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Abstract

A bargaining problem with two players Labor (player L) and Management (player M) is considered.
The players must decide the monthly wage payed to L by M. At the begining players L and M
submit their offers s; and sp. If 5; < s, there is an agreement at (s; + s2)/2. If not, the arbitrator
is called in and he chooses the offer which is nearest for his solution a. We suppose that a solution
o is concentrated in two points a,1 — a at the interval [0,1] with probabilities p,g = 1 —p. The
equilibrium in the arbitration game among pure and mixed strategies is derived.
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1 Introduction

We consider a zero-sum game related with a model of the labor-management negotiations
using an arbitration procedure. Imagine that two players: Labor (player L) and Management
(player M) bargain on a wage bill which has to be in the range [0,1] where the current wage
bill is normalised at zero, and the known maximum management ability to pay is at 1.
Player L is interested to maximize a wage bill as much as possible and the player M has the
opposite goal.

At the begining the players L and M submit their offers s, and s, respectively, s;,3; €
[0,1]. If s; < s; there is an agreement at (s; + s3)/2. If not, the arbitrator A is called in
and he has to choose one of the decisions.

There are different approaches in analyzing the arbitration models [1-6]. We consider
here the final-offer arbitration procedure [3] which allows the arbitrator only to choose one
of the two final offers made by the players. We suppose here that the arbitrator imposes a
solution a which is random variable being concentrated in two points a and b =1 — a with
different probabilities p and g =1 — p, 0 < a,p < 1. The arbitrator chooses the offer which
is nearest for his solution a. The solution of this game with equal p = ¢ = 1/2 was obtained
in [6]. In this paper we obtain the solution of this game where p and g can be non-equal.
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So, we have a zero-sum game determined in the unit square where the strategies of
players L and M are the real numbers sy,s; € [0,1] and payoff function in this game has
form H(sy,s;) = EH,(s,,s;), where

(51 + 32)/27 if 81<s,;

s1, if s1>s|s1—a| <[s2—q
H = : :
0(31,32) S2, 1f 81 > S22, ISI - al > |32 - al ( )
a, 1f 81 > Sg, Isl - O!I = |82 - al

Below we show that the equilibrium in this game in dependence on value a can be among
pure (section 2) and mixed (sections 3-4) strategies.

2 Solution of the game. Pure strategies

Theorem 1. Let p € (0,0.5] and a € [0,p/2]. Equilibrium consists of pure strategies and
has form s} = 1, s3 = 0. The value of the game v = q.

Proof. Let player II uses s, = 0. The payoff of player I is equal to:
for s, € [0,2a) H(s1,0) =ps; +¢s; =5, <2a<p<g,
for s1 =2a H(2a,0)=pa+ (1 —p)2a=(2-pla<2a<p<yq,
for s; € (2a,1] H(s1,0) = p0 + ¢s; = gs;.

The maximum of the function is reached for s, = 1 and equals to q. Now, suppose that
player I uses s; = 1. For s, € [0,1—2a) H(1,52) = ps, +q. Minimum of this function lies in
s2 = 0 and equal to q. For s; =1—2a H(1,1-2a) = p(1—2a)+¢(1—a) = 1—a—ap. Because
p/(L+p)>p/2>a,itfollowsp>a+apand 1 —a—ap > 1—-p=gq. For s; € (1 —2a,1]
H(sy1,82) = psa + gs3 = s,. According to condition p > 2a we have s, >1—2a >1 — p=gq.
So, for all s; H(1,s,) > q and H(s;,0) < q for all s,. Hence, {s1 = 1,52 = 0} ia an
equiliblium in the game and v = q.

Analogous arguments leads to

Theorem 2. Let p € (0.5,1) and a € [0,¢/2]. Equilibrium consists of pure strategies and
has form s} = 1, s; = 0, and value of the game v = q.

