Discrete final-offer arbitration model

Vladimir V. Mazalov

Institute of Applied Mathematical Research
Karelian Research Center of Russian Academy of Sciences
Pushkinakaya str. 11, Petrozavodsk 185610, Russia
e-mail: vmazalov@krc.karelia.ru

Anatoliy A. Zabelin Chita State Pedagogical University Babushkin str. 121, Chita 672090, Russia

Abstract

A bargaining problem with two players Labor (player L) and Management (player M) is considered. The players must decide the monthly wage payed to L by M. At the begining players L and M submit their offers s_1 and s_2 . If $s_1 \leq s_2$ there is an agreement at $(s_1 + s_2)/2$. If not, the arbitrator is called in and he chooses the offer which is nearest for his solution α . We suppose that a solution α is concentrated in two points a, 1-a at the interval [0,1] with probabilities p, q = 1-p. The equilibrium in the arbitration game among pure and mixed strategies is derived.

Key words: bargaining problem, arbitration, equilibrium strategy.

AMS Subject Classification: 91A05,91A80, 91B26.

1 Introduction

We consider a zero-sum game related with a model of the labor-management negotiations using an arbitration procedure. Imagine that two players: Labor (player L) and Management (player M) bargain on a wage bill which has to be in the range [0,1] where the current wage bill is normalised at zero, and the known maximum management ability to pay is at 1. Player L is interested to maximize a wage bill as much as possible and the player M has the opposite goal.

At the beginning the players L and M submit their offers s_1 and s_2 respectively, $s_1, s_2 \in [0,1]$. If $s_1 \leq s_2$ there is an agreement at $(s_1 + s_2)/2$. If not, the arbitrator A is called in and he has to choose one of the decisions.

There are different approaches in analyzing the arbitration models [1-6]. We consider here the final-offer arbitration procedure [3] which allows the arbitrator only to choose one of the two final offers made by the players. We suppose here that the arbitrator imposes a solution α which is random variable being concentrated in two points a and b=1-a with different probabilities p and q=1-p, $0 \le a, p \le 1$. The arbitrator chooses the offer which is nearest for his solution α . The solution of this game with equal p=q=1/2 was obtained in [6]. In this paper we obtain the solution of this game where p and q can be non-equal.

So, we have a zero-sum game determined in the unit square where the strategies of players L and M are the real numbers $s_1, s_2 \in [0, 1]$ and payoff function in this game has form $H(s_1, s_2) = EH_{\alpha}(s_1, s_2)$, where

$$H_{\alpha}(s_{1}, s_{2}) = \begin{cases} (s_{1} + s_{2})/2, & if \quad s_{1} \leq s_{2} \\ s_{1}, & if \quad s_{1} > s_{2}, |s_{1} - \alpha| < |s_{2} - \alpha| \\ s_{2}, & if \quad s_{1} > s_{2}, |s_{1} - \alpha| > |s_{2} - \alpha| \\ \alpha, & if \quad s_{1} > s_{2}, |s_{1} - \alpha| = |s_{2} - \alpha| \end{cases}$$
(1)

Below we show that the equilibrium in this game in dependence on value a can be among pure (section 2) and mixed (sections 3-4) strategies.

2 Solution of the game. Pure strategies

Theorem 1. Let $p \in (0, 0.5]$ and $a \in [0, p/2]$. Equilibrium consists of pure strategies and has form $s_1^* = 1, s_2^* = 0$. The value of the game v = q.

Proof. Let player II uses $s_2 = 0$. The payoff of player I is equal to:

for
$$s_1 \in [0, 2a)$$
 $H(s_1, 0) = ps_1 + qs_1 = s_1 < 2a \le p \le q$,
for $s_1 = 2a$ $H(2a, 0) = pa + (1 - p)2a = (2 - p)a < 2a \le p \le q$,
for $s_1 \in (2a, 1]$ $H(s_1, 0) = p0 + qs_1 = qs_1$.

The maximum of the function is reached for $s_1=1$ and equals to q. Now, suppose that player I uses $s_1=1$. For $s_2\in [0,1-2a)$ $H(1,s_2)=ps_2+q$. Minimum of this function lies in $s_2=0$ and equal to q. For $s_2=1-2a$ H(1,1-2a)=p(1-2a)+q(1-a)=1-a-ap. Because $p/(1+p)>p/2\geq a$, it follows p>a+ap and 1-a-ap>1-p=q. For $s_2\in (1-2a,1]$ $H(s_1,s_2)=ps_2+qs_2=s_2$. According to condition $p\geq 2a$ we have $s_2\geq 1-2a>1-p=q$. So, for all s_2 $H(1,s_2)\geq q$ and $H(s_1,0)\leq q$ for all s_1 . Hence, $\{s_1=1,s_2=0\}$ is an equiliblium in the game and v=q.

Analogous arguments leads to

Theorem 2. Let $p \in (0.5, 1)$ and $a \in [0, q/2]$. Equilibrium consists of pure strategies and has form $s_1^* = 1, s_2^* = 0$, and value of the game v = q.

3 Method for obtaining the equilibrium among mixed startegies

In case $a > \min\{p/2, q/2\}$ equilibrium consists of mixed strategies, i.e. randomised strategies of players L and M. Denote $F_1(s_1)$ and $F_2(s_2)$ distribution functions of the strategies for L and M, respectively. Suppose, that $F_1(s_1)$ $\left[F_2(s_2)\right]$ is continuous and its support consists of two intervals $(\alpha_1; \alpha_2]$ and $(\alpha_3; \alpha_4]$ $\left[(\beta_1; \beta_2], (\beta_3; \beta_4]\right]$ at the [0; 1] with $\alpha_2 \leq \alpha_3$ $\left[\beta_2 \leq \beta_3\right]$.

In extreme points of the interval [0; 1] functions $F_1(s_1)$ and $F_2(s_2)$ can have a gap. Let also $\beta_4 \leq \alpha_1$, $F_1(\alpha_1) = 0$ and $F_2(\beta_4) = 1$.

