iXq_iU^{-1}\xi,U^{-1}\xi)$$

for all $X \in \mathcal{M}, \xi \in q_i'\tilde{\mathcal{H}}^+$. Fixed now $X \in \mathcal{M}_{s.a.}$. Since $p_i'\tilde{\mathcal{M}}p_i'$ and $q_i'\tilde{\mathcal{M}}q_i'$ are *-isomorphic, there exists a unique operator $Y_i \in p_i'\tilde{\mathcal{M}}_{s.a.}p_i'$ such that $Y_i|_{q_i'\tilde{\mathcal{H}}} = \alpha_i(q_iXq_i)$. Using an isometry between the Jordan algebras, one sees that $\{\alpha_i(q_iXq_i)\}$ is a bounded net, because $\|\alpha_i(q_iXq_i)\| = \|q_iXq_i\| \le \|X\|, i \in I$. Thus $\{Y_i\}$ is bounded. We may then say that $\{Y_i\}$ converges to some operator $Y \in \tilde{\mathcal{M}}_{s.a.}$ in the σ -weak topology. We then have for $\xi \in \tilde{\mathcal{H}}^+$

$$(Yq'_{j}\xi, q'_{j}\xi) = \lim_{i} (Y_{i}q'_{j}\xi, q'_{j}\xi) = \lim_{i} (\alpha_{i}(q_{i}Xq_{i})q'_{j}\xi, q'_{j}\xi)$$
$$= \lim_{i} (q_{i}Xq_{i}U^{-1}q'_{j}\xi, U^{-1}q'_{j}\xi)$$
$$= (XU^{-1}q'_{i}\xi, U^{-1}q'_{i}\xi).$$

Taking a limit with respect to j, we obtain

$$(Y\xi,\xi) = (XU^{-1}\xi,U^{-1}\xi)$$

for all $\xi \in \tilde{\mathcal{H}}^+$. It is known that any normal state on the von Neumann algebra $\tilde{\mathcal{M}}$ is represented by a vector state with respect to an element of $\tilde{\mathcal{H}}^+$ (see [H, Lemma 2.10 (1)]). Therefore, the above element Y is uniquely determined. Moreover, we have $q_i'Yq_i'=\alpha_i(q_iXq_i)$. It follows that $\{\alpha_(q_iXq_i)\}$ converges to Y in the strong topology. Hence one can define $\alpha(X)=Y$ for all $X\in\mathcal{M}$. It is now immediate that $\alpha(X^2)=\alpha(X)^2$ for all $X\in\mathcal{M}_{s.a.}$. Considering the inverse order isomorphism U^{-1} , we have $\alpha(\mathcal{M})=\tilde{\mathcal{M}}$. This completes the proof. \square

In the following proposition we deal with a reduced matrix ordered standard form by a completely positive projection.

(4.2). With $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ a matrix ordered standard form, let E be a completely positive projection on \mathcal{H} . Then $(E\mathcal{M}E, E\mathcal{H}, E_n\mathcal{H}_n^+)$ is a matrix ordered standard

Proof. The statement was shown in [MN, Lemma 3] where \mathcal{M} is σ -finite. In the case where \mathcal{M} is not σ -finite, since E is a completely positive projection, there exists a von Neumann algebra \mathcal{N} such that $(\mathcal{N}, E\mathcal{H}, E_n\mathcal{H}_n^+)$ is a matrix ordered standard form by [M2, Lemma 3]. Hence $E\mathcal{M}|_{E\mathcal{H}} = \mathcal{N}$ and $(E\mathcal{M}E, E\mathcal{H}, E_n\mathcal{H}_n^+)$ is a matrix ordered standard form by using the same discussion as in the proof in [M3]. \square

Now, we shall state the decomposition theorem for an order isomorphism between non-commutative L^2 -spaces.

(4.3). Let $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ and $(\tilde{\mathcal{M}}, \tilde{\mathcal{H}}, \tilde{\mathcal{H}}_n^+)$ be matrix ordered standard forms. Suppose that A is a 1-positive map of \mathcal{H} into $\tilde{\mathcal{H}}$ such that $A\mathcal{H}^+$ is a selfdual cone in the closed range of A. If both the support projection E and the range projection F of A are completely positive, then there exists a centeral projection P of $E\mathcal{M}E$ such that AP is completely positive and A(E-P) is completely co-positive.