3 Method for obtaining the equilibrium among mixed
startegies

In case a > min{p/2, ¢/2} equilibrium consists of mixed strategies, i.e. randomised strategies
of players L and M. Denote Fy(s;) and F(s;) distribution functions of the strategies for L

and M, respectively. Suppose, that Fy(s;) |Fz(s;)| is continuous and its support consists

of two intervals (a;; @3] and (as; ay) [(ﬂﬁﬂﬂ,(ﬁ#;,&]] at the [0;1] with a; < a3 '[ﬂ2 < ﬂ3] .
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In extreme points of the interval [0; 1] functions Fy(s;) and Fy(s;) can have a gap. Let also
B4 < a1, Fi(ay) =0 and F3(Bs) = 1.
Let Fy,12(s1) and Fj 34(s;) denote the form of Fi(s;) at the intervals (ay; az) and (as; ayl;
and, respectively, Fy 5(s3) and F,34(s2) — for the function F;(s;) at (8y;3;] and (B3; Ba].
Firtsly, consider the case p < 0.5. Admit, that the intervals (ay;a3] and (By;B2] are
symmetric in respect on the point a and the intervals (as; as] and (0s; B4] are symmetric in
respect on b. Otherwords,

a1=2a—0;, Pr=2a—a; oay=2b-0; Ps=2b-o0s (2)

Suppose, that player L (M) uses a mixed strategy F(s;) (Fg(Sz)) and consider the

payofls of the players.
For s; € (ou; a2),

2b—as
H(s1, Fa(s2)) =p {31F2,12(2a -s1)+ / $2dF3,12(82) + / Szsz,u(sz)} +gs1.  (3)
2a—s) Ba

For s, € (a3; a4,

B2 2b—ag3
H(sy, Fo(s2)) =p {0 - F5(0) + / s2dF312(s2) + / Szsz,:u(Sz)}

2a—-a2 ) Bs
2b—a3
/ 82dF2,34(82)} . (4)
2b—3s, -

+q {31F2'34(2b - 51) +

For s; € (Bi; B2),

2a-—-32

H(Fy(s1),52) = p{ /

SldFl'lg(Sl) + 52(1 o Fl,lz(Za - 32))}
a—f2

az 2b—B3 o
+q { / SldFl'lg(Sl) + / SldF1;34(31) + 1. (1 - Fl(].))} . (5)

a— G2 as

For s, € (B3; B4],

az

H(Fy(s1),82) =ps2+¢ {2 / $1dF; 12(81)+
a—pB2
2b—so

+ / $1dF) 34(s1) + 52(1 — Fy 34(2b — sz)) } . (6)

ag

If F}(sy), Fy(s;) are optimal then the equations H(sy, F5(s2)) = v and H(Fy(s1),s2) =

v, must be satisfied in the support-intervals where v-value of the game. Hence,

H(sy, F}(s2)) = v, s1 € (an; 2] U (as; a4,
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H(F{(s1),82) =v, s2€ (Br; 8]V (Bs; Ba-

From here,
OH (s1, F;(s;)) =0, s € (a;a)U(a3;ay),
asl
aH(Fla‘E':l)) 32) = 0’ S2 € (ﬂl;ﬁz] U (ﬂs; ﬂ‘]'

Finding the derivative of (3-4) in s, and putting it equal to 0, and using the admission that
F3(B84) = 1 and F;(s;) is continuous at [B2; B3], consequently, F3(B2) = F3(Bs), we obtain
the system of differential equations with boundary conditions:

P {2(31 - a)Fi’lz(2a - 5) — F315(2a — sl)} —q=0, s €(a;a),

q {2(b - SI)F;’;‘(Zb - Sl) + F;'u(zb - 31)} = O, 8 € (03;04],
F{u(ﬂ-t) =1, F£12(32) = F'f,34(ﬂ3)-

Changing the arguments t, = 2q — 81, t1 € (B1;B;] in the first equation and t; = 2b- s,
t2 € (B3; B4) in the second one we obtain the system:

d,  dFj, dt,  dF3,,
2a—t1)) Fy,+p/g 2(b—ty) Fra '

The solution which satisfies the boundary conditions has the following form

(0, if 82 < 2a — ay,
( °'__3+§)—p, if 2a—a; < s, < B,
Fj(ss) = { ¥aat if B2 <sy< P, (7
a—:z’ if ﬁ3<32$26—03,
L1, if 2b— a3 < s,.

Finding the derivative of (5-6) in s; and putting it equal to 0, and using the admission
FY(c1) = 0 and F}(as) = F?(a3), we obtain the system:

p{1 - Fy,(2a — s53) — 2(a — $2)Fi12(2a — 53)} =0, 55 € (By; B4,
ptgq {1 - F{'34(2b —82) — 2(b - sz)Ff,M(zb —83) = 0} y S2€ (ﬁs;ﬂt],
Fl’.,xz(al) =0, Fl',l2(a2) = Ff,34(0‘3)-

Let change the arguments ¢, = 2a—s53, 1 € (a1; @3] in the first equation, and t; = 2b—s,,
t2 € (a3; ay) in the second equation:
dy,  dFf, dt, dFys,
2(t1—a)—1-Ff.12’ 2(t2_b) 1+p/q+F2‘y34.