Let $F_{1,12}(s_1)$ and $F_{1,34}(s_1)$ denote the form of $F_1(s_1)$ at the intervals $(\alpha_1; \alpha_2]$ and $(\alpha_3; \alpha_4]$; and, respectively, $F_{2,12}(s_2)$ and $F_{2,34}(s_2)$ – for the function $F_2(s_2)$ at $(\beta_1; \beta_2]$ and $(\beta_3; \beta_4]$.

Firtsly, consider the case $p \leq 0.5$. Admit, that the intervals $(\alpha_1; \alpha_2]$ and $(\beta_1; \beta_2]$ are symmetric in respect on the point a and the intervals $(\alpha_3; \alpha_4]$ and $(\beta_3; \beta_4]$ are symmetric in respect on b. Otherwords,

$$\alpha_1 = 2a - \beta_2, \quad \beta_1 = 2a - \alpha_2, \quad \alpha_4 = 2b - \beta_3, \quad \beta_4 = 2b - \alpha_3.$$
 (2)

Suppose, that player L (M) uses a mixed strategy $F_1(s_1)$ $\left(F_2(s_2)\right)$ and consider the payoffs of the players.

For $s_1 \in (\alpha_1; \alpha_2]$,

$$H(s_1, F_2(s_2)) = p \left\{ s_1 F_{2,12}(2a - s_1) + \int_{2a - s_1}^{\beta_2} s_2 dF_{2,12}(s_2) + \int_{\beta_3}^{2b - \alpha_3} s_2 dF_{2,34}(s_2) \right\} + qs_1.$$
 (3)

For $s_1 \in (\alpha_3; \alpha_4]$,

$$H(s_{1}, F_{2}(s_{2})) = p \left\{ 0 \cdot F_{2}(0) + \int_{2a-\alpha_{2}}^{\beta_{2}} s_{2}dF_{2,12}(s_{2}) + \int_{\beta_{3}}^{2b-\alpha_{3}} s_{2}dF_{2,34}(s_{2}) \right\}$$

$$+ q \left\{ s_{1}F_{2,34}(2b-s_{1}) + \int_{2b-s_{1}}^{2b-\alpha_{3}} s_{2}dF_{2,34}(s_{2}) \right\}.$$

$$(4)$$

For $s_2 \in (\beta_1; \beta_2]$,

$$H(F_{1}(s_{1}), s_{2}) = p \left\{ \int_{2a-\beta_{2}}^{2a-s_{2}} s_{1} dF_{1,12}(s_{1}) + s_{2}(1 - F_{1,12}(2a - s_{2})) \right\}$$

$$+ q \left\{ \int_{2a-\beta_{2}}^{\alpha_{2}} s_{1} dF_{1,12}(s_{1}) + \int_{2a-\beta_{3}}^{2b-\beta_{3}} s_{1} dF_{1,34}(s_{1}) + 1 \cdot (1 - F_{1}(1)) \right\}. \tag{5}$$

For $s_2 \in (\beta_3; \beta_4]$,

$$H(F_{1}(s_{1}), s_{2}) = ps_{2} + q \left\{ \int_{2a-\beta_{2}}^{\alpha_{2}} s_{1}dF_{1,12}(s_{1}) + \int_{2a-\beta_{2}}^{2b-s_{2}} s_{1}dF_{1,34}(s_{1}) + s_{2}(1 - F_{1,34}(2b - s_{2})) \right\}.$$

$$(6)$$

If $F_1^*(s_1)$, $F_2^*(s_2)$ are optimal then the equations $H(s_1, F_2^*(s_2)) = v$ and $H(F_1^*(s_1), s_2) = v$, must be satisfied in the support-intervals where v-value of the game. Hence,

$$H(s_1, F_2^*(s_2)) = v, \quad s_1 \in (\alpha_1; \alpha_2] \cup (\alpha_3; \alpha_4],$$

$$H(F_1^*(s_1), s_2) = v, \quad s_2 \in (\beta_1; \beta_2] \cup (\beta_3; \beta_4].$$

From here,

$$\frac{\partial H(s_1, F_2^*(s_2))}{\partial s_1} = 0, \quad s_1 \in (\alpha_1; \alpha_2] \cup (\alpha_3; \alpha_4],$$
$$\frac{\partial H(F_1^*(s_1), s_2)}{\partial s_2} = 0, \quad s_2 \in (\beta_1; \beta_2] \cup (\beta_3; \beta_4].$$

Finding the derivative of (3-4) in s_1 and putting it equal to 0, and using the admission that $F_2^*(\beta_4) = 1$ and $F_2^*(s_2)$ is continuous at $[\beta_2; \beta_3]$, consequently, $F_2^*(\beta_2) = F_2^*(\beta_3)$, we obtain the system of differential equations with boundary conditions:

$$\begin{split} &p\left\{2(s_1-a)F_{2,12}^{*'}(2a-s_1)-F_{2,12}^*(2a-s_1)\right\}-q=0,\quad s_1\in(\alpha_1;\alpha_2],\\ &q\left\{2(b-s_1)F_{2,34}^{*'}(2b-s_1)+F_{2,34}^*(2b-s_1)\right\}=0,\quad s_1\in(\alpha_3;\alpha_4],\\ &F_{2,34}^*(\beta_4)=1,\quad F_{2,12}^*(\beta_2)=F_{2,34}^*(\beta_3). \end{split}$$

Changing the arguments $t_1 = 2a - s_1$, $t_1 \in (\beta_1; \beta_2]$ in the first equation and $t_2 = 2b - s_1$, $t_2 \in (\beta_3; \beta_4]$ in the second one we obtain the system:

$$\frac{dt_1}{2(a-t_1)} = \frac{dF_{2,12}^*}{F_{2,12}^* + p/q}, \quad \frac{dt_2}{2(b-t_2)} = \frac{dF_{2,34}^*}{F_{2,34}^*}.$$

