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Abstract

R.A. Proctor defined the d-complete posets and classified them into
15 irreducible ones. He showed that any d-complete poset is obtained by
the slant sum of the irreducible ones. He also announced that he and Dale
Peterson proved that every d-complete poset has hook length property.
In this paper we give a combinatorial proof of the hook length property of
the d-complete posets using the lattice path method. First we show that
each generating function of (P, w)-partitions is expressed as a determinant
or a pfaffian for an irreducible d-complete poset P. Then we prove the
determinant or pfaffian becomes a certain product for each irreducible
P. We still don’t finish all the 15 irreducible cases, but we found there
appears several interesting determinats and Pfaffians. In this manuscript
we give detailed proofs of some of them.

1 Introduction

In this manuscript we give some detailed versions of our proof which will
appear in our forcecoming paper. First we tried to find proofs of the hook
formulas of the so-called d-complete posets and we found there appears
lots of interesting determinants and Pfaffians in the proof. Although those
determinants and Pfaffians are themselves very interesting because they
give certain variants of classical well-known determinants and Pfaffians,
the calculations are rather direct and very long. In this manuscript we
introduce detailed versions of some of them, and our proof in the force-
coming paper will be shotened vesion of them. One of the authors didn’t
have time to complete the proof of all of them this time, but the completed
paper will appear in the near future. I would like to express sincere thanks
to the another auther and H. Kawamuko for very fruitful discussions and
suggestions.
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2 (P,w)-Partitions

In [11], R.P.Stanley defined the (P,w)-partitions and obtained the several
results on their generating functions. In this section we introduce the
notion of the (P, w)-partitions and one variable generating functions of the
(P, w)-partitions for the d-complete posets P, which we desire to compute.
By a labeled poset, we shall mean a pair (P,w), where P is a finite poset
and w : P — Z5 is an injective map that assigns labels to the elements of
P where labels are positive integers. For covenience, we will often assume
that P = [n] = {1,2,--- ,n} as the base set and Imgw = [n]. One says
that the labeling w is natural if z < y implies w(z) < w(y) forall z,y € P.
The labeling dual to w, denoted by w*, is defined by reversing the total
order on [n]. Also the order dual poset, denoted by P*, is defined by
reversing the order on P, i.e. z < y in P if and only if x > y in P*.

A (P, w)-partition is a map o : P — N such that for all £ < y in P, we
have

(i) o(z) = a(y),

(ii)) o(x) > o(y) whenever w(z) > w(y).
If w is order-preserving, then o is called for short a P-partition. If w is
order-reversing, then o is called a strict P-partition. If |o| = 3 zep () =
m, then o is called a (P,w)-partition of m and denoted by o  m. Let
A(P,w) denote the set of all (P,w)-partitions, and A(P) the set of all
P-partitions.

Similarly we define a reversed (P, w)-partition o : P — N by replacing

the above conditions (i),(ii) by

(") o(x) < o(y),
(ii’) o(x) < o(y) whenever w(z) > w(y).

And it is easy to see that the arguments are almost parallel. Let R(P,w)
denote the set of all reversed (P, w)-partitions. In this paper we only need
the one variable generating function of (P,w)-partitions weighted by |o/|:

Fa(Pwig)= > ¢ )
: c€A(Pw)
Similarly we also put
Fr(Pw;q)= Y ¢ )
oc€R(P,w)

The aim of this paper is to obtain the generating function for certain
classes of finite posets and to show that it is expressed by a simple product
formula. If |P| = n, then an order-preserving bijection 7 : P — n is
called a linear extension of P, where n denotes the n-elements chain.
Let £(P) denote the set of linear extensions of P, and let £L(P,w) =
{wor™ : 7 € L(P)}. Note that L(P*) = {mpo7 : 7 € L(P)} and
L(P*,w) = {woT lom : 7 € L(P)}, where P* is the dual poset of P
and mo is the longest element in S,. Further we put W(P,w) = {row™!:
T € L(P)} C S, and call its elements the reading words of the linear
extensions relative to w.

For every m € S, let

D(r)={1<i<n—-1:7(@)>n(i+1)}
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denote the descent set of 7, and
Am ={1<i<n—-1: (@) <n(i+1)}

denote the ascent set of 7. Further for m € Sp we let maj(7) = 3, p(r)
denote the major index of 7 and let min(m) = 3 ;¢ 4(,) ¢ denote the minor
index of m.

For any permutation 7 € S, and i € [n] let

. Jo ifi=1,
M=\ eis(m) + 6(r2 G~ 1) > 771(@) f2<is<n.

where 8(x) equals 1 if  is true, and 0 otherwise. Similarily we define

.
c',-(7r)={0 ifi=1,

(@) +8(xMi-1)<7m (1) f2<i<n

We let ch(w) = 37, ci(m) the charge of 7, and let coch(m) = Y 7_, ci(m)
the cocharge of . It is easy to see that ch(m) = Yiep-n(n — 1) =
min(7~! o0 mo) and coch(m) = ¥, a(n-1y(N — i) = maj(7~! o m), where
o is the longest element in S,. This implies ch(w) + coch(r) = (%)

For any linear extension 7 € L(P), let D(,w) = {i € [n—1]:
w(r™(3)) > w(r7(i + 1))} denote the descent set of 7 relative to w,
‘and we put

_ . o(r7'(Q) 2 - 2 o(r7}(n)) and
A(P,w,T) = {a €APw): ¢ D(r,w) = a(f"l(Ti)) > o(ir“l?(i +1)) }

The fundamental theorem for (P, w)-partition is

APw)= |J APw,7).

TEL(P)

As a corollary of this theorem, we have

E (P )qmaj(vr) Z WP )qcoch(woovr)
Fa(Pwiq) = === - = 3
(Prwia) (g 9)n (¢ 9)n ®)
It is also easy to see that
min(m h omw
Fx(P,w*;q) = Lnecpwn 9 e = LoreW(Pw) g roem 4)
T (2:9)n (3:9)n
In [11], Stanley showed that
e . n 1
" FalPu™s) = (1" Fa (P 3.
Similarly we have
in(mwo ’ h';r
Fr(P,w;q) = ZWEC(P,w) gminiromo) _ EWEW(P,W) g™
’ (g:9)n ~ (¢ @)n
and
maj(mom och (m
Fr(P,w*;q) = 2recpw) 9 pitmomo) _ Yrewpw) 4 ™

)

(g 9)n B (@ q)n



for the generating functions of reversed (P,w)-partitions. From now on
we restrict our attention to the (P,w)-partitions, and write F(P,w;q) for
Fa(P,w; q) for short as far as there is no fear of confusion.

In [10], Proctor defined the “slant sum” for d-complete posets. Here by
abuse of terminology we use the word “slant sum” for any finite posets.
Let P, be a finite poset and y € P, be any element. Let P; be a fi-
nite connected poset which is non-adjacent to P, with the maximal el-
ements I, ---, T;m. Then the slant sum of P, with P, at y, denoted
by P1¥\s,,... 2., P2, is the poset formed by creating the covering relations
X1 <Y, -, Tm < Y.

Let P, be a finite poset and z € P, be any element such that (2) is
an n-element chain and z is covered by only one element y € P,. Here
(2) = {w € P : w < 2} is the principal order ideal generated by z. Let
w1 be a labeling on P; whose restriction on (z) is a natural labeling and
w1(y) > wi(z). Let P; be any n-element connected poset which is non-
adjacent to P; with the maximal elements z;, - - -, Zm, and let w2 be any
labeling on P,. Let P be the poset obtained by replacing the n-element
chain (z) by the n-element poset P;: i.e., P = P{¥\.,.... z,. P2, where P}
is the poset obtained by removing the order ideal (2) from P, deleting
the cover relation y > 2. Let M be an integer which is larger than any
label appearing in w2. Define the labeling w on P by w| p; =wi1+ M and
w|p, = w2, where (w1 + M)(w) = w1(w) + M for w € P;.

Lemma 2.1 Then the generating function of (P,w)-partitions is given by
F(P,w;q) = (¢ OnF(Pr,w1; 9) F(Pz,w2; q)

Proof. The generating function of all (Pz,ws)-partitions o such that
o(x1) 2 a, -, o(zm) > a, is q"*F(P2,w2; q), while the generating func-
tion of all (n,wo)-partition o such that (i) > a is —%, where n is
the n-elements chain and wy is the natural labeling. Thus there exists a

function f(q,a) such that '

F(Pywi;9) =) f(g,a)

a=0

qna
(@ 9)n
Using this f(g,a), the generating function F(P,w; q) is expressed as

F(Pw;q) =) f(g,0) ¢"*F(P;,w2) = (¢ q)n F(P1,w:; ) F(Pz, w2; q).

a=0
This proves the lemma. O
The above easy lemma is very fundamental to calculate the generating
functions of varius posets. It assures that, if we prove a hook length

property for a poset which contains a chain, then we can replace it by any
poset which also has hook length property.

3 Admissible labelings

Let P be a finite poset with n elements and w: P - n a labeling. For
any elements z,y € P such that z < y, we define €, (z,y) by

_fo ifw(z) < w(),
€w(z,y) = {1 if w(z) > w(y).
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For any interval [a, b] of P, let C(a, b) denote the set of all saturated chains
C = (z0,Z1, "+ ,&m) from a to b, i.e.,

a=Tg< 1< <Tm = b.

Thus, for any C € C(a,b) we define €.,(C) by

m

Gw(C) = z ew(.’L'i_l,.’Bi).

i=1

Definition 3.1 A labeling w of P is said to be admissible if it satisfies
the followng condition (AL).

(AL) For any mazimal elemenis by and b2 of P, and for
any element a of P which satisﬁes a < b1, b,

€0 (C1) = € (C2)

holds for any C1 € C(a,b1) and C; € C(a,bs).
Let AL(P) denote the set of all admissible labelings of P.
Note that, from the definition of the admissible labeling, it is clear that if
w € AL(P) and-a,b are elements of P such that a < b, then
€u(C1) = € (C2)

holds for any Ci, C; € C(a,b).