In particular, if A is an order isomorphism of \mathcal{H} onto $\tilde{\mathcal{H}}$, then there exists a centeral projection P of \mathcal{M} such that AP is completely positive and A(1-P) is completely co-positive.

Proof. We first consider the case where A is an order isomorphism. Let U, B and α be as in (4.1). It follows from a theorem of Kadison [K] that there exists a central projection P of \mathcal{M} satisfying

$$\alpha: \mathcal{M}_P \to \tilde{\mathcal{M}}_{\alpha(P)}$$
, onto *-isomorphism

and

$$\alpha: \mathcal{M}_{1-P} \to \tilde{\mathcal{M}}_{\alpha(1-P)}$$
, onto *-anti-isomorphism.

Indeed, $\alpha(P)$ is a central projection of $\tilde{\mathcal{M}}$. Since α preserves a *-operation and power, $\alpha(P)$ is a projection. Suppose that Q is an arbitrary projection in \mathcal{M} . Since α is order preserving, we have $\alpha(QP) \leq \alpha(P)$ and $\alpha(Q(1-P)) \leq \alpha(1-P)$. It follows that two projections $\alpha(P)$ and $\alpha(QP)$ are commutative, and so are $\alpha(1-P)$ and $\alpha(Q(1-P))$. Hence $\alpha(Q) = \alpha(QP + Q(1-P))$ and $\alpha(P)$ commute. Since α is bijective, a set $\alpha(Q)$ generates a von Neumann algebra $\tilde{\mathcal{M}}$. Therefore, $\alpha(P)$ belongs to a center of $\tilde{\mathcal{M}}$. Now, there then exists a unique completely positive

isometry $u: P\mathcal{H} \to \alpha(P)\tilde{\mathcal{H}}$ such that

$$u(P\mathcal{H}^+) = \alpha(P)\tilde{\mathcal{H}}^+)$$
 and $\alpha(x) = uxu^{-1}$, $x \in \mathcal{M}_P$

by [M3, Proposition 2.4] which is also valid for the non- σ finite case. Hence $(UxU^{-1}\xi,\xi)=(uxu^{-1}\xi,\xi), x\in \mathcal{M}_P, \xi\in \alpha(P)\tilde{\mathcal{H}}^+$. We have from the unicity of a completely positive isometry UP=u. Note that $\alpha(P)UP=UP$. Indeed, we have for $\xi, \in \alpha(1-P)\tilde{\mathcal{H}}^+$ the equality

$$||PU^{-1}\xi||^2 = (UPU^{-1}\xi,\xi) = (\alpha(P)\xi,\xi) = 0.$$

This yields $PU^{-1}\alpha(1-P) = O$, and so $PU^{-1} = PU^{-1}\alpha(P)$. Therefore, we obtain that AP = UBJBJP = uBJBJP and AP is completely positive.

We next consider a *-isomorphism $\alpha': \mathcal{M}_{1-P} \to \tilde{\mathcal{M}}'_{1-\alpha(P)}$ defined by $\alpha'(X) = \tilde{J}\alpha(X)^*\tilde{J}, X \in \mathcal{M}_{1-P}$. There then exists a unique completely positive isometry $v: (1-P)\mathcal{H} \to \alpha(1-P)\tilde{\mathcal{H}}$ such that

$$v(1-P)\mathcal{H}^+ = (1-\alpha(P))\tilde{\mathcal{H}}^+$$
 and $\alpha'(x) = vxv^{-1}$, $x \in \mathcal{M}_{1-P}$.

Then we have $\alpha(x) = \tilde{J}vx^*v^{-1}\tilde{J}, x \in \mathcal{M}_{1-P}$. Note that the complete positivity above means $v_n(1-P)_n\mathcal{H}_n^+ = (1-\alpha(P))_n\tilde{\mathcal{H}}_n^{+\prime}$, where $\tilde{\mathcal{H}}_n^{+\prime}$ denotes the selfdual cones associated with $\tilde{\mathcal{M}}'$. Hence v is a completely co-positive map under the setting $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ and $(\tilde{\mathcal{M}}, \tilde{\mathcal{H}}, \tilde{\mathcal{H}}_n^+)$. Hence

$$\begin{split} (UxU^{-1}\xi,\xi) &= (\tilde{J}vx^*v^{-1}\tilde{J}\xi,\xi) \\ &= (\tilde{J}\xi,vx^*v^{-1}\tilde{J}\xi) \\ &= (vxv^{-1}\xi,\xi) \end{split}$$

for all $x \in \mathcal{M}_{1-P}, \xi, \in (1-P)\mathcal{H}^+$. It follows that U(1-P) = v. We conclude by the equality A(1-P) = vBJBJ(1-P) that A(1-P) is completely co-positive.