The solution which satisfies the boundary conditions has the following form

$$F_{2}^{*}(s_{2}) = \begin{cases} 0, & \text{if } s_{2} \leq 2a - \alpha_{2}, \\ \left(\frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - \beta_{3}}} + \frac{q}{p}\right) \frac{\sqrt{a - \beta_{2}}}{\sqrt{a - s_{2}}} - \frac{q}{p}, & \text{if } 2a - \alpha_{2} < s_{2} \leq \beta_{2}, \\ \frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - \beta_{3}}}, & \text{if } \beta_{2} < s_{2} \leq \beta_{3}, \\ \frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - s_{2}}}, & \text{if } \beta_{3} < s_{2} \leq 2b - \alpha_{3}, \\ 1, & \text{if } 2b - \alpha_{3} < s_{2}. \end{cases}$$

$$(7)$$

Finding the derivative of (5-6) in s_2 and putting it equal to 0, and using the admission $F_1^*(\alpha_1) = 0$ and $F_1^*(\alpha_2) = F_1^*(\alpha_3)$, we obtain the system:

$$\begin{split} &p\left\{1-F_{1,12}^*(2a-s_2)-2(a-s_2)F_{1,12}^{*'}(2a-s_2)\right\}=0,\quad s_2\in(\beta_1;\beta_2],\\ &p+q\left\{1-F_{1,34}^*(2b-s_2)-2(b-s_2)F_{1,34}^{*'}(2b-s_2)=0\right\},\quad s_2\in(\beta_3;\beta_4],\\ &F_{1,12}^*(\alpha_1)=0,\quad F_{1,12}^*(\alpha_2)=F_{1,34}^*(\alpha_3). \end{split}$$

Let change the arguments $t_1 = 2a - s_2$, $t_1 \in (\alpha_1; \alpha_2]$ in the first equation, and $t_2 = 2b - s_2$, $t_2 \in (\alpha_3; \alpha_4]$ in the second equation:

$$\frac{dt_1}{2(t_1-a)} = \frac{dF_{1,12}^*}{1-F_{1,12}^*}, \quad \frac{dt_2}{2(t_2-b)} = \frac{dF_{1,34}^*}{1+p/q+F_{2,34}^*}.$$

The solution of the system:

$$F_{1}^{*}(s_{1}) = \begin{cases} 0, & \text{if } s_{1} \leq 2a - \beta_{2}, \\ 1 - \frac{\sqrt{a - \beta_{2}}}{\sqrt{s_{1} - a}}, & \text{if } 2a - \beta_{2} < s_{1} \leq \alpha_{2}, \\ 1 - \frac{\sqrt{a - \beta_{2}}}{\sqrt{\alpha_{2} - a}}, & \text{if } \alpha_{2} < s_{1} \leq \alpha_{3}, \\ 1 + \frac{p}{q} - \left(\frac{\sqrt{a - \beta_{2}}}{\sqrt{\alpha_{2} - a}} + \frac{p}{q}\right) \frac{\sqrt{\alpha_{3} - b}}{\sqrt{s_{1} - b}}, & \text{if } \alpha_{3} < s_{1} \leq 2b - \beta_{3}, \\ 1, & \text{if } 2b - \beta_{3} < s_{1}. \end{cases}$$
(8)

Now let us substitute the functions (7)-(8) to (3) - (6). For $s_1 \in (\alpha_1; \alpha_2]$,

$$H_1 = H(s_1, F_2^*(s_2)) = p \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} ((2a - \beta_2) - (2b - \beta_3)) + p\alpha_3 + q(2a - \beta_2).$$

For $s_1 \in (\alpha_3; \alpha_4]$,

$$H_{2} = H(s_{1}, F_{2}^{*}(s_{2})) = p \frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - \beta_{3}}} ((2a - \beta_{2}) - (2b - \beta_{3})) + p\alpha_{3} + q(2a - \beta_{2}) - p\alpha_{2} \frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - \beta_{3}}} \cdot \frac{\sqrt{a - \beta_{2}}}{\sqrt{\alpha_{2} - a}} - q\alpha_{2} \frac{\sqrt{a - \beta_{2}}}{\sqrt{\alpha_{2} - a}} + q\alpha_{3}.$$

For $s_2 \in (\beta_1; \beta_2]$,

$$H_{3} = H(F_{1}^{*}(s_{1}), s_{2}) = q \frac{\sqrt{a - \beta_{2}}}{\sqrt{\alpha_{2} - a}} ((\alpha_{2} - 2a) - (\alpha_{3} - 2b)) + q\beta_{2} - p(\alpha_{3} - 2b) - q\beta_{3} \frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - \beta_{3}}} \cdot \frac{\sqrt{a - \beta_{2}}}{\sqrt{\alpha_{2} - a}} - p\beta_{3} \frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - \beta_{3}}} + p\beta_{2} + q\theta$$

For $s_2 \in (\beta_3; \beta_4]$,

$$H_4 = H(F_1^*(s_1), s_2) = q \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} ((\alpha_2 - 2a) - (\alpha_3 - 2b)) + q\beta_2 - p(\alpha_3 - 2b),$$

where

$$\theta = \begin{cases} 0, & \text{if } F_1^*(1) = 1, \\ -\frac{p}{q} + \left(\frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2 - a}} + \frac{p}{q}\right) \frac{\sqrt{\alpha_3 - b}}{\sqrt{a}}, & \text{if } F_1^*(1) < 1. \end{cases}$$

So, take place

$$H_2 = H_1 + \chi_1,$$

 $H_3 = H_4 + \chi_2,$

where

$$\chi_1 = -p\alpha_2 \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} \cdot \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} - q\alpha_2 \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} + q\alpha_3,$$

$$\chi_2 = -q\beta_3 \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} \cdot \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} - p\beta_3 \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} + p\beta_2 + q\theta.$$

But must be $H_1 = H_2 = v$ and $H_3 = H_4 = v$, hence

$$\chi_1 = 0,$$
 $\chi_2 = 0,$
 $H_1 = H_4.$

Below we will find a solution of the system (9) in different cases. The value of the pequal

$$v = p \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} \cdot \left((2a - \beta_2) - (2b - \beta_3) \right) + p\alpha_3 + q(2a - \beta_2).$$

Denote $\frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2-a}} = \frac{1}{x}$, $\frac{\sqrt{\alpha_3-b}}{\sqrt{b-\beta_3}} = y$. After symplifications (9) can be rewritten:

$$-\frac{\alpha_2}{x}(py+q)+q\alpha_3=0,$$

$$-\beta_3 y(q/x+p)+p\beta_2+q\theta=0,$$

$$p(y(2a-2b-\beta_2+\beta_3)+2\alpha_3-2b)=q\left(\frac{1}{x}(\alpha_2-\alpha_3-2a+2b)+2\beta_2-2a\right).$$
(11)

If $F_1^*(1) = 1$ (or, $F_{1,34}^*(2b - \beta_3) = 1$, or $\theta = 0$), then y(q/x + p) = p. Substituting it to (11) we receive $\beta_2 = \beta_3$. If $F_1^*(1) < 1$ ($2b - \beta_3 = 1$), then $\beta_3 = 2b - 1$, $y = \frac{\sqrt{\alpha_3 - b}}{\sqrt{a}}$ and $q\theta = -p + (q/x + p)y$.