One also easily can see that any labeling of a tree is admissible since
there exists a only one path from any element of P to the unique max1mal
element of P.

Example 3.2 In the following poset the labeling wy is admissible, but wy
s not.

) .

5 (=:wn) 9 (=: w2)

Let w be an admissible labeling of a finite poset P. We deﬁne an order
reversing map ¢, : P — N by :

0 if x is a maximal element in P,
Pu(®) = < pu(y) if z <y and w(z) < w(y),
vu(y) +1 ifx <y and w(z) > w(y).

This implies that, in general, ¢, (x) is defined by

- pu(T) = €(C)

for a saturated chain C € C(z,y) and a maximal element y in P. It
is easy to see, from the definition of the admissible labeling, that ¢, is
well-defined and become a (P, w)-partition.
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Example 3.3 The following ., correspondstow, in Ex. 3.2 and |p.,, | =
2

Puy = 1
The following theorem is the main result in this section.
Theorem 3.4 Let w be an admissible labeling of a finite poset P. Then

we have
3 =gl 3T g,

$EA(P,w) pEA(P)

Proof. Recall that A(P,w) denote the set of all (P, w)-partitions and .A(P)
the set of all P-partitions. Define ® : A(P) — A(P,w) by

2(p)(z) = p(x) + pu(T).

If we show that this gives a bijection between A(P) and A(P,w), then
the desired identity holds since |®(p)| = |pu| + |¢|. In fact, if we define
&' : A(P,w) — A(P) by

¥'(¢')(z) = ¢'(z) - ¢ul(2),

then it is easily checked that ® and ®’ are well-defined. From the definition
it is clear that & and ®' are inverse maps of each other and this proves
our theorem. O

Conjecture 3.5 Let P be a finite poset and w a labeling of P. Then the
following two conditions are equivalent.

(i) w is an admissible labeling.
(1) There exists m € N such that

Y =g Y v

PEA(P,wW) PpEA(P)

The condition (i) can be replaced by the following condition (ii)’.
(i)’ There exists m € N and a linear extension wo such that

z qCOCh(‘ll’()O"r) — qm Z qcoch(-;roor).

TEW(P,w) TEW(P,wy)

4 The Lattice Path Method

In this section we present some lemmas which will be needed to obtain
the generating function of the posets which will appear in the following
sections.

Let A = (A1,---,Ar) be a partition. ie. Ay > --- > A, > 0. Let
Q = {(i,j) : i,7 € P} denote the set of integral points in the strict
fourth quadrant of the plane. We define the order in @ by the relation
(il,jl) < (iz,jz) if and only if ¢ > i2 and j; > j2. Let P = D(A) =
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{G,7):1<i<n1<7 < A:} be the filter of Q, and consider it as a finite
poset.

In this paper we consider two different labelings of P. One is called
column-strict labeling, which is defined by

i-1
we(, j) = Z)\k +Xi+1—7,
k=1 ~

and the other is called row-strict labeling defined by
T
we(in i) = Y M+J.
. k=i+1

Alternatively, when w is column-strict (resp. row-strict) labeling, a (P,w)-
partition is called column-strict (resp. row-strict) reverse plane partition
which is defined to be a filling of Young diagram A by nonnegative integers:

ail a2 cee Q1
a1 Qa2 - a2,
ar1  °° Qr),

which satisfies the conditions:

(i) the entries increase weakly (resp. strongly) from left to right along
each row,

(ii) the entries increase strongly (resp. weakly) from top to bottom albng
each column. : o

Let O denote the “octant” subposet of Q formed by taking the weakly
upper triangular portion of Q: O = {G,j) € Q :j =i} Letp=
(p1,- -+ ,pur) be a strict partition, ie. p1 > --- > pr > 0. Let P =
D(y) = {(i,4) : 1 <§ < i< j <i— 1+ pi} be the filter of O. Similarly
we define the column-strict (resp. row-strict) labeling wc (resp. wr) on P
by ‘ : S

i—1 T
we(i,i—147) = Z#k+#i+1"j (resp. wr(i,i—147) = Z Utk + j) .

k=1 k=i+1

By the similar argument as above, when w is column-strict (resp. row-
strict) labeling, a (P, w)-partition y is identified with a column-strict (resp.
row-strict) shifted reverse plane partition which is defined to be a filling
of shifted Young diagram p by nonnegative integers:

aii a2 °°° . e A1y,
a2 . e oo az14pg

Qrr  Qrir—1+ur

which satisfies the same conditions as above. The strict partition p is
called the shape of ¢ and the entries in the main diagonal (@11, : ,@rr)
form a strict reverse partition called the profile of .

Lemma 4.1 Let p = (u1 > --- > pr > 0) be a strict partition and let
a=(0<a1 <-- <ar) be a strict reverse partition. , ’
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(1) Then the generating function of column-strict shifted reverse plane
partitions of shape p and profile a is given by

T @ans det (¢"%), ., i, (5)

(2) The generating function of row-strict shifted reverse plane partitions
of shape p and profile a is given by

q -r=l (“2')

M. (@ 9w det (¢"%7); < j<r (6)

Let 0 < r < n < N be nonnegative integers. Let B be an arbitrary
N by N skew-symmetric matrix; that is, B = (bi;) satisfies b;; = —bjs.
Let T = (tik)i<i<n,1<k<n be any n by N matrix, For a row index set
I = {iy,---,i,} and a column index set J = {71,--- ,3r}, let T} denote the
submatrix obtained by choosing the rows indexed by I and the columns
indexed by J. Especially, in the case of I = [n], we write T; for T. We
cite a useful theorem from [6], which expresses a sum of minors by one
Pfaffian.

Theorem 4.2 Letn < N and assumen is even. Let T = (tik)1<i<n,1<k<N
be any n by N matriz, and let B = (bik)1<ik<n be any N by N skew sym-
metric matriz. Then

> Pf(Bf)det(Tr) = pf(Q), Y
IC([N]
fi=n

where Q is the n by n skew-symmetric matriz defined by Q = TB'T, i.e.

Q= Y budet(Tyl), (1<ij<n). 8)

1<k<I<N

As a corollary of this theorem and the above lemma, we obtain the
following lemma.

Lemma 4.3 Let r,s be integers such that 0 <s<randr+s is even.
Let p = (1 > -+ > pr > 0) be a strict partition and let a = 0<a <
.-+ < as) be a strict reverse partition. Then the generating function of
column-strict (resp. row-strict) shifted reverse plane partitions such that
its shape is u and the first s parts of its profile is equal to a is given by

z(m+u,')(as+1) qHi—gti

of (6:9)u; (60 u; (Bitnj)q
g H38%r4sF1—3 I

- (q;Q)pj -1

ql‘i“r+a+l -3
(359 ;-1

0

Proof. This theorem is obtained from the definition of shifted plane par-
tions and the lattice path method. For details, see [6].

5 d-Complete Posets

In this section we briefly recall the basic definitions and properties of the
d-complete posets. The reader should refer to [10] for details.
Let P be a finite poset. If z,y € P, then we say ycoversz if z < y

and no z € P satisfies < 2 < y. When y covers z, we denote y > z. An
order ideal of P is a subset I of P such that if z € I and y < z, then
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y € I. Similarly a filter is a subset F' of P such that if z € F and y > x,
then y € F. The order ideal (z) is the principal order ideal generated by
x. ;

For k > 3, the double-tailed diamond poset di(1) has 2k — 2 elements,
of which two are incomparable elements in the middle rank and k—2 apiece
form chains above and below the two incomparable elements. The k — 2
elements above the two incomparable elements are called neck elements.
For k > 3, we say that an interval [w, z] is a dk-interval if it is isomorphic
to di(1). Further, for k > 4, we say that an interval [w, 2] is a dj -interval
if it is isomorphic to di(1) \ {t}, where t is the maximal element of di(1).
A subposet {w,z,y,z} of P is a diamond if z covers = and y, and each

of z and y cover w. The following figures shows how the dk-interval looks
like.

da(1) da(1) di(1) 2 l

S ¢

'w
A poset P is dz-complete if it satisfies the following conditions:

(1) Whenever two elements z and y cover a third element w, there exists
a fourth element z which covers both z and y,

(2) If {w,z,y,2} is a diamond in P, then z covers only = and y in P,
and

(3) No two elements = and y can cover each of two other elements w
and w':

Let k > 4. Suppose [w,y] is a dj -interval in which z is the unique

element covering w. If there is no z € P covering y such that [w,z] is a

dx-interval, then [w,y] is a incomplete dj, -interval. If there exists w' # w
which is covered by z such that [w’,y] is also a dj -interval, then we say
that [w,y] and [w’, y] overlap. For any k > 4, a poset P is dx-complete if:

(1) There are no incomplete d -intervals,
(2) If [w, 2] is a dk-interval, then z covers only one element in P, and

(3) There are no overlapping dj -intervals.

Definition 5.1 A poset P is d-complete if it is dx-complete for every
k > 3.