The solution of the system:

( 0, if31$2a—ﬂg,

1—%, if2a — B, < 51 € 0y,

1mm=41—£%, if a3 < 81 < a3, 8)
1+’.§-(..+§)’§‘£_E‘t, if ag < 51 < 26— G5,

1, if 26— B3 < s,
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Now let us substitute the functions (7)~(8) to (3) - (6). For s1 € (e 2],

Hy = H(s1, F;(s2)) = PM((QG —B2) — (2b— Bs)) + pas + q(2a — Bz)-

For s, € (as; a4,

Hy = H(s1, F;(s2)) = \/_T:((Qa ~ B2) — (2b— Bs)) + pas + q(2a — B2)—

Vog —b \F—ﬁz va—Bz
paz\/B A \/a _a—qazm+qa3-

For s, € (81302, |
Hs = H(F{(s1),82) = q\/__'zlz_'_(i((ag — 2a) — (a3 — 2b)) + gB2 — p(as — 2b)—

o VEb i B Ve
q._B3\/B___133 \/02_a pﬂ \/F———+pﬁ2+q0

For s, € (B3; B4),

= H(F;(s1),52) = ¢ J——Vf;;_ EZ((az~2a)—(a3—2b))+qﬂz—p(aa—2b),

where ‘
o , if Fr(1)=1,
—Z4 ( =L+ 2) Yok if Fr(1) <1
So, take place
H; = Hy + x1,
H3 = Hy + X2,
where
Vvas—b +a—[s Va-—05;
— + qas3,

Voaz—b a—[, Vas —b
—qﬁa\/b—ﬁg'\/az“a_pﬂam+pﬂ2fq0.

H, =v and Hz = Hy = v, hence

But must be H, =

X1 = 01
xz =0,
H, = H,.
Below we will find a solution of the system (9) in different cases. The value of the |
equal
v= pﬂ'_a ((2a —B2) —(2b— ,33)) + paz + q(2a — B).
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Denote % =1 ﬁ = y. After symplifications (9) can be rewritten:
a
~ Py +q) + g5 =0,

—Bay(g/z + p) + pP2 + 0 = 0, (11)

1
P(y(2a — 2b— B, + B3) + 203 — 2b) = ¢ (;(ag — a3z — 2a + 2b) + 206, - 2a) .

If Fy(1) =1 (or, FY34(2b — B3) = 1, or § = 0), then y(q/:z: + p) = p. Substituting it

to (11) we receive B, = B5. If Fr(1) <1 (26— B3 =1), then B3 = 26— 1, y= 1"5_;:—5 and
99 = —p+(g/z + p)y.

Analogously, if F5(0+) = 0 ( F;,,(2a — a3) = 0), then 1/z(py + q) = q. Substituting to
(11), we receive oy = a3. If F3(0+) > 0 ( 28 — ap = 0), then a; = 2a and 1/z = 3%5
Thus, take place F7(1) =1 => §; = 3 and F}(0+) = 0 = a3 = as.

Varying different collections of the values F(1) and F;(0+) and demanding that the
support of optimal strategies belongs to [0;1], we will obtain the form of optimal strategies
depending on values of a and p (see Fig. 1).

4 Solution of the game. Mixed Strategies

4.1 Equilibrium for (p,a) € D,

Subpose that F{'(1) = 1and F;(0+) =0 (i.e. o =az = A, f; = B3=B). From the equations

% = 1\/%, y= ﬂ it follows

_ b1+ —ay?(1 4+ 27) _all+32%) ~K1+4?)

a2=a3=A zz_yz ] ﬁ2=ﬁ3=B xz_yz ° (12)
The first two equations in (11) give
{qz =py+aq,
y(+p) =p
which positive solution is
_P -+ VP +20° - p’P + 2P + ¢
T = , (13)
2pq
_P-p— ¢+ V' + 2% - PP+ P + ¢ (14)

Y 2p?
It is not difficult to check that it satisfies to the third equation in (11).
The values z,y and (12) give the solution of the game iff the following systém of inequal-

ities be satisfied
Bh>20, a,<1,
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" 1+4° 14 z?