Analogously, if $F_2^*(0+) = 0$ ($F_{2,12}^*(2a - \alpha_2) = 0$), then 1/x(py+q) = q. Substituting to (11), we receive $\alpha_2 = \alpha_3$. If $F_2^*(0+) > 0$ ($2a - \alpha_2 = 0$), then $\alpha_2 = 2a$ and $1/x = \frac{\sqrt{a-\beta_2}}{\sqrt{a}}$. Thus, take place $F_1^*(1) = 1 \Longrightarrow \beta_2 = \beta_3$ and $F_2^*(0+) = 0 \Longrightarrow \alpha_2 = \alpha_3$.

Varying different collections of the values $F_1^*(1)$ and $F_2^*(0+)$ and demanding that the support of optimal strategies belongs to [0;1], we will obtain the form of optimal strategies depending on values of a and p (see Fig. 1).

4 Solution of the game. Mixed Strategies

4.1 Equilibrium for $(p, a) \in D_1$

Suppose that $F_1^*(1)=1$ and $F_2^*(0+)=0$ (i.e. $\alpha_2=\alpha_3=A, \beta_2=\beta_3=B$). From the equations $\frac{1}{x}=\frac{\sqrt{a-B}}{\sqrt{A-a}}, \ y=\frac{\sqrt{A-b}}{\sqrt{b-B}}$ it follows

$$\alpha_2 = \alpha_3 = A = \frac{bx^2(1+y^2) - ay^2(1+x^2)}{x^2 - y^2}, \qquad \beta_2 = \beta_3 = B = \frac{a(1+x^2) - b(1+y^2)}{x^2 - y^2}.$$
 (12)

The first two equations in (11) give

$$\begin{cases} qx = py + q, \\ y\left(\frac{q}{x} + p\right) = p, \end{cases}$$

which positive solution is

$$x = \frac{p^2 + pq - q^2 + \sqrt{p^4 + 2p^3q - p^2q^2 + 2pq^3 + q^4}}{2pq},$$
(13)

$$y = \frac{p^2 - pq - q^2 + \sqrt{p^4 + 2p^3q - p^2q^2 + 2pq^3 + q^4}}{2p^2}.$$
 (14)

It is not difficult to check that it satisfies to the third equation in (11).

The values x, y and (12) give the solution of the game iff the following system of inequalities be satisfied

$$\beta_1 \geq 0, \quad \alpha_4 \leq 1,$$

$$a \ge \frac{1+y^2}{3+2y^2-x^2y^2}, \quad a \ge \frac{1+x^2}{3+2x^2-x^2y^2}.$$

The solution of this system is the inequality $a \ge \frac{1+x^2}{3+2x^2-x^2y^2}$ ($\alpha_4 \le 1$). It determines some region on the plane (p,a), denote it D_1 (see. Fig.1) with the lower border $a_1(p) = \frac{1+x^2}{3+2x^2-x^2y^2}$.

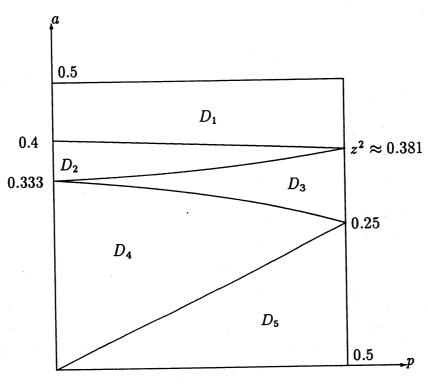


Fig. 1

Theorem 3. For $(p,a) \in D_1$ the equilibrium is (F_1^*, F_2^*) of the form (7-8) with parameters determined by (12-14). The value of the game : $v = q(2a - \beta_2) + p\alpha_3 - 2p(2b - 1)\frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_2}}$.

Notice some properties of the solution:

$$\lim_{p\to 0} a_1(p) = 0.4, \qquad \lim_{p\to 0.5} a_1(p) = z^2,$$

where z is the "golden section" of the interval [0,1]. It follows from

$$\lim_{p \to 0+} x = 1, \quad \lim_{p \to 0+} y = 0, \quad \lim_{p \to 0.5-} x = \frac{\sqrt{5} + 1}{2}, \quad \lim_{p \to 0.5-} y = z = \frac{\sqrt{5} - 1}{2}.$$

Notice also, that for fixed p if a decreases then α_4 increases to 1 and reaches it for $a = a_1(p)$ (to obtain it we can substitute $a_1(p)$ instead of a to $\alpha_4 = 2 - 2a - \beta_3$). For values $a \le a_1(p)$, the solution of the game is different.