It is an easy consequence of the definition that, if P is d-complete and
connected, then it has a unique maximum element 1 and every saturated
chain from an element w to 1 has the same length (See [10]). A top tree
element = € P is an element such that every element y > « is covered by
at most one other element. The top tree T of P consists of all top tree
elements. An element y € P is acyclic if y € T and it is not in the neck of
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any dk-interval for any k > 3. An element is cyclic if it is not acyclic. Let
Py be a d-complete poset containing an acyclic element y and let P; be a
connected d-complete poset which shares no element with P;. It is known
that P has the unique maximal element which is denoted by r. Then
the slunt sum of P, with P,, denoted by P,*\, P2, is the poset formed by

creating a new covering relation x > y. A d-complete poset P is said to be
slant irreducible if it is connected and it cannot be written as a slant sum of
two non-empty d-complete posets. A slant irreducible poset which has two
or more elements is called an irreducible components. Proctor[10] showed
that, if P is connected d-complete poset, it is uniquely decomposed into
a slant sum of one element posets and irreducible components. He also
classified the irreducible components and showed that 15 disjoint classes
of irreducible components Ci, ..., Ci5 in the following table exhaust the
set of all irreducible components. '

Class Colloquially Name

1 Shapes an{0; g, h; \]
2 Shifted Shapes dn[1;1, h; yj
3 Birds Yalf; 9,k
4 Insets enl[f;1,h;4; )]
5 Tailed Insets  an[f; 1, h;5; A, y

6 Banners enlf;1,h;6;]
7 Nooks enlf;1,h;7; A
8 Swivels en[f;1,2;8; ]
9 Tailed Swivels  en[f;1,2;9; ), 4

10 Tagged Swivels  en[f;1,2;10; 2]
11 Swivel Shifteds  e,[f;1,2;11; 4]

12 Pumps enlf;1,2;12;)]
13 Tailed Pumps  en[f;1,2;13; )]
14 Near Bats en[f;1,2;14]
15 Bat e7(f;1,2;15]

The reader can find the pictures of these posets in the next section.

Definition 5.2 Let P be a d-complete poset. For any element z € P we
define its hook length, denoted by h(2) as follows. If z is not in the neck of
any di-interval, then h(z) is the number of elements of the pricipal order
ideal generated by z, i.e. h(z) = §(2). If z is included in the neck of some
di-intervel, then, from the definition of the d-complete posets, we can take
the unique element w € P such that [w, 2| is d;-interval for some | < k.
Let x and y be the two incomparable elements in this d;-interval. Then we
define the hook length h(z) recursively by h(z) = h(z) + h(y) — h(w).

z

w ,
The aim of this paper is to prove the Frame-Robinson-Thrall type hook
formula for d-complete posets, which says the number of linear exten-
sions of an n-elements d-complete poset P is equal to _-e-% and
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coch(mgon) _ . n(Pw) (9:9)n
-1 ecp 1-9")
where w is some labeling and n(P,w) is some constant determined by
(P,w). First we want to prove this g-hook formulas for the 15 classes of
irreducible components (in fact we consider so-called extended irreducible
components P in which a chain is attached to each acyclic element of
each irreducible component) from which we can deduce g-hook formulas
for any d-complete posets by Lemma 2.1. For each irreducible component
P, we first calculate Y cyy(p.) geoP(m0°™) from the generating function
F(P,w;q) of (P,w)-partitions for an appropriate labeling w of P by the
equation (3). Then we make the generating function into a product form,

n(P,w) Pn : : _
(- At this point we saw the gen

erating function equals the product form for 13 classes of the irreducible
components but still 2 classes remains unsolved. The concrete form of the
fook formula in the product form for each irreducible component will be
found in the next section.

its g-analogue, which reads Zﬂew( Puw)d

which is equivalent to g

6 Proof of Hook Formulas

In this paper, when we say a hook-formula, it always means a g-hook
formula. ' v

To begin with, we sum up some useful identities to be used in the
following subsections. Here x, y, a, b, ¢ denote arbitrary integers. First
an easy direct calculation shows the following two identities.

(@ +a)g(z+b)g — g+ a)g(y+b)g = (¢ —a")(@+y+a+b)g (9)
@’(z+2y+ a+b+c)(z +a)g(z+b)e(z + C)q

-¢"(2r+y+a+b+ c)q(y + a)q(y + b)g(y +¢)q

= (¢¥ —-q’)q(:c+y+b+c)q(m+y+c+a)q(:c+y+a+b)q (10)

Further we enumerate several determinant formulas which are immediate
consequences of simple calculations and the above formulas.

1 2| g¥v-¢* :
()g | — q.___..q (11)
el =
1 Wl (%)q(¥)a ‘ ‘ :
1 1 '
L o, |_ | @l (@ oa)@ —d)etytat Da (19
1 (y+b)q (+b)q (z+ a)q(z + b)q(y + a)q(y + b)q
e | et e @=F (a+ztbie)
: 1 )., 1 )3'—‘ )q g —4)e — %) |Ta—w ET0),Fo),
a—y)q (y+b)q(y+clq - (a _ z) (z +b) (Z +C) q°~Y (y+2z+b+c)q
1 b q q q — b
_—(a—z)q 1 m ‘ (a—¥)q (y+b)q(y+c)q
' (13)
i—;l' 1 xr
(a—z)q(b—x)q (z+c)g(xz+d)q
-y 1 gy
(a—v)q_(b—u)q (y+c)q(yt+d)q
Y S (R - —
(a—2z)q(b—2)q (z+c)q(z+d)q ‘
_ q ¥(atb—z—2) (z+z+c+d)
- g (¢ — ¢ ) — ") (a—z)q(b-—z)qq (z+c)q(z+d;lq (14)
a—2)e(b—2)a(z + C)o(z + d)q | T Vlatby—2)g  (ytztctd)g
( Jab = 2)a(z + )l Jo | Sy Wro. Gt
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As coloraries of (13) and (14), we obtain the following determinants.

1 1
1L @40,
(a—-‘l')q 1 (z-:c)q
l - a—T (I+
i1 1 wio, || - ¢ (@ —a*) (e ~ ") ¢ — &) | F
a— - -y +
Ve 1 (VtC)q (a = 2)q(z+b)q(z + ¢)q e ﬁ
1 l 1 (Z+b)q
(@=2)e 1 (z-:c).,
(15)
1 1
o A ZF
L = 1 ==,
1 1
1 (c—ly)q 1 1 (y+1t:)q
L =R 1 Gva,;
1 1
1 (a—lz Ve 1 1 z-lic q
1 &5, 1 iy,

q“"’(a+b-z—z)q (z+z+c+d)g

_ 9N —a*)(e* — ¢¥)(¢® — ¢*)(¢% — ¢°) (@-2)gb-2)g  (z+g(atdlg |

- b— c)g(z+d 9" Y(a+b-y-2z) (y+2+4c+d)
(@ Z)q( Z)Q(Z-‘- )Q( + )q (“-v)q(b—v)qq (u+c)q(v+d)qq
(16)

Further the following identities are also frequently used in what follows.

—~[Z+a bz __ (‘1?0)5-1

,g [ a ]q  (€59)ats (17)
= z T _ a (q;q)b—

2 [a] @ =q b(q; Q)a+: (18)

r=a

6.1 Shapes

First of all, the hook-length property of shapes is a well-known classical
formula (see [3]), but here we briefly review how to obtain the generating
function F(P,w;q). For a detailed explanation of hook formulas for shapes
and shifted shapes, see [5].

Shapes (A1 >X2>---> A, >1)
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We put a labeling w as follows which we call the column-strict labeling.
Then a (P,w)-partition is usually called a column-strict tableau.

13 12 11 10 QI SI

177 16 15] 14
*

200 19 18

Theorem 6.1 Ifw is the column-strict labeling of a shape A = (A1,- -+, Ar),
then - o

F(Pwsq) = g sy B o 7 i)
Hi_—:l(q; @ ri+r—i

Here n(A\) =Y, (i — 1)\ ‘
Proof. Since a (P,w)-partition is a column-strict tableau, we have
F(va;Q) = s/\(laQaq27 qsa T )a

where sy (1,22, --) is the Schur function with infinitely many variables.
Assume n > r = £()). From the definition of the Shur functions

det (.T:\J +n“j)
sa(z1, ++ ,Tn) = — - 1stisn
b 7 - n_] ki
det (:zi )19,an
and the Vandermonde determinant, sx(1,q,--- ,¢" ") equals

det (q(i—l)(kﬁn—j)) j+nsi _

det (q(i—l)(n—j))

Ai+n—1
1<i,j<n _ HlSi<an(q gt

H15i<,‘5h(qn~j - g™ )

If we put n — oo, then we obtain the theorem. O

1<4,5<n

Corollary 6.2 If A = (A1,--- ,Ar) is a partition, then
det (_._1_____) = g™ IMicici<r (X=X —i+7)q
@i —i4s 1<i,j<r H:=1(q; Q)Ai+r—i

det (M) —y r_ (*;')Hlﬁi{'i%r (Mhi—Aj—i+7)q (20)
(G r;—i+s 1<i,j<r Hi-_—l(q;‘I)M-Fr—i

(19)

. 1 — . 4 .
Here we use the convention @ = 0ifi—-14+75<0.

Proof. We obtain this corollary if put z; = ¢! (i = 1,2,---) in the
Jacobi-Trudi identity:
sy = det (h)\,:—i+j) = det (6A£_i+]’) 5
where h. is the rth complete symmetric function and e, the rth elementary
symmetric function. O
We proved this lemma using the Schur functions to make the proof

shorter, but this lemma also can be proven using the Vandermonde deter-
minant without the knowledge of the symmetric functions.
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6.2 Shifted Shapes

Although the hook formulas for shifted shapes is well-known, here we
briefly review the associated Pfaffian evaluations, which will be used in
the following sections.

Shifted Shapes (A1 > A2 > ---> A\, > 1)
A1

———99 S
— ]

- .

As
{ ——

Lemma 6.3 Let n be an even intger. Then

pf (—x‘ — % ) = [T === (21)
1—ziz; 1SijSn 1<icj<n 1—ziz;

Proof This proof of using a residue theorem is suggested by H.Kawamuko.
The reader can find another proof in [13]. By the expansion formula of
Pfaffian along the first row and column it is enough to show that

i Th—y T4 |- Tizk {I_I:'=1 Fpr if n is even, (22)
_— . - n Ti-y _ . .
k=1 1—zry i Ti — Tk =1 1—_‘—;‘,"; 1 if nis odd.