We now consider a general A. Since $A\mathcal{H}^+ \subset \tilde{\mathcal{H}}^+$, we have $A\mathcal{H}^+ \subset F\tilde{\mathcal{H}}^+$. Since F is a projection, $F\tilde{\mathcal{H}}^+$ is a selfdual cone in $F\tilde{\mathcal{H}}$. It follows from the selfduality of $A\mathcal{H}^+$ that $A\mathcal{H}^+ = F\tilde{\mathcal{H}}^+$. This yields from (4.2) that FAE is an order isomorphism of $E\mathcal{H}$ onto $F\tilde{\mathcal{H}}$ in the sense of matrix ordered standard forms ($E\mathcal{M}E$, $E\mathcal{H}$, $E_n\mathcal{H}_n^+$)

and $(F\tilde{\mathcal{M}}F, F\tilde{\mathcal{H}}, F_n\tilde{\mathcal{H}}_n^+)$. Using the first part of the proof, we obtain the desired result. Indeed, there exists a central projection $P \in E\mathcal{M}E$ such that FAP is completely positive and FA(E-P) is completely co-positive under the reduced matrix ordered standard forms. We obtain the inclusion

$${}^{t}(A_n(E_n-P_n)\mathcal{H}_n^+) = {}^{t}(F_nA_n(E_n-P_n)\mathcal{H}_n^+) \subset F_n\tilde{\mathcal{H}}_n^+ \subset \tilde{\mathcal{H}}_n^+.$$

This completes the proof. \Box

Finally, the author wishes to express his sincere gratitude to Professor Y. Katayama for having pointed out the problem of Section 4 to him.

REFERENCES

- [C] A. Connes, Caractérisation des espaces vectoriels ordonnées sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier 24 (1974), 121-155.
- [H] U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.
- [HJ] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1990.
- [HS] H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras, Pitman, Boston-London-Melbourne, 1984.
- [I] B. Iochum, Cônes Autopolaires et Algèbres de Jordan, Lecture Notes in Mathematics, 1049, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.
- [IM] Y. Ishikawa and Y. Miura, Matrix inequalities associated with a selfdual cone, Far East J. Math. Sci. (FJMS) 2 (2000), 425-431.
- [K] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
- [M1] Y. Miura, A certain factorization of selfdual cones associated with standard forms of injective factors, Tokyo J. Math. 13 (1990), 73-86.
- [M2] _____, On a completely positive projection on a non-commutative L^2 -space, Far East J. Math. Sci. 5 (1997), 521-530.
- [M3] _____, Complete order isomorphisms between non-commutative L^2 -spaces, Math. Scand. 87 (2000), 64-72.
- [MI] Y. Miura and Y. Ishikawa, 自己共役錐体に付随する作用素の不等式について, 「作用素の不等式とその周辺」, 京都大学数理解析研究所講究録 1144 (2000), 31-38.
- [MN] Y. Miura and K. Nishiyama, Complete orthogonal decomposition homomorphisms between matrix ordered Hilbert spaces, Proc. Amer. Math. Soc. 129 (2001), 1137-1141.
- [MT] Y. Miura and J. Tomiyama, On a characterization of the tensor product of the selfdual cones associated to the standard von Neumann algebras, Sci. Rep. Niigata Univ., Ser. A 20 (1984), 1-11.
- [S] L. M. Schmitt, The Radon-Nikodym theorem for L^p-spaces of W*-algebras, Publ. RIMS, Kyoto Univ. 22 (1986), 1025-1034.
- [SW1] L. M. Schmitt and G. Wittstock, Kernel representation of completely positive Hilbert-Schmidt operators on standard forms, Arch. Math. 38 (1982), 453-458.

[SW2] L. M. Schmitt and G. Wittstock, Characterization of matrix-ordered sta W*-algebras, Math. Scand. 51 (1982), 241-260.

DEPARTMENT OF MATHEMATICS, FACULTY OF HUMANITIES AND SOCIAL SC UNIVERSITY, MORIOKA, 020-8550, JAPAN E-mail address: ymiura@iwate-u.ac.jp