4.2 Equilibrium for $(p, a) \in D_2$

If $F_1^*(1) < 1$ and $F_2^*(0+) = 0$ (or, equiavently, $\alpha_2 = \alpha_3 = A$, $\beta_2 = B$, $\beta_3 = 2b - 1$), then from the equations $\frac{1}{x} = \frac{\sqrt{a-B}}{\sqrt{A-a}}$ and $y = \frac{\sqrt{A-b}}{\sqrt{a}}$ we obtain

$$\alpha_2 = \alpha_3 = A = ay^2 + b, \qquad \beta_2 = B = \frac{a(1+x^2) - (ay^2 + b)}{x^2}.$$
 (15)

The first two equations of (11) take form

$$\begin{cases} qx = py + q, \\ 2ay\left(\frac{q}{x} + p\right) = p(1 - B). \end{cases}$$
 (16)

From the first equation it follows $x = \frac{py+q}{q}$. Substituting it to the second equation we receive after symplification

$$(2y^{3}ap^{3} + (-p^{3} + 4ap^{2}q + paq^{2} + ap^{3})y^{2} +$$

$$+ (2aq^{3} - 2p^{2}q + 2paq^{2} + 2ap^{2}q)y + 3paq^{2} - 2pq^{2})/(py + q)^{2} = 0.$$
(17)

Substituting it to the third equation in (11) we obtain

$$y (2y^3ap^3 + (-p^3 + 4ap^2q + paq^2 + ap^3)y^2 +$$

$$+ (2aq^3 - 2p^2q + 2paq^2 + 2ap^2q)y + 3paq^2 - 2pq^2)/(py + q)^2 = 0.$$

It is suffucient to find only positive roots of (17).

Denoting $\lambda = p/q$ we have

$$2a\lambda^{3}y^{3} + \lambda(a + 4a\lambda - \lambda^{2} + a\lambda^{2})y^{2} + 2(a + a\lambda - \lambda^{2} + a\lambda^{2})y + \lambda(3a - 2) = 0.$$
 (18)

Denote the cubic polynomial at the left side of (18) as $\nu(y)$, $\nu(0) = \lambda(3a-2) < 0$, $a \in [0;0.5)$. The coefficient in higher degree of y in (18) is positive, hence, at least one postive root exists. From here also follows that the maximum lies before minimum. The function $\nu = \nu(y)$ has two extreme points $y_1 = \frac{1}{3} \left(\frac{1}{a} - \frac{1+\lambda+\lambda^2}{\lambda^2} \right)$ and $y_2 = -\frac{1}{\lambda} < 0$. With $\nu(0) < 0$ it gives the uniqueness of the positive root of (18).

The solution takes place in case of $\beta_1 \geq 0$, or $a(3-y^2) \geq 1$. It determines the lower border $a_2(p)$ of the region D_2 on the plane (p,a).

Theorem 4. For $(p,a) \in D_2$ the equilibrium is (F_1^*, F_2^*) of the form (7-8) with parameters determined by (15-17). The value of the game: $v = q(2a - \beta_2) + p\alpha_3 - p(2b - 1 + \beta_2) \frac{\sqrt{\alpha_3 - b}}{\sqrt{a}}$.

In case $a < a_2(p)$ the following solution will take place.

4.3 Equilibrium for $(p, a) \in D_3$

If $F_1^*(1) < 1$ and $F_2^*(0+) > 0$ (or, equivalently, $\alpha_2 = 2a$, $\beta_3 = 2b - 1$, $\alpha_3 = A$, $\beta_2 = B$), the first two equations in (11) with $1/x = \frac{\sqrt{a-B}}{\sqrt{a}}$ and $y = \frac{\sqrt{A-b}}{\sqrt{a}}$ (or, $\beta_2 = B = a - a/x^2$ and $\alpha_3 = A = ay^2 + b$) take the form

$$\begin{cases} 2a(py+q) = q(ay^2+b)x, \\ 2ay\left(\frac{q}{x}+p\right) = p\left(b+\frac{a}{x^2}\right). \end{cases}$$
 (19)

From the first equation in (19) it follows $x = \frac{2a(py+q)}{q(ay^2+b)}$. Substituting it to the second equation in (19) and the third equation in (11) we obtain

$$\left(3 a^{2} y^{4} q^{2} p+\left(8 a^{2} p^{3}+4 a^{2} q^{3}\right) y^{3}+\left(-2 p a^{2} q^{2}-4 p^{3} a+16 a^{2} p^{2} q+4 a^{2} p^{3}+2 p a q^{2}\right) y^{2}+\right.$$

$$+ (8 a^{2} p^{2} q + 8 p a^{2} q^{2} - 4 a^{2} q^{3} - 8 p^{2} a q + 4 q^{3} a) y + 3 p a^{2} q^{2} - p q^{2} - 2 p a q^{2}) / (4a(py + q)^{2}) = 0.$$
(20)

and

$$y \left(3 \, a^2 y^4 q^2 p + \left(8 \, a^2 p^3 + 4 \, a^2 q^3\right) y^3 + \left(-2 \, p a^2 q^2 - 4 \, p^3 a + 16 \, a^2 p^2 q + 4 \, a^2 p^3 + 2 \, p a q^2\right) y^2 + \\ + \left(8 \, a^2 p^2 q + 8 \, p a^2 q^2 - 4 \, a^2 q^3 - 8 \, p^2 a q + 4 \, q^3 a\right) y + 3 \, p a^2 q^2 - p q^2 - 2 \, p a q^2\right) / (4 a (py + q)^2) = 0.$$
 It is sufficient to find only positive solutions of (20).

Denoting $\lambda = p/q$ we rewrite (20) in the form

$$3a^{2}\lambda y^{4} + 4a^{2}(1+2\lambda^{3})y^{3} + 2a\lambda(1-a+8a\lambda-2\lambda^{2}+2a\lambda^{2})y^{2} + 4a(1-a+2a\lambda-2\lambda^{2}+2a\lambda^{2})y - (1-a)(1+3a)\lambda = 0.$$

Denote $\nu(y)$ polynomials at the left side of the equation. Then $\nu(0) = -(1-a)(1+3a)\lambda < 0$, and because the coefficient in higher degree of y is positive then there exists at least one positive root of the equation. Let us show that it is unique. It follows from the fact that the points where $\nu''(y) = 0$ are negative.

$$\nu''(y) = 36a^2\lambda y^2 + 24a^2(1+2\lambda^3)y + 4a\lambda((1-a)(1-2\lambda^2) + 8a\lambda).$$

If this parabola has no roots then $\nu(y)$ is concave and the positive root is unique. Let there are two roots

$$y_{1,2} = \frac{-a(1+2\lambda^3) \pm \sqrt{a(4a\lambda^6 - 2a\lambda^4 + 2\lambda^4 - 4a\lambda^3 + a\lambda^2 - \lambda^2 + a)}}{3a\lambda}.$$

The root y_1 is negative. Coefficient in higher degree of y of $\nu''(y)$ is positive, hence, the largest root y_2 is negative, iff the coefficient in lower degree of $\nu(y)$ is positive. It is equal to $\xi(a,\lambda) = (1-a)(1-2\lambda^2) + 8a\lambda$. We have: $\xi(a,0) = 1-a > 0$, the function $\xi(a,\lambda)$ is convex in λ , $\xi(a,1) = 9a - 1$. If $a > \frac{1}{9}$, then $\xi(a,\lambda) > 0$, coefficient in lower degree in $\nu''(y)$ is positive, y_2 is negative, hence, the positive root of the equation is inique.