Let H(z) be the rational function defined by

_z—y H?:l(l—ziz) 1
H(z) = 1-yz [T (zi —2) 1-22°

Then each zi is a simple pole, whose residue is

_ Ty H,-#(l — TiTk)
T—2ky Tlpu@i —2x) -

Nextly z = y~! is also a simple pole with residue

II.(1 - ziy)

Similarly +1, (resp. —1) is a simple pole of residue (—1)"*'/2 (resp.
—1/2). Lastly H(2) is analytic at infinity since — lim,_.o, zH(z) = 0.
Because the sum of the all residues in CU{oo} is 0, we obtain the identity
(22). This proves the lemma. O



6.3 Birds

The birds case is the simplest. Let a = (a1, 2) and § = (81, B2) be strict
partitions of length 2, and f and 7 nonnegative integers which satisfy
a1 > oz >0,06 > 02>0and f >~ > 0. By abuse of language we call the
poset defined by the following diagram, denoted by P = P(a, 8, f,7:3),
the birds whereas they are not exactly the same as Proctor defined. The
top tree posets is the filter which consists of the large solid dots.

Birds (f =7, 61> 0220, a1 > az >0)

Here we fix a labeling of each vertex in which the labels increase from
right to left along each row and from top to bottom along each column.
An example of such a labeling is given by the following picture.

14 13 12 11 10

@

17 16 15

20 19 18

21 |

We call this labeling the “column-strict” labeling. Of course, we can
choose other labelings which may give different generating functions, but
also serve to prove the hook formulas of d-complete posets. The “column-
strict” labeling is one of such a choice and the relations and a gener-
alization of labelings will be studied in [2]. The generating function of
(P, w)-partitions, where w is the column-strict labeling, is given by

Zq2+w [z+ f] S - q = (5
f q H?:Ql (Q§ Q)a.,: n?=1'(q; Q)ﬂi

where the sum runs over 0 < z < w. The reader who is not skilled with de-
riving this kind of generating functions should see the next section, where
we will expalain the methods in more details. We omit the more explana-
tion about it here because the birds case is an easy and straightforward

a1z o w

qﬁl z qﬂlw
qﬂzz qﬂzw

q q
¢ q

agw

q(‘ytl)""yw
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calculation. For convention we put

¢ L e

i=1(6 Do, [T, (095, (0:0)1

Then (23) is equal to

az (e +renw |00
CEOO: 50: z[Z‘I"f] 9 q qﬁzz
q . z

z=0 w=2 f q qazz q(02+‘7+1)w qﬂl

qﬂz z

Taking the summation on w leads to

1

had I z+ ,
C z :q(lal+lﬁl+1+2)z f
J q

z=0

1

i D o O Y
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PLw

Q

Baw
Brw

QQ

Baw

Q

W:HH)Z
CrEze=ray
m}ww

If we take the summation on z using the formula 320 o gllalHiAl+r+2)z [’;’ ] .

(@D )a|+|8]+1+1
(@:9)|a|+1814~+5+2

, this equation is equal to

1

g1

oL Dieiis1441 @@ — )

1

(a1+6 +'y+l)%(al +B2+7+1)4
q>2

(T Dial+1814v+1+2

Finally if we use the formula

(az2+61+7+1)q(az+B2+7+1),

q¥(x + a)g(z + b)g — ¢"(y + a)g(y+b)g=(¢" - ¢}z +y+a+ b)q,

then we obtain the generating function F(P,w;q) is equal to

C

9"(4°2 — ¢*1)(¢”? — ¢°)(a; D)t 1814441 (0] + || + 2 + 2),

By the equation (3), 3=, ¢,y p,,) ™7°° is equal to

e+ ()4 () 1 (g;9)n

(@ Diat+israv+r+2 Ty T, (s + B + v + 1),

i=1(% Qo [T2_, (45 9)s. (5 9)-
N (4 Dial+181+v+1(01 — @2)q (81 — B2)g(l] + 18] + 27 + 2),

(@ Dtat+iprer+ 42 [Ticy T, (s + G5 + v + 1),

» (24)

where n = §P = |a| + |B| + v + f + 2 and mo is the longest element in
Sn. By a straightforward calculation, it is easy to see that this identity is

equal to
(2:9)n

n( P!W) .
Iep(2Dn)

q

Here we define n(P,w) = az + (°1,}') + (3}?) + ("+?) — 1 for the bird P
of the above shape and the above column-strict labeling w.
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6.4 Insets

Let A = (A1, A2, -, Ar) (A1 = A2 > -+- > A > 0) be a partition and f and
a be positive integers which satisfies f >r—22> 0 and a > 0. Then, we
call the poset given in the following diagram, denoted by P = P A fros4),
the Insets. In the diagram elements become bigger if one goes in the north-
west direction.

Insets M >A>--2A 21, f2r—-220,a20)

f A1
—~0—0—9—0—90—909 1 o
" = —
[ ] [, As '
[0 ® Ai | -9
[ ] '0—-———0—-0l

In this subsection we consider two different labelings for P. One is a
labeling in which the labels in each vertex increase from right to left along
each row and from top to bottom along each column, which is called a
colum-strict labeling and denoted by wc; the other is a labeling in which
the labels increase from left to right along each row and from bottom to
top along each column, which is called a row-strict labeling and denoted
by wr. An example of a column-strict labeling is given in the following

picture.
10 9 8 7
*—o—@ g
16
20
23

In this example f =3, a =2 and X = (6,5,3,2).

Theorem 6.4 Let A = (A1,...,Ar) be a partition, f and a be integers
suchthat \y > - > XA 21, f>r—2>0anda >0. Let P =
P(), f,);4) be the Insets and let w. and wr be a column-strict and a row-
strict labeling, respectively.

(i) Then the generating function of (P,wc)-partitions is given by

a+1l
("3 )(q; @ r|+a+l
(459)a (a8 Dir1+ats+2

F(P,we;q) = det (Aij)lgi,jgr ’



where

IA=X;+ati
q 3 1 . .
IN—xFotd, @oa, gy Yi=1

—_ 1 P
Aij = Zq;g\),\,.__ﬁ,- fj=2,
i—its . .

(@) —itj f3< J<r.

(i) The generating function of (P,w,)-partitions is given by

! a
F(P w.-q) = q(2)+(IAI+ +2)f(q; 9)|A|+a+1 q |
( 7wr)q) = - - et (Bij)l<i j<r?
(2:9)a(g; Q)|x|+a+j+2 <ij<
where
Aj—itj

TP S R

Bi; = J Al-Aitati)e (gia)a; —i4j ’

3 = (:\‘-—"2+j+1) . '

(2:9)x; —itj f2<j<r

Proof. First we consider the column-strict case. As proved in [10], this
poset P = P(A, f,a;4) contains the top tree T = Y (f; g, h) with g = X\,
and h = 1. Let z be the element which locates in the branching point of
this top tree, i.e. z is the element designated in the above picture. Let w
be the element just below z which is designated in the above picture. Let
a and b be integers such that 0 < a < b, let A, (), f,a;a, b) denote the
set of all the (P,w.)-partitions o satisfying 0(z) = a and o(w) = b. An
example of column-strict (P,w,)-partition with a = 2 and b = 3 is shown
below.

To obtain the generating function of A, (), f,a;a,b), we translate the
(P, wc)-partition o into a lattice path. Define a directed graph D. on the
vertex set N? with an edge directed from u to v whenever v — u = (1,0)
or (0,1). For u = (i,j), we assign the weight ¢’ to the edge u — v if
v—u = (1,0) and the weight 1 if v —u = (0,1). Choose an integer N > 0,
and let v = (v1,...,v,) be the r-vertex, in which v; = (\; — i, N) for

t=1,...,7. Let 4 = (u1,...,u,) be the r-vertex, in which each u; is
given by
(_ja a') if] = l,
uj; = (_J’b) lfj = 21

(-i,b+1) ifj=3,...,r

Let u = (=2 — f,0). Then, for a (P,wc)-partition o in A, (], f,0;a,b),
the parts of o which are right to z and w can be interpreted as an r-
path which connect r-vertex u to r-vertex v. For example, the above
(P, wc)-partition o corresponds to the following lattice path.
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7 V4 V3 7T V2 V1

. . 1—-—‘ . . ]——O. .
6 6 6 6
. . 1 . 1 1
55| 5 5 L
‘ 4 4 4 4 . .
Us us -
b=3 3
o o — 3 . . [ [}
u2
. . 2 = 2 . . . . .
] U1 :
1

rlo——-- k. L] . L] L L] L] .
u? L] L] L] ‘. L ] L] . L] L] L] ‘ L]
By the lattice path method, the generating function of the parts right to
z and w of 0 € Au. () f,a;a,b), which correspond to the r-paths that

connect r-vertices u and v, is given by det A’, where A’ = (Aj;)1<i,j<r 8
defined by

e[ ity =1,
i—i+J i—i+j+N-b P

Al = g™ .+J)§[A ;:_,;j ]q ifj=2,
i—t+] Aj—it+j+N-b— e

So the generating function of (P,w.)-partitions is given by

atb q(a-z’-l)“'ab

F(Pweig) =) [a }_ f] qq e det A",

where the sum runs over all integers a, b such that 0 < a < b and A =
limy o0 A7; is given by

A;i—i4jla
gRizitae

(@G x; —itj
gimiae
(GO, —i+j

gPi—i+3)(b+1)

(G r; —iti

ifj=1,
Ajj = ifj =2,

ifj=3,...,r.

Now we expand det A” along the first column, then we obtain gt (@tb det A"
g : ; €

det A" with A" = (A{})1<i,j<r given by

gRimititDat(X=Ai+ita)b

(Q;Q),\i_,‘+j lfJ = 1:,
"m _ 1 o
Aij = (q;q)'\"'_«:ﬁ if j =2,
i—tvg A .
(QiQ)Ai_i+j lf] = 3,...,1".