> > .
“ = 3oy — a2y 4= 31227 —gy?
The solution of this system is the inequality a > 5—*73—%;—? (aq < 1). It determines some
region on the plane (p, a), denote it D (see. Fig.1) with the lower border a,(p) S -

= 312z —zly
a
0.5
D,
04 22 ~ 0.381
D,
0.333 Ds
0.25
D,
Ds
05
Fig. 1

Theorem 3. For (p,a) € D; the equilibrium is (Fy, F3) of the form (7—8) with parameters
detemined by (12-14). The value of the game : v = q(2a — B;) + pas — 2p(2b — 1)%%—5

Notice some properties of the solution:
. - . —_ 2
lim a,(p) = 0.4, pgrgsal(P) =z’
where z is the "golden section” of the interval [0, 1]. It follows from

-1
limz=1, lmy=0, lim $=\/g+1 lim y=z=\/5 .

p—0+ p—0+ p—0.5— 2 ’ p—0.5- ‘ 2

Notice also, that for fixed p if a decreases then oy increases to 1 and reaches it for a = a,(p)
(to obtain it we can substitute a;(p) instead of a to oy = 2 — 2a — B3). For values a < ai(p),
the solution of the game is different.

4.2 Equilibrium for (p,a) € D;

If Fy(1) <1 and F2(0+) = 0 (or, equiavently, oy = a3 = A, B2 = B, B3 = 2b — 1), then
from the equations % = % and y = @ we obtain
14+ 2% —(ay* +b
ap = a3 =A=ay’+b, ﬂ2=B=“(-+$) (o +5), (15)

2
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The first two equations of (11) take form

{qz=py+q, (16)

2ay (£ +p) = p(1 - B).

From the first equation it follows z = ’%‘l. Substituting it to the second equation we
receive after symplification

(25°ap® + (—p° + 4ap’q + pag® + ap®) y?+
+ (2a¢’ - 2p%q + 2 paq® + 2ap’q) y + 3pag® — 2pq?) /(py + q)? = . (17)
Substituting it to the third equation in (11) we obtain
y (29°ap® + (—p° + 4ap’q + pag® + ap®) P+

+ (2a¢’ — 2p’q + 2 paq® + 2ap*q) y + 3pag® — 2pg®) /(py + q)* = 0.

It is suffucient to find only positive roots of (17).
Denoting A = p/q we have

2aX%° + Ma+4ad = A2 + aX?)y? + 2(a + ah — A2 + az\‘z)y + A(3a — 2) =0. (18)

Denote the cubic polynomial at the left side of (18) as v(y), v(0) = AM3a-2) < 0,
a € [0;0.5). The coefficient in higher degree of y in (18) is positive, hence, at least one
postive root exists. From here also follows that the maximum lies before minimum. The
function v = v(y) has two extreme points y, = %(i - H’%jﬁ) and y, = —3 < 0. With
v(0) < 0 it gives the uniqueness of the positive root of (18).

The solution takes place in case of B; > 0, or a(3 — y2) > 1. It determines the lower
border ay(p) of the region D, on the plane (p, a).

Theorem 4. For (p,a) € D, the equilibrium is (FY, F3) of the form (7-8) with parameters
determined by (15-17). The value of the game: v = ¢(2a — 8;) + pa; — p(2b—1+ ﬂg)@ﬁt—s.

In case a < ay(p) the following solution will take place.

4.3 Equilibrium for (p,a) € D;

If F7(1) < 1 and F;(0+) > 0 (or, equivalently, a; = 2a, B3 = 26— 1, a3 = A, §; = B),
the first two equations in (11) with 1/z = ’% and y = % (or, B = B=a—a/z? and
a3 = A = ay® + b) take the form '

{ 2a(py + q) = q(ay® + b)z, 19)
g = d
2ay (5 +2) = (b4 37).
2
From the first equation in (19) it follows z = q—g%. Substituting it to the second

equation in (19) and the third equation in (11) we obtain

(3 ay'e’p + (8 a’p® + 4a2q3) v+ (—2pa2q2 —4p’a+16 a’p’q +4a%p® + 2paq2) v+
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+ (8a’p’q + 8 pa’q® — 4a’¢® — 8paq + 4 ¢°a) y + 3 pa’q’ — pg’ — 2paq’)/(da(py + q)*) =0.
~ (20)

and
y(3a’y'd’p+ (8a’p® +44d°¢%) v’ + (~2pa’q* —4p’a+16a’p’q +4 a’p® + 2 pag®) y*+

+ (8a’p’q +8pa’d — 4a’¢* — 8p*ag + 4¢°a) y + 3pa’q’ — pq’ — 2pag’)/(4a(py +9)°) = 0.
It is sufficient to find only positive solutions of (20).
Denoting A = p/q we rewrite (20) in the form

3a?\y* + 4a?(1 + 2X%)y® + 2aA(1 — a + 8aX — 227 4+ 2a)0?)y*+
+4a(1 — a4 2a) — 2)% + 2aX?)y — (1 — a)(1 +3a)A = 0.
Denote v(y) polynomials at the left side of the equation. Then (0) = —(1- —a){14+3a)X <
0, and because the coefficient in higher degree of y is positive then there exists at least one

positive root of the equation. Let us show that it is unique. It follows from the fact that the
points where v”(y) = 0 are negative.