The solution takes place, iff $\beta_2 \geq 0$ or $\frac{ay^2+b}{2a(1+\lambda y)} \leq 1$. This enequality determines the lower border $a_3(p)$ of the region D_3 on the plane (p,a). Notice, that in D_3 the inequality $a < \frac{1}{9}$ is satisfied automatically.

Theorem 5. For $(p,a) \in D_3$ the equilibrium is (F_1^*, F_2^*) of the form (7-8) with parameters determined by (19-20). The value of the game: $v = q(2a - \beta_2) + p\alpha_3 - p(2b - 1 + \beta_2)\frac{\sqrt{\alpha_3 - b}}{\sqrt{a}}$.

For fixed p, if a decreases from $a_2(p)$ to $a_3(p)$, then β decreases to zero. Finally, consider the case $a < a_3(p)$.

4.4 Equilibrium for $(p, a) \in D_4$

For $\alpha_1 = \alpha_2 = 2a$, $\alpha_4 = 1$, $\beta_1 = \beta_2 = 0$, $\beta_3 = 2b - 1$ the optimal strategies are

$$F_1^*(s_1) = \begin{cases} 0, & \text{if } s_1 \le \alpha_3, \\ \frac{1}{q} \left(1 - \frac{\sqrt{\alpha_3 - b}}{\sqrt{s_1 - b}} \right), & \text{if } \alpha_3 < s_1 \le 1, \\ 1, & \text{if } 1 < s_1, \end{cases}$$
 (21)

$$F_2^*(s_2) = \begin{cases} 0, & \text{if } s_2 \le 0, \\ \frac{\sqrt{\alpha_3 - b}}{\sqrt{a}}, & \text{if } 0 < s_2 \le 2b - 1, \\ \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - s_2}}, & \text{if } 2b - 1 < s_2 \le 2b - \alpha_3, \\ 1, & \text{if } 2b - \alpha_3 < s_2. \end{cases}$$

$$(22)$$

Then, for $s_1 \in (\alpha_3; 1]$

$$H_{2} = H(s_{1}, F_{2}^{*}(s_{2})) = p \left\{ 0 \cdot F_{2}^{*}(0) + \int_{2b-1}^{2b-\alpha_{3}} s_{2} dF_{2}^{*}(s_{2}) \right\} + q \left\{ s_{1}F_{2}^{*}(2b-s_{1}) + \int_{2b}^{2b-\alpha_{3}} s_{2} dF_{2}^{*}(s_{2}) \right\} = \alpha_{3} - \frac{p\sqrt{\alpha_{3}-b}}{\sqrt{a}}.$$

If $s_2 = 0$, then

$$H_3 = H(F_1^*(s_1), s_2) = q \left\{ \int_{\alpha_3}^1 s_1 dF_1^*(s_1) + 1 \cdot (1 - F_1^*(1)) \right\} = 2\sqrt{a}\sqrt{\alpha_3 - b} + 2b - \alpha_3 - p.$$

If $s_2 \in (2b-1; 2b-\alpha]$, then

$$H_4 = H(F_1^*(s_1), s_2) = ps_2 + q \left\{ \int_{\alpha_3}^{2b-s_2} s_1 dF_1^*(s_1) + s_2(1 - F_1^*(2b-s_2)) \right\} = 2b - \alpha_3.$$

 $F_1^*(s_1), F_2^*(s_2)$ be optimal iff

$$\begin{cases} 2b - \alpha_3 = \alpha_3 - \frac{p\sqrt{\alpha_3 - b}}{\sqrt{a}}, \\ 2b - \alpha_3 = 2\sqrt{a}\sqrt{\alpha_3 - b} + 2b - \alpha_3 - p. \end{cases}$$

Solution of this system: $\alpha_3 = b + \frac{p^2}{4a}$.

This form for H_2 - H_4 takes place, iff $\alpha_3 \le 1$ or, equivalently, a > p/2. That determines the region D_4 on the plane (p, a).

Theorem 6. For $(p,a) \in D_4$ the equilibrium is (F_1^*, F_2^*) of the form (21-22). The value of the game: $v = b - \frac{p^2}{4a}$.

The case a < p/2 was analysed in section 2.

5 Solution for p > 0.5

At the beginning we assumed $p \le 0.5$. In case p > 0.5 the solution follows from the following theorem.

Theorem 7. Let for some fixed values of a and p we found the optimal strategies $F_1^*(s_1, p, a)$ and $F_2^*(s_2, p, a)$ in the game with

$$P\{\alpha = a\} = p, \quad P\{\alpha = b\} = q, \quad a+b=1, \quad p+q=1, \quad a < b, \quad p \le q.$$

Then the optimal strategies in the game for the same values a, p and for

$$P\{\alpha = a\} = q, \quad P\{\alpha = b\} = p, \quad a + b = 1, \quad p + q = 1, \quad a < b, \quad p \le q,$$

are

$$G_1^*(s_1,q,a) = 1 - F_2^*(1-s_1,p,a), \quad G_2^*(s_2,q,a) = 1 - F_1^*(1-s_2,p,a).$$