Thus we take the sum on b from a to infinity, then the above sum is equal
to

. (asz) il a—+ o a '
F(P,we;q) = ((Iq_'(i): > [ f f] Q(MH 22 det(Aij)1<i,i<r-
! a=0 T :

If we take the sum on a using the formula > 7° [‘”f'f] gM+atde —
q

(CE)INES PR
Wﬁ—%ﬁl—z’ we obtain (i).

To prove (ii), we take the elements z and w in P as before. Let
o € Ao, (), f,0;a,b) denote the set of (P, wy)-partitions o which satisfy
o(z) = a and o(w) = b for 0 < a < b. This time, we define a directed
graph D, on the vertex set N? with an edge directed from u to v whenever
v—u = (1,1) or (0,1). As before, for u = (i,7), we assign the weight ¢
to the edge u — v if v — u = (1,1) and the weight 1 if v —u = (0,1).
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Choose an integer N > 0, and let v = (v1,...,v:) be the r-vertex defined
vi=M—4,N+1)fori=1,...,r. Let u = (u1,...,u,) be the r-vertex
defined by

u_{(—j,a+1) if =1,

7T U(=4b+1) ifj=2,...r

Let uf = (-2 — £,0). Then each (P,w,)-partition o € Au, (N f,a;a,b)
correspond bijectively to an r-path P = (p,, - - - , Pr) such that p; connects
u? to v; via u1, and each P; connects u; to v; fori = 2,--- ,7. By the
lattice path method, the generating function of the parts right to 2 and
wof o € A, (], f,a;a,b), which correspond to the r-paths that connect
r-vertices u and v, is given by det B’, where B’ = (B};)1<; ;< is given by

it Vet (Ri—iFit1 - P
. qPi—iia+( )[,\?’- ’_:j] ifj=1,
- . Aj—iti+1 - o o
i g+ )[Ai{iij]q ifj=2,...r

So the generating function of (P, w.)-partitions is given by

Nla] a+e ¢ "
F(Pw;q)=Y (2)[ ] +0. 9 et B”,
( 9 s ,,q (¢:9)a

where the sum runs over all integers a, b such that 0 <a<band B =
limy—.o Bj; is given by ‘

gPi—itat (i)

B! = (G, —it; ifj=1,
) ik (MTHHHY)
—& oy ifji=2,...,r
GDx;~i+j

Now we expand det B” along the first column, and an easy calculation
leads to det B” = det B, where B"' = (B}}/)1<i,j<- is given by

gPiTita A=A +i-na (R TiHIHY)
(r; —i+j

ifj=1,
"
By =1 oy

(0:9)x; —i4j lf] =2,.. T

Thus we have

()
F(P,wriq) = S—— ) [a] det B"”,
0<a<b flg

(2:9)a
where
g i THHIF DA =2 +itagp (R T P
B = i FDA—i4d BI=50
£ 5] (;\.‘-—z2+_1+1)
ifj=2,...,r.

(@@ —itj

Now we take the sum on b first, then take the on @ using ) DI [;] gl Hat2)
- q
AgDiAvatr oy proves (ii). O

(G| A |+ats+2
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Lemma 6.5 Let r, s be integers such that r > s > 0, and let A =
(A1,---,Ar) be a partition. Let c® = (C,(;))

whose entries are given by

be the r by r matriz
1<i,j<r ,

S S . .
o = (q;q),\,i;,rﬁ fl1<j<s, ‘
ij = i—iti ) .
’ (QiQ)A-—i+j zfs+1SJST

Here we use the convention =0if\i—i+7<0. Then

1
(B, —itj

A+ __1<igi<r Qi Aj—itd)q ifs=0
det C(a) = :‘=1(QW))\A+"‘_,' ’
‘(M) _1<ici<r QimAji—i4)q 1< g <
e =1 (@GO fr—i fl1<s<r.

Proof. We proceed with reverse induction on s. If s = T, theﬁ, we already
obtained this identity in Corollary 6.2. Assume this identity holds for
s > k > 2. If we subtract each (i, k)-entry from each (¢,k — 1)-entry of

C® fori=1,---,r, the determinant remains invariant. Thus we obtain
the s = k — 1 case because of o
1 1 ' q)\i—i+.1'

(6 @)ri—its (@ Dri—iti-1 TG Dri-i+i
This proves the identity for1 < s <r. Thes =10 case immediately follows
from the s = r case since det(¢g* ~**7a;;) = ¢ ** det(ai;) for any matrix
(a,-j). a ’ 7 ’
Lemma 6.6 Let r > 1 be a positive integer and s be an integer such that
1<s<r. LetX=(\1,...,Ar) be a partition, and a be a nonegative
integer. ‘

(i) Let A9 = (A)) be the r by r matriz defined by
7 J1gii<r
Aj=X;+i-1 .
q it 1 e
e, @y, 4i=1
() _ 1 . .
Ay = @Ox—its f2<j5<s,
i—itd . .
(BDr;—i+j fs+1<j<r.

Then we have

det A .
q"(A)—ﬁ—l _L:z (X +a+i)g— T (A|=Aitati)g  1<icji<r Ai=Xj—i+j)q
— I=1 ('Al_Ai+i+a)q o ::1 (q;Q)A,‘--Q-r—i
qn(,\) T2 (IAI+a-0.~i)q 1<icj<r Qi—Aj—i4i)q
i=1 (X=Xi+ita)q :=1(43'J)A1-+r—i

(ii) Let B = (Bij),, i<r be ther x 1 matriz defined by
Aj—itj+1
. (S B
(X=X +ati)g q(Q;Q)A~—1'+j fi=1,
B;; = (Ai—i;-j+l) *

(B x; —i+j f2=<j=sr.

Then we have

det B

=q T ; T
l_L=1 (|)“ —Xi+a+ti) H,;=1(‘I§ Q)Xa+f'—i

= () H:=2 (Al + e+ 1), H15i<jgr (A —Aj —i+7)q

ifs=1,
if s > 2.
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Here we also use the convention =0ifA—-i+353<0.

—1
(2:9)x; - iy
Proof. We first consider (i). By expanding det A*) along the first column
we obtain

r N —Ag+k—1

1
det A® = _)k__ ¢ det A@IE1
° ;( ) (M = + k + a)q (g; Q)Ak—k+1 ©

By the above lemma we have

det A1

k k) ..
qn(A("))+|A(k)| 1<i<j<r—1 (¢ )—A§ ) iti)g

- if 8§ = 1,
_ ,-=ll(q;q))‘§k)+r_l_‘_
- k k L
OO sy O ey
i1 (""'),\g")+r_1_,~
where 7 '
A® _ Jr+1 if1<i<k-,
' Ait1 ifk<i<r-1.
By substituting A(*), a direct calculation leads to
o L1 (8 @)x—i4r )
q ———det A
HlSi(er (M = Aj —i+43),
A=A +k=-1 ;‘___ (A —k+1) . _
2;=1 ﬁh-,\,‘«pk.m)q . ?,\kf)“._k:,-)q ifs=1,
— : itk
- r 1 T (A —k+i) .
k=1 R TR, T Oi-ai—k4p,; fs2>2
itk

Thus, to prove our theorem, we need to show the following identities.

~ A= Aetk—1 T . i A —k+14),
Zq “(l’\—z\i+z+a) = i
k=1 i=1 I qn:'='1‘ Ak = Xi —k+1),

itk #

= {H(Ml +a+i)g - [T0N - +a+i)q}-
i=1

=2

~T s M, e —k+dy .
ZH(IAI—I\'+z+a)qH2=l T v —}:[2(1,\|+a+z)q.

=1 i=1 .
k=1 :#k #

(25)

If we regard each side of these identities as a polynomial of g%, then the
both sides are polynomials of degree » — 1. So, to see the both sides
coinside, it is enough to see it on r distinct values of a. Thus, if we
substitute @ = —|A| + Ay — k for k = 1,--- , 7, it is immediate to see the
both sides are equal to each other. This proves (i).

Next we prove (ii) in a similar method as (i). If we expand det B along
the first column, then we have

e
det B =
,; (Al = A + @+ k)q (45 @) rp—k+1

det B*!,



By Corollary 6.2, we have

(k) (k) . )
det B¥! = q ity '\Ekz)“) HlSi<er-1 O )\j —i+4J)q
- -1 .
H::l (q’ q)ASjk)-f-T—l—-i

Here A\*®) is as above. Now, if we substitute M) then a straightforward
calculation leads to :

H:=1(q; Q)Ai —i4r
H1si<j5r (A=A —i+ 3)q

det B

_ i q ;:11 (A;2+2)+(»\k—2k+2)+ Tkl (A,zz-l-l).g. :f;ll(t\k—)‘i‘k"'i) H:=2 ()‘k — k+i)q
k=1

Thus, to prove (ii), it is enough to show that

zr: 2 EL (R )4 e (T IS Owmdimkt) [T, Ok — k +1)g
Pt (1A = Ae +k+a)g Ty O — X "k +1)g

) I (A +it )
iz, (M = A+ i+ a)q

If we use (M%) = (5t + (k- DA — (*31), then this identity is
precisely the same one as (25), which is already proven in (i). This proves

our lemma. O The following corollary is an immediate consequence of
Theorem 6.4 and Lemma 6.6. :

Corollary 6.7 Let P = P(), f,a;4) denote Insets. Let we (resp. wr) be
a column-strict (resp. row-strict) labeling of P. Then we have

F(Prweiq) =g H (G Disen
(¢: @) (g Dirj+atf+2
(N +o+de Thicicier (i = Aj—i+3)q
(A= Xi+ita) Mo (@ @) ritr—i
F(P,wr; q) =g HF@HDHU+DIAE Ty ) (@& Dpitarr 3
(45 9) (T D At+a+f+2.
ITi_. (A + a+1d) Ilhicici<r (A —Aj —i+7)q
H:=1 (1A =X+ + a)q H:=1(Q§ Q) x;4r—i )

This corollary shows that Y rEW(Pw) gP(mo°™) is equal to

qn('P,w) (9:9)=
H;ep(Q; Qh(z)

for w = we,wr by an easy calculation. Here n = P = |A| + o +f+2,
n(P,w:) = (*3?) + n(}) and n(P,wr) = () + (a+2)f +(f + DA+
i (3)- | »

6.5 Tailed Insets

Next we consider Tailed Insets case. Let a = (a1, a2, a3) and 8 = (61, B2)
be strict partitions of length 3 and 2, respectively, i.e. a1 > a2 > a3 >0
and 81 > B2 > 0. Let f > 2, v and 0 be nonnegative integers which
satisfy f >~ > 1. In this paper we call the poset defined by the following
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diagram, denoted by P = P(a, 8, f,7, 5; 5), the Tailed Insets. The top
tree posets is the filter which consists of the large solid dots as before.