Proof. We have

$$G_1^*(s_1,q,a) = \begin{cases} 0, & \text{if } s_1 \leq 1-2b+\alpha_3, \\ 1-\frac{\sqrt{\alpha_3-b}}{\sqrt{s_1-a}}, & \text{if } 1-2b+\alpha_3 < s_1 \leq 1-\beta_3, \\ 1-\frac{\sqrt{\alpha_3-b}}{\sqrt{b-\beta_3}}, & \text{if } 1-\beta_3 < s_1 \leq 1-\beta_2, \\ 1+\frac{q}{p}-\left(\frac{\sqrt{\alpha_3-b}}{\sqrt{b-\beta_3}}+\frac{q}{p}\right)\frac{\sqrt{a-\beta_2}}{\sqrt{s_1-b}}, & \text{if } 1-\beta_2 < s_1 \leq 1-2a+\alpha_2, \\ 1, & \text{if } 1-2a+\alpha_2 < s_1, \end{cases}$$

$$G_2^*(s_2,q,a) = \begin{cases} 0, & \text{if } s_2 \leqslant 1 - 2b + \beta_3, \\ \left(\frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2-a}} + \frac{p}{q}\right) \frac{\sqrt{\alpha_3-b}}{\sqrt{a-s_2}} - \frac{p}{q}, & \text{if } 1 - 2b + \beta_3 < s_2 \le 1 - \alpha_3, \\ \frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2-a}}, & \text{if } 1 - \alpha_3 < s_2 \le 1 - \alpha_2, \\ \frac{\sqrt{a-\beta_2}}{\sqrt{b-s_2}}, & \text{if } 1 - \alpha_2 < s_2 \le 1 - 2a + \beta_2, \\ 1, & \text{if } 1 - 2a + \beta_2 < s_2. \end{cases}$$

These functions will represent the optimal strategies, iff

$$H(s_1, G_2^*(s_2, q, a)) = \text{const for } s_1 \in (1 - 2b + \alpha_3; 1 - \beta_3] \cup (1 - \beta_2; 1 - 2a + \alpha_2],$$

$$H(G_1^*(s_1,q,a),s_2) = \text{const for } s_2 \in (1-2b+\beta_3;1-\alpha_3] \cup (1-\alpha_2;1-2a+\beta_2].$$

Denote $G_{1,12}^*(s_1)$ and $G_{1,34}^*(s_1)$ as the form of function $G_1^*(s_1,q,a)$ at the intervals $(1-2b+\alpha_3;1-\beta_3]$ and $(1-\beta_2;1-2a+\alpha_2]$ and $G_{2,12}^*(s_1)$, $G_{2,34}^*(s_1)$ for the $G_2^*(s_1,q,a)$ at the intervals $(1-2b+\beta_3;1-\alpha_3]$, $(1-\alpha_2;1-2a+\beta_2]$, respectively.

We obtain for $s_1 \in (1 - 2b + \alpha_3; 1 - \beta_3]$

$$H_1' = H(s_1, G_2^*(s_1, q, a)) = q \left\{ s_1 G_{2,12}^*(2a - s_1) + \int_{2a - s_1}^{1 - \alpha_3} s_2 dG_{2,12}^*(s_2) + \int_{1 - \alpha_2}^{1 - 2a + \beta_2} s_2 dG_{2,34}^*(s_2) \right\} + C_2 + C_3 + C_3 + C_3 + C_3 + C_4 + C_4 + C_4 + C_4 + C_5 + C$$

$$+ps_1 = q \frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2-a}}((\alpha_3-2b)-(\alpha_2-2a)) + p(\alpha_3+2a-1) + q(1-\beta_2).$$

If $s_1 \in (1 - \beta_2; 1 - 2a + \alpha_2]$, then

$$H_{2}' = H(s_{1}, G_{2}^{*}(s_{1}, q, a)) = q \left\{ 0 \cdot G_{2}^{*}(0, q, a) + \int_{1-2b+\beta_{3}}^{1-\alpha_{3}} s_{2} dG_{2,12}^{*}(s_{2}) + \int_{1-\alpha_{2}}^{1-2a+\beta_{2}} s_{2} dG_{2,34}^{*}(s_{2}) \right\} + p \left\{ s_{1}G_{2,34}^{*}(2b-s_{1}) + \int_{2b-s_{1}}^{1-2a+\beta_{2}} s_{2} dG_{2,34}^{*}(s_{2}) \right\} = 0$$

$$= q \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} ((\alpha_3 - 2b) - (\alpha_2 - 2a)) + p(\alpha_3 + 2a - 1) + q(1 - \beta_2) - q(1 - \beta_3) \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} \cdot \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} + p(1 - \beta_2) - p(1 - \beta_3) \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}}.$$

If $s_2 \in (1 - 2b + \beta_3; 1 - \alpha_3]$, then

$$H_{3}' = H(G_{1}^{*}(s_{1}, q, a), s_{2}) = q \left\{ \int_{1-2b+\alpha_{3}}^{2a-s_{2}} s_{1}dG_{1,12}^{*}(s_{1}) + s_{2}(1 - G_{1,12}^{*}(2a - s_{2})) \right\} +$$

$$+ p \left\{ \int_{1-2b+\alpha_{3}}^{1-\beta_{3}} s_{1}dG_{1,12}^{*}(s_{1}) + \int_{1-\beta_{2}}^{1-2a+\alpha_{2}} s_{1}dG_{1,34}^{*}(s_{1}) + 1 \cdot (1 - G_{1}^{*}(1)) \right\} =$$

$$= p \frac{\sqrt{\alpha_{3} - b}}{\sqrt{b - \beta_{3}}} ((2b - \beta_{3}) - (2a - \beta_{2})) + p(1 - \alpha_{3}) - q(1 - 2b - \beta_{2}) -$$

 $-p(1-\alpha_2)\frac{\sqrt{\alpha_3-b}}{\sqrt{b-\beta_2}}\frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2-a}}+q(1-\alpha_3)-q(1-\alpha_2)\frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2-a}}+p\eta.$