Tailed Insets (f>72>1,6> 6220, a1 > 02> a3z >0)

]

m:,

Yy I Y

Qa3

[l 4
'Ylﬂlﬂz X

Here we define a column-strict labeling. The following picture gives an
example of a column-strict labeling w..

Theorem 6.8 Let a, 3, v, § and f be as above. Let P be the poset
given by the above diagram and w. a labeling as above. If v =4, then the
generating function F(q) of (P;w.)-partitions is written as

Bj+1 +1 +3
g i (500 el (4 Diat+181+++5+2

I1:(9 9o I1;(%: 95, (6 D2 (G Dv-1 (€Dt +181 41464543

9 Ilicicica(d® — a™)(@” — )T, (Bi + ol + 18] + 2v + 3),

ima(lod = ai + 18l + v+ 2)o TTo, [12_, (0 + B5 + 7 + 1)q

Proof. From Lemma 4.1, we have

q i N+)+(%4) Z [a:-l- f] crytz |0 @
q
1@ 9a: I1;(6: 9)s; (G v (@ 9)s . 2 | f 11
qalz qoly qalz quy qﬁlz ]
X qag:: qagy qagz qﬁzy qﬁzz q z

3T a3 a3z
3 q

q




This equals

CO Z [:E + f] z+y
0<z<y<z f
where
Co =

qa1 z qozly qﬂly
qﬁzy

B
Yy

qag z qagy q !
qﬂzy
qag:c qagy qﬁly .
qﬂzy

g 3 GO

q(01+61+5+1)z
q(al 4+B2+6+1)z

(a2+B1+6+1)z
d(a2+ﬂ2+6+1)z )
q(03+ﬂ1+6+1)2

'q(a3+32+6+1)z

By taking the sum on z, we obtain the resulting formula

(a1 +B1+8+1)y
Gy g T~ "
a1z 2%7) q (a1+B1+8+1)q
q q Bay (al+ﬂ2+6+l)y
q (a1 +B2¥5+1)4
o4 f q;, o : Y g(‘_“ﬂff;*;'_;;_“
+ ~ FB1+o+
o 3 [TH e T e e L SR,
0<z<y q (a2+B2+8+1)g
By (az+pB1+6+1)y
q .
asx agy (a3+B81+0+1)q
q q ppy  glestatetny
q (az+02+8+1)q
and this is equal to
I SR
|qmet@atastiororny 1 |1 GBI,
. e Wi
(a1+82+0+1)q
: 1
Co Z [x‘*’f] ¢ty ¢ ¢ goesHeatastBl+e+ly g L PRV RN ES )M
f 1 1 1] —t
0<z<y (a2+621+6+1)q
da31+(a1+02+lﬁl+5+1)y 1 1 (a3‘+ﬂ11+6+1)q '
1 —1
(az+B2+6+1)q
This is equal to
o1z 47 gloztesHlfitatod v 1 D CTET TR ESVP
1 (az+a3+|Bi+d+2)y 1] —t
q (a»1+ﬁzl+6+1)_q
542 —1
c Z z+ f] = gz q‘Yz q(a1+a3+|ﬂ|+‘7+ +2)y 1 1 CIET eSS
0 f g 1 (a1+as+Bl+5+2)y 1 1
0<z<y q : (aa+B2+6+1)q
§+42 —1
asz q q(01+az+|[3|+’7+ +2)y ) 1 CTET e Eym
1 (a1+o2+|81+8+2)y 1 —t
q (a3+B2+6+1)q
By taking the sum on y, this becomes
1 ; R S—
(a2+a3+|61|+-y+6+2)q 1 (a1+ﬂ11+5+1)q
1 (a2 +a3+|B1+6+2)q 1 (a14+B82+6+1)q
1 1
T+ f| (al+Bl+r++3)z 1 G FasTB T2, 1 &masD,
CO f q 1 1 1 1 1
0<zx . (a1+as+[Bl+5+2)4 (az+Bz+0+1)q
1 1
1 (a1+az+|ﬁ1|+7+6+2)q 1 1 (a3+ﬂll+6+1)q
1 (a1 +az+181+6+2)q 1 (az+B82+06+1)q

(60 TTom1(0:9)5,(4:0)4(2:9)s
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gUal+iBl+r+6+3)z _ (D) |a| 4181+~ +6+2
(i al+|8l+v+5+1+3
into this formula, we obtain the above formula is equal to

Substituting the equation Y~ _

1 1
o B R e e
1 - (a2+a3+1814+8+2)4 1 (a1+62+5+1),
1 1
1 (a1+az+|8l+7+5+2)4 1 (az+B81+6+1)4
Cl l 1 1 1 1 )
(a1+az+|B|+6+2), (a2 +B2+5+1),
1 1
1 (a1+a2+lﬁll+w+6+2)q 1 1 W
1 (a1+az+|8]+6+2), 1 (a3 +B2+45+1),

where

(Q; Q)Ial+|ﬂ|+-y+6+f+3 )
By (16) we see the above identity equals

972 (az+|al+2{B|+7+25+4) g (a1+a3+1814+26+2),
C (02+°3+Iﬂ|+'1+6+2)q(02+03+Iﬂ|+6+2)q (a1+B14+8+1)g(ar1+B2+5+1)4
2 q%1 (a) +|a|+2|8]+7+254+4) (az+as+73|+26+2)q 4
(01+¢!3+!ﬂ|+‘7+6+2)q(0¢1+03+|ﬁ|+5+2)q (°2+ﬁ1+5+1)q(02+ﬂz+5+1)q
where
2543
C, = gPH2H3(ges _ g1)(g°% — ¢°2)(¢®2 — ¢P1)(v),

(ax +02+|ﬂl+’7+5+2)q(ax +az2+ |8+ +2)4(as + 5 +6+ 1)g(az +B2+6+ 1),
If v = 4, then the above determinant becomes

q°* (a2 + |a| + 2|8| + 37 + 4),
(a2 +as+ Bl +7+2)q(az + b1 + v+ D)glaz + B2 + v + 1),
g% (a1 + |a| +2|8] + 37 + 4),
“(utas+ |ﬂ|+7+2)q(a1 + B +7+ Dglar + Bz + v + 1)

Applying (10), we see that the numerator of this difference factors as

(4°% =g )(@a+02+|Bl+27+2)q (|| +|Bl+B1+27+3)q (| +|B]+B2+27+3).

The reader may see that this equation also factors in the case that § = 0
and v is arbitrary, but we don’t treat this case here since it is included
in the Insets case. This shows that consequently the above generating
function becomes as
Bji+1
g (CTNCTNCTIH8 (g ) arsipraqtsra
I1:(4: 9o I1;(2: )5, (0 9)+ (9 )1 (6 Djal+18141+5+ 543
HlSiSJ'Ss(qaj - 4%)(¢”? — ¢*1) H?:l(ﬂi + la| + 18] + 27 + 3),
T, (Il = as + 181+ 7 + 2)g TTimy [Tms (e + 5 + 7 + D)

This proves the theorem. O

6.6 Banners

Next we consider Banners case. Let a = (a1, a2, 03, a4) satisfy a; >
a2 > a3 > a4 20. Let f > 2, 3, v and § be nonnegative integers. Under
these conditions let P = P(a, 8,7,4, f; 5) denote the poset defined by the



following diagram, which will be called the Banners. The top tree posets
is the filter which consists of the large solid dots as before.

Banners (f >, 01 > a2 > a3 >0, 3,7,6 20)

f-1 a)

We consider a column-strict labeling w., which is designated by the fol-
lowing figure.
1 10 9 8 7 6 5 4 3 2 11

18 17 16 15 14 13 12

24 23] 221 21 2OJ 194

[ J ?—

29 28] 271 261 25 L

31 30

32
Theorem 6.9 The generating function F(q) = F(P,wc;q) of the (P, we)-
partitions is given by

B+2), (v+2
PO 20443 (g g) 0424443

T, (@ @) (0 9)2(0 D) (G Dlal+28474 5743
o (la] + 28 + 2y + 4)q H15i<jg4(qaj - q%)
[TE (e + B+ eI icicicalei + o5+ B+7+2)q

Proof. By Lemma 4.1 the generating function F' (9) = F(P,wc;q) of
(P, wc)-partitions is given by : ‘

F(q) =

ger qe1* goy  g*1*

1 1 5+1 w+ f—1]1¢*" ¢*** a2y a2’

Co Z qw+(ﬁ+ Je+(rF Dy +HO+1)z [ f-1 gosY  ¢°® gaay gaaz

0fw<z<y<z aqw Q4T aqy gz
q” q q q

where i1 o1y L e
q( +CIH+(CEY)

7 .
IT:1(g 9)e: (95 9)5(4: 9+ (0 9)s
Before we continue our proof, we need two lemmas.

Co =
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Lemma 6.10 Let a > 0 be nonnegative integer and 8,~,5 be as above.
Let

qalw qalz qaly qalz
Dwt 1 1 s+1 qagw asT a2y a2z
D D R ] A |
0fw<z<y<z aqw L 7% 4 7%} x4z
q q q q

Then the above generating Junction F(q) is given by

F(g) = Cor BDIeBinssss o 4 1014 54y 4 54 4),6(g
(% Dlal+p+r+5+7+3

Proof. In the equation

-1
F(q) = Co Z gUleHDwHB Dz Hr+ Dy +(5+1)z [w -}-—f: . ]
0fw<z<y<z
1 qal(I—W) qal(v-W) ay(z—w)
8 1 qoz(z—W) qaz(y—w) az(z—w)
1 qas(-‘r—w) a3(y—w) ag(z—w)|>
1 qa4(:—w) qcu(u—W) qcu(z—w)

weput s=z —w,{ =y — w and u = z — w, then it becomes

a w] W+ J— 1
F(g) = Coplg) 3 glleta+r+i+a) ) _J_’ , ]
o<w

q; 5
— Co (. $9)lal+B8+7+6+3 (@)
(q, Q)la|+ﬁ+—y+6+j+3

where
1 q°l3 qal: qalu
s 1 qags ag agu
o(q) = Z g PVt (E+ )y ] goe 30,3: Zasu ,
0<s<t<u ags agt agqu
1 ¢ q q

Meanwhile, the same method shows that

- v(q)
CO)= T+ 8+-175+9,

This prove the lemma. O
Lemma 6.11 Let a = (on,a2,a3,a4),3,7,8,a, and G(q) be as above. If
a=+and =290, then
¢’ (g% — q™) ]
(i +B+1)g(aj +B+1)g(ai +a; +B+7+2), 1<i<i<a

Proof. If a =« and B = é then G(q) becomes

G(q) = pf [

r 0 q(‘y+1)w+(/3+l)= q(‘7+1)w+(ﬁ+l)y q(1+l)w+(ﬁ+l)z
—ayH)w+(8+1)z (v+1)z+(B+1)y (v+1)z+(B+1)z
£ |9 0 q q
Z PU[_gOr#uw++y  _(r4Da+(8+1)y 0 g DY+B+)z
RS [_gDutan:  _prtnatB+s  _(rnut 84D 0
qalw qalx qaly qalz
aw 2T a2y a2z
q q
X chw (qlagz qagy qagz .
qa.‘w qCI‘I chy qagz
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By Theorem 4.2 this sum is expressed by the Pfiffian pf [Qij];<;c <4 with

Qij = Z q(v+1)1+(ﬂ+1)y

0<z<y

qa.,jI qa,;y
qajz qajy .

A simple direct calculation shows
Qi = g% - ¢%)
97 (it B+ Dglag+B+1glai+ o5 +B+7+2)q
Proof of Theorem 6.9. By Lemma 6.11, we have

Pk : o — g

] 1<i<j<4

2 2
Since pf [ g%3 —g%i ] = g~ (B+1+2)pf q"‘j+&t§‘i—_2q°i+ﬁt§—+—2
l—qﬁ+‘7+'2q01+01 1<i<j<4 ; 1—q°i+&tg:'bq°‘j+&§i
Lemma 6.3 implies
48+2v+6 o o
q q 71 - q
G(q) =

T (i + B+ 1)q H (i +aj+B+7+2)
1<i<j%4

This and Lemma 6.10 immediately implies the theorem. O

6.7 Nooks

Next we consider Nooks case. Let a = (a1, a2) satisfy a1 > a2 > 0, 8=
(61, B2, B3) satisfy pr > P2 > 63 2 0, and & = (81,02) satisfy &1 > 62 = 0.
Let f > 2 and v > 0 be positive integers. Under these conditions let
P = P(a, 3, f,7,0;5) denote the poset defined by the following diagram,
which will be called the Nooks. The top tree posets is the filter which
consists of the large solid dots as before. 4

Nooks (f >, a1 > a2 >0, B1 > B2 > B3 2 0)

o | -

B B2{| B3
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First we consider a column-strict labeling which will be realized as, for
example, the following labels.

1,10 9 8 T, 6, 5 4 3 2 1
17T 16 15lr 14 13L 12]
24] 230 22 21 20 19 18
] S——— T ———>
30| ZQT&S? 27l 26| 25
331 32| 31
36] 35 34
38| 37
40] 39
4

Theorem 6.12 If; = 0 and v = &,, then the generating function of the
above (P,w.)-partitons is given by

RARAEY (93 9)1al+181+7+151+3
[11(¢: Q)i 1 H?:l(‘ﬂ 9)5,(2:9)%_, (€ Dal+1B1+7+161+5+4
(9°2 — ¢°") 11 cicj<a(d” — ¢%)
(lal + 18] + 27 + 3)q(la| + 18 + v + 3)4
. — S_1(la] + 18] + 65 + 2v + 4),
[liz1 H?=1 (i + 18l = B + v+ 2)q H?=1(ﬂj +7+1), H?:l(ﬂj + 1),

Proof. By Lemma 4.1 the generating function F(q) = F(P,w.;q) is given

F(P,wc;q) =

by
ajw a1z ayy
: q
CO Z [w+ f] qw+z+v+z q'Tw q-’x . gagw qazz gagy
0<w<z<y<z - . f 1 1 qaaw qagz qa3y
Brz By Bz
q q q ¥ 5
X qﬂz:: qﬂzy qﬁgz 1q W g
' B3z  _Bay _Baz A L
q q q

where i1 "
q j( '12 )+(12 )

Co = .
I @ Da IT5-1(%: 9)s:(a: 9)+ [Ts_1 (a; 9)s,
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By taking sum on z, it becomes

qalw qal:r qaly
w+ yw YT
CO Z [ f f]qw+a:+y ql ql . qagw qazz qazy
OSwSESy qa3w qagz qagy
qgly (B1+61+1)y
Pz Bry (B1+61+1)q
q q b2y (B1+82+1)y
q (B1+82+1)q
i) 8 q61y ((ﬁﬂz::l-::))y
z 2
x |g7* g™ 2y (Ba+8g+1)y |5
q (Ba+82+1)q
q5”’ g{f3+é1+1)y
B3z Bay (B3+681+1)q
q q Say (B3+62+1)y
q (B3+d2+1)q

By expanding the last determinant along the first column, we see that

this equals
ajw ayT a1y
C w+ f w44y q"w qw . qazw qagz qazy
(i f q 1 1 q q q
0<w<z<y g3V . g3  gosv
—_1
qﬁlz+(62+ﬂ3+l5|+1)y 1 1 (ﬁ1+511+1)q
1 (B1+32+1)4
: ' 1
x qﬁ2$+(ﬁl+ﬁa+lél+‘1)y 1 1 (ﬁ2+511+1)q ,
1 (B2+62+41),
S S
qﬂsz+(ﬁ1+ﬁ2+|5l+1)y 1 1 (ﬂ3+611+1)q
1 (Bz+62+1)4
By (11) this becomes
ajw a1z a1y
Yw YT q q q
o Z ['w;'f] qw-l-z-H} ql ql . qazw qagz qagy
0<w<Lz<Ly ) ‘ a3 w qaax qaay
gP1=+(Ba+Bs s+ )y g g°1
(B1+81+1)q(B1+82+1)q
X qﬂzx+(ﬁl+ﬁ3+l5|+1)u 1 B2

(B2+81+1)g(B2+62+1)q |’
Paz+(B1+B2+18l+ 1)y | Ps

Q

(B3 +6.1 +1)q(B3+82+1)4

where C; = ¢(¢*? —q°1)Co. Now we put the last determinant into the last
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second one, then we get

Wt f] wiz|@ ¢
@ 051;5:/[ f ) ! ! !
PreHetbathstisleay o +1)t{,ﬂ(j31 5D,
1Y g1 |Pertar BBty wﬁﬁﬂ)f’&ﬁ TS
qaaz+(a1+ﬁ1+ﬁz+lél+2)y 1 Eh +1)q,,ﬂ(?;33+62+1)q
gireteathatBetliliay 3148 +1)qﬁ(lﬁl 5240,
x |geav  gerr | Pant(aatmitsstisiian p— qu"éﬁ T
g BB sy e +1).st3 T5T.
A . B
1 1 qﬁgz+(as+61+ﬁa+|5l+2)v 1 CPEETESY) ?32_‘_62_'_1)
q q
gPTHasthitba+isl42y o +l)qﬂ(‘;3 5T,

Taking the sum on y, we obtain

wH+ | wiz|@" 7
Cl Z [ f ]qw * 1 1
0Lw<z

1 1 qﬁl
(a1+82+B83+8]+2), (B1+61+1)q(B1+82+1)4

qalw qalz q(01+|ﬂ|+|6|+2)z 1 1 B2
(a1 +81+83+(8]14+2), (ﬂ2+51+1)%(32+52+1)q

1 3
(a1+81+82+15142)4 1 (B3+6, +1)qpﬂﬁa +d2+1)4

1 q 1
@2 B B 8D, | GBrisi e (iisa i),

x |g*2v qaga: q(02+ll3l+|6|+2):: 1 1 B2
(a2+B1+B83+13[+2)4 (ﬂ2+51+1)%(ﬁz+62+1)q

1 3
(az2+061+B82+18]+2), 1 (ﬁa+51+1)%(ﬂ3+52+1)q

1 1
(a3 +82+83+15142)4 1 (B1+61+1)q(Br1+82+1)4

qagw qagz q(03+|ﬁ|+|6|+2)x 1 1 B2
: (az+B81+83+(5|+2), (ﬂ2+61+1)<’s(l32+62+1)q

1 3
@B B D, | BraiTg(Gata T,

Again, by expanding the last determinant along the first column, we see

that it is equal to

g1 H(aztas+Bl+181+3)z q;w q:: 1 G(aa;q)
c Z [w}-f] q” |gervHartasiBl+181+3)z q;w ‘IT 1 G(ao;q)|.
0twsa geswH@artaz Bl +(6143)z q;w q:z 1 G(as;q)
Here we put
g4