If $s_2 \in (1 - \alpha_2; 1 - 2a + \beta_2]$, then

$$\begin{split} H_4' &= H(G_1^*(s_1,q,a),s_2) = qs_2 + p \left\{ \int_{1-2b+\alpha_3}^{1-\beta_3} s_1 dG_{1,12}^*(s_1) + \right. \\ &\left. + \int_{1-\beta_2}^{2b-s_2} s_1 dG_{1,34}^*(s_1) + s_2 \left(1 - G_{1,34}^*(2b-s_2)\right) \right\} = \\ &= p \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} ((2b - \beta_3) - (2a - \beta_2)) + p(1 - \alpha_3) - q(1 - 2b - \beta_2), \end{split}$$

where $\eta = \begin{cases}
0, & \text{if } G_1^*(1) = 1, \\
-\frac{q}{p} + \left(\frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} + \frac{q}{p}\right) \frac{\sqrt{a - \beta_2}}{\sqrt{a}}, & \text{if } G_1^*(1) < 1.
\end{cases}$

We have

$$\psi_1 = H_2' - H_1' = -q(1-\beta_3) \frac{\sqrt{a-\beta_2}}{\sqrt{\alpha_2 - a}} \cdot \frac{\sqrt{\alpha_3 - b}}{\sqrt{b-\beta_3}} + p(1-\beta_2) - p(1-\beta_3) \frac{\sqrt{\alpha_3 - b}}{\sqrt{b-\beta_3}},$$

$$\psi_2 = H_3' - H_4' = -p(1-\alpha_2) \frac{\sqrt{\alpha_3 - b}}{\sqrt{b - \beta_3}} \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} + q(1-\alpha_3) - q(1-\alpha_2) \frac{\sqrt{a - \beta_2}}{\sqrt{\alpha_2 - a}} + p\eta.$$

There are only four possible forms for the functions $F_1^*(s_1, p, a)$ and $F_2^*(s_2, p, a)$. With $\chi_1 = \chi_2 = 0$, it gives:

- 1. For $\alpha_2=\alpha_3=A$, $\beta_2=\beta_3=B$ take place $\frac{\chi_1}{A}=\frac{\psi_2}{1-A}$ and $\frac{\chi_2}{B}=\frac{\psi_2}{1-B}$, consequently, $\psi_1=\psi_2=0$.
- 2. For $\alpha_2=\alpha_3=A$, $\beta_3=2b-1$ take place $\frac{\chi_1}{A}=\frac{\psi_2}{1-A}$ and $\chi_2=-\psi_1$, consequently, $\psi_1=\psi_2=0$.

- . For $\alpha_2=2a,\,\beta_3=1-2a$ take place $\chi_1=-\psi_2$ and $\chi_2=-\psi_1$, consequently, $\psi_1=\psi_2=0$.
- . For $\alpha_1 = \alpha_2 = 2a$, $\alpha_4 = 1$, $\beta_1 = \beta_2 = 0$, $\beta_3 = 2b 1$, the form of $G_1^*(s_1)$, $G_2^*(s_2)$ is:

$$G_1^*(s_1, q, a) = \begin{cases} 0, & \text{if } s_1 \le a + \frac{p^2}{4a}, \\ 1 - \frac{p}{2\sqrt{a}\sqrt{s_1 - a}}, & \text{if } a + \frac{p^2}{4a} < s_1 \le 2a, \\ 1 - \frac{p}{2a}, & \text{if } 2a < s_1 \le 1, \\ 1, & \text{if } 1 < s_1, \end{cases}$$

$$G_2^*(s_2, q, a) = \begin{cases} 0, & \text{if } s_2 \le 0, \\ 1 - \frac{1}{q} \left(1 - \frac{p}{2\sqrt{a}\sqrt{a - s_2}} \right), & \text{if } 0 < s_2 \le a - \frac{p^2}{4a}, \\ 1, & \text{if } a - \frac{p^2}{4a} < s_2. \end{cases}$$

Then for $s_2 \in \left(0; a - \frac{p^2}{4a}\right]$

$$H(G_1^*(s_1,q,a),s_2) = q \left\{ \int_{a+\frac{p^2}{4a}}^{2a-s_2} s_1 dG_1^*(s_1,q,a) + s_2(1 - G_1^*(2a - s_2,q,a)) \right\} +$$

$$+p\left\{\int_{a+\frac{p^2}{4a}}^{2a} s_1 dG_1^*(s_1,q,a) + 1 \cdot (1 - G_1^*(1,q,a))\right\} = a + \frac{p^2}{4a}.$$

For $s_1 \in \left(a + \frac{p^2}{4a}; 2a\right]$

$$H(s_1, G_2^*(s_2, q, a)) = q \left\{ s_1 G_2^*(2a - s_1, q, a) + \int_{2a - s_1}^{a - \frac{p^2}{4a}} s_2 dG_2^*(s_2, q, a) \right\} + ps_1 = a + \frac{p^2}{4a}.$$

Finally, for $s_1 = 1$

$$H(s_1, G_2^*(s_2, q, a)) = q \int_0^{a - \frac{p^2}{4a}} s_2 dG_2^*(s_2, q, a) + p = a + \frac{p^2}{4a}.$$

In all cases the payoff is constant, and with $H_1 + H'_4 = 1$, $H_4 + H'_1 = 1$ and $H_1 = H_4$, gives $H'_1 = H'_4$, and all H'_i , i = 1, ..., 4 are equal. It proves the optimality $G_1^*(s_1, q, a)$ and (s_2, q, a) .

knowledgements.

The research was supported by the Russian Fund for Basic Research (projects 01-01-126, 01-01-00113). VM was supported also by the Japan Society for the Promotion of ence (grant L 01530).

References

- [1] J. Nash, The bargaining problem, Econometrica 18 (1950), 155-162.
- [2] R.D.Luce, H. Raiffa, Games and Decisions, Wiley, 1957.
- [3] R. Gibbons, Game Theory for Applied Economists, Prinston Univ. Press, 1992, 267.
- [4] V.P. Crawford, On compulsory arbitration schemes, J. Political Econ. 87 (1979) 131-159.
- [5] M. Sakaguchi, A time-sequential game related to an arbitration procedure, Math. Japonica 29, no. 3 (1984) 491-502.
- [6] V.V. Mazalov, A.A.Zabelin, Equilibrium in an arbitration procedure, Annals of Dynamic Games, 6 (2002). to appear