1
(a;+B2+B3+(8]+2),

(B1+4; +1)<”ﬁﬂ1 +82+41)4
2

.. —_ 1
G(a439) = | arrarTa 7079,

(B2+6; +1)<’S(/32 +d2+4+1)q |
3

1
(a;+81+B2+[8]+2)q

(ﬂ3 +61 +1)q (/33 +62+1)q



Now taking the sum on z it becomes

012[

0w

w+ f] eI+ 4w

1
(02+03+|I3|1+‘7+|5|+3)q 1
(az+a3+|81+18]+3)q

G(az; q)

1
(011+013+|ﬁll+'y+|5|+3)q 1
(a1 +a3+|81+]5]+3)q
1

G(az;9)|-

Pkt ek ek e

(01+°2+|ﬂl+‘y+|5|+3)q 1
(a1 Faz+BI+16]+3)q

G(a3;q)

Finally taking the sum on w, this becomes

(€5 Dol +i81+71+181+3

1
(ag+a3+|ﬁ|1+'y+|61+3)q
(a2 +a3z+|B81+18143)q
1

1 G(ar;9)

(01+03+|ﬂ|1+‘y+15|+3)q 1

(95 Dal+181+v+81+ 1 +4

G(az2;9)|-

(ay+asz+|B8l+18]4+3)q
1

(a1+a2 +lﬂ|1+'v+|6|+3)q 1
(o1 +oag +BI+18]+3)q

Glas;q)|

[ e

By (13) we have

G(ai;q) =

Ba __ ,P1 Bs _ B2\, xi+|6]+2
(g ¢°)(¢” — ¢7*)q

(i + 51+ B2 +’|5| +2)q(Bs + 01 + 1)q(Bs + 62 + 1)

g%2 (B1+83+16|42)q
(ai+02+083+13[+2)q  (B1+81+1)q(B1+82+1)q
) (B2+B3+18142)q )
(B2+814+1)q(B2+02+1)q

X

(ai+B81+83+151+2)q

Substituting this identity into the above determinant; we see that F(q) is

(B14+B3+1814+2)q
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(B1+81+1)q(B1+82+1)q
(B2+B3+181+2)q

(B2+81+1)q(B2+d2+1)q
(B1+B3+18{+2)

(B1+81¥1)q(B1+o241)g

(B2+83+191+2)q

(B2+91+1)q(B2+82+1)q

(B1+B83+181+2)g

(B1+81+1)q(B1+d2+1)g

(B2+03+181+2)g

equal to
qﬁz
q°‘2+°3 1 q“1 (a1 +B82+B3+18|42)q
(a2 +ag+181+7+18]43) g (a2 +a3 +161+151+3)q (a1 +81+B82+151+2)q ‘ A1
. : (o1 +B1+B3+181+2)q
B2
c g*1+es 1 q°2 (a2+B2+03+18|+2)q
2 | ta1Tas FIBIFYH18|+3)q (a1 Fas HBI+18[+3)q (a2 +P1 +B2+13[+2)q A1
(a2+B1+B83+|8]+2)q
. qP2
g™1+e2 1 g%3 (aa+B2+83+181+2)q
(a1 o +BI+7+I81+3) g (a1 +az +181+]8]+3)4 (a3 +B1+B2+181+2)q A1
(az+B1+B3+|81+2)q
where

. : ‘.:[33_.@1Aﬂa_132
02-_—Clq|ﬂ|+2l6|+5(7)q((q,Q)laI+|ﬁl+1+|5I+3 (% - ") (¢ - ¢™)

@ @) jal+1814+161+1+4 (B3 + 81 +1)q(B3 + 02+ 1)g

Nextly if we substruct the bottom row from the first row, then substract
the bottom row from the second row, and expand the determinant along
the second column, we obtain

Cs
(a3 + B + B2 + 16| + 2),

A
Axn

A12

F(Q) = Aoz

where, by (9),

A =

g1tz —%i (g%% — ¢® ) (e + o2 — i + |of + 2|B8] + v + 2|8] + 6)q

(lof —ai + 18+ v+ [6] + 3)g(lo] — s + 18] +[6] +3)g  °

(B2+61+1)g(Ba+82+1)g




134

qa3 - qa"
A'2 =
* (i + 51+ B2+ 16| +2),
9%2(a; +a3+B2+181+215|+4)q (B1+83+151+2)g
X (oi +B2+B83+18|+2)q (a3 +B2 +B3 +[5[+2)4 (B1+81+1)q(B1+82+1),
9%1 (a; +as +01 +18142(81+4), (B2+B83+151+2), ’
(i +B81+B83+(8|+2)q(a3+81+B83+16]+2)q (B2+01+1)q(B2+82+1)4
and ‘
C.
Cs 2

" (a1 + o2 + 1B+ 7 + 18] + 3)g(cr + az + B+ O] £ 3)5”
Further, if az = 0, then A;2 becomes as :

4”2 (i +B82+161+2|8|+4),

1
Ap = (ai)q L@ Ba 4B D)y Bi8i 41, (Bi 8241,
ai + 61+ B2 + |6] + 2), |22 (xi+B1+181+2|51+4)q 1
(@ + 1+ fa |_| e | AT o BaF811 g (B2 ¥ 85 +1),
(ai)q

Tt Bt B T2,
G

32'=1(°‘i +B; + B3 + (6] + 2), ?:1 Hi=1(ﬂj + 6k +1)g ’

where

G = g% (0 + B2 + |B] + 218] + 4)g (i + Br + Bs + |8] + 2)q(Br+ 81 + 1)g(Br + 62+ 1),
— ¢ (0 + B1 + 8] + 208 + 0)g(as + B2 + Bs + [6] + 2)g(B2 + 61 + 1)g(B2 + 82 + 1),.

By (10) we have

G = (4" — ¢*')(B1 + B2 + 18] + 2)q (0 + 18] + &1 + |8] + 8)g s + |B] + 52 + |8] + 3)q.

This implies that F'(q) is equal to

%2 (az+|al+2|8]+7+216146)g . (@1 +IBI+81 +1514+3)q (a1 +181+82+15]+3) 4
Cy | 2B 7+ B3 (a2 ¥IBI+B143); (a1 +B1+B3+18142) (a1 +5: +Ps +18142)q(ar 182+ B3 1317 3);
91 (a1 +la|+2181+7+215]4+6)q (a2+181+81 +1514+3)g (a2 +181+ 62 +15143)
(a1 +HIBI+Y+8]4+3) g (a1 +IBT+[6]+3) (a2+8; +I32+|5|+2)q(02+51+/33+|5|+2)q(°2+52+Ba+|5|+2)q

where

(c1)a(az)el@™ — ¢™)
Cs=C
! ’ ?:1 Hi:l(ﬂj +0k+ 1),

Consequently, F(g) becomes

iB1+2161+6 (€ D latr1s1ev+isi+3 (@1)a(@2)a(M)a [Ti<icj<a(d¥ — ¢%)
Cog A 3 )
(% Dlat+B14+7+161+ f+4 I I (B + 6k + 1),
q52 - q61

X
(lal + 181 + v + 18] + 3)q(lal + 8] + [6] + 3),
H

o (e + 181+ 7+ 161+ 3), ITi(os + 181+ 18] + 3)g [T, TTo_, (o + 18] — B; + 0] + 2)q

where
H =¢"*(az + o + 2|B| + v + 2|8| + 6)q(a2 + |B] + 81 + 8] + 3)g(az + |B] + 82 + |6] + 3),
x (a1 + 8| + v + 8] + 3)q(ar + |8 + [8] + 3)q
X (a1 + B1 + B2 + 18] + 2)g(a1 + Br + Ba + [8] + 2)g(ar + B2 + B + |8] + 2),
—¢% (a1 + |a] + 28] + 7 + 2/0] + 6)q(ar + |B] + &1 + |8] + 3)q(a + |B] + 62 + |8] + 3),
X (a2 + B8] + v+ |0] + 3)g(a2 + |8] + [6] + 3)q
X (a2 + 51+ B2+ |6] + 2)q(az + 51+ Bs + |5l +2)g(a2 + B2+ B3 + |<5| + 2),.
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Further, assume that d; = 0 and y = 01 = |6|. Then H becomes as

2 2
H=]](c:+18+2v+3)q [](es + 181 +7+3)q
i=1

=1

{g°*(az + |a| + 28| + 37 +6)g(ar + B1+ B2+ 7+ 2)q

X (a1 4 B1 +Bs + 7+ 2)q(ar + B2+ Bs+7+2)
—¢®** (a1 + |a| +2|8] + 37+ 6)q(az + B+ B2 +7+ 2)q

x (a2 + B1 + Bs +7 + 2qlaz + P2+ Bs + 7+ 2}

By (10) this equals

2 2
H=T](c:+18 +2v+3)q [T + 181 +v+3)q

i=1 =1

x (g2 = ¢**)(lal + B1 + 1Bl + 27 + 4)q
x (|l + B2 + 18] + 27 + 4)q(lal + B + 18] + 27 + ).

Consequently this implies

_ siovie (@ Diattistayrioies (0% — g*!)(a1)q(@2)a(7)g
Flg) = Cog (@ Dot t18lsr+1o1+7+4 (o] + 18]+ 27 + 3)q(lal + |8l + v+ 3)q

% H?=1(|a| + 18]+ Bi + 2v +’4); H1_<_i<j_<_3(q5j —q%)
T, TPy (o + 181 — B3 + 7+ 2o T30 (85 + 7+ D Il;a (B + 1
Substituting Co, we have

5+ CF)

Fg) = =5 g’ = (2 Dlal+181+71+151+3
T2, (@ @ai—1 T (0 )55 (g 9)3-1 (G Dlat+18141+81+5+4
L (@ - ¢®) T <icics(@™ = a*)
(jol + 18] + 27 + 3)q(la] + |8l + 7 + 3)q
T, (lol + 18] + Bs + 27+ 4)q
T, TE s (0s + 181 = B5 + 7+ 2a Iy (85 + 7+ Da I (85 + Do

This prove the theorem. O
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