V'(y) = 36a%Ay? + 24a*(1 + 2X%)y + 4aM((1 — a)(1 — 2)%) + 8a)).

If this parabola has no roots then v(y) is concave and the positive root is uﬁique.. Let
there are two roots

—a(l +2)%) & \/a(4aX® —2ar* + 2)* —4ad3 + aX? — M2 + a)
3a ' '

N1,2 =

The root y; is negative. Coefficient in higher degree of y of v"(y) is positive, hence, the
largest root y; is negative, iff the coefficient in lower degree of v(y) is positive. It is equal
to £(a,A) = (1 — a)(1 — 2X%) + 8al. We have: £(a,0) = 1 —a > 0, the function £(a, ) is
convex in A, £(a,1) = 9a — 1. If a > &, then £(a, ) > 0, coefficient in lower degree in u”(y)'
is positive, y; is negative, hence, the posmve root of the equation is inique.

The solution takes place, iff 2 > 0 or 2—"(%%\"—) < 1. This enequality determines the lower
border a3(p) of the region D3 on the plane (p,a). Notice, that in Dj; the inequality a < 3 is
satisfied automatically.

Theorem 5. For (p,a) € Dj the equilibrium is (Fy, Fy) of the form (7-8) with parameters
detemined by (19-20). The value of the game: v = ¢(2a — B2) + pos — p(26 — 1 + ﬂg)%.

For fixed p, if a decreases from a;(p) to as(p), then B decreases to zero. Finally, consider
the case a < as(p).

4.4 Equilibrium for (p,a) € D4

For oy = a; =2a, oy = 1, B, = B, = 0, B3 = 2b — 1 the optimal strategies are

if S S a3,
(1— “*”), if g < 81 < 1, (21)

.} S

~

Fi(s1) =

— - O

’ if1<81,



126

[

0, if32SO,
@"’—, if0<s; <261, .
Fj(s))={ o' =~ ~ =77 (22)
=2, if2b— 1< 5, < 2b—ay,
\1, if2b—a3<32.

Then, for s, € (ea;1]
2b—-a3

/ Sng;(SQ)} +

2b-1

Hy = H(s, Fj(s1)) =p{o-F;(o>+

2b—a3
-b

2b—s;

+q {le{(2b —-81)+

If s =0, then
1

- Hz = H(F{(s1),s2) =q{/sldFl"(sl)+1-(1 —Fl‘(l))} =2\/5\/a3—b+2b—a3—p.

a3

If 53 € (20— 1;2b — ¢, then
2b—3s,

-H4 = H(F;(31)132)=P32+‘1{ /

a3

51dFy(s1) + s2(1 — Fy(2b — 32))} = 2b — a;.

Fi(s1), F3(s2) be optimal iff

2b—a3=a3—ﬂ%,
2b-—-a3=2\/5\/a3—b+2b—a3—p. V

Solution of this system: a3 = b + %.
This form for H,-H, takes place, iff a3 < 1 or, equivalently, a > p/2. That determines
the region Dy on the plane (p, a).

Theorem 6. For (p,a) € D, the equilibrium is (F}, F}) of the form (21-22). The value of
the game: v =b— %.

The case a < p/2 was analysed in section 2.

5 Solution for p > 0.5

At the begining we assumed p < 0.5. In case p > 0.5 the solution follows from the following
theorem. ’

Theorem 7. Let for some fixed values of a and p we found the optimal strategies Fy'(sy,p, a)
and Fj(s2,p,a) in the game with

Pla=a}=p, Pla=b}l=g, a+b=1, p+qg=1, a<b p<gq



127

Then the optimal strategies in the game for the same values a, p and for
Pla=a}=q, P{a=b}=p, a+b=1, p+qg=1, a<bd, p<yq,

are
GI(Sla%a) =1- F;(l - sl,p,a), G;(S%%a) =1- Fl*(l — 82, P a)°
Proof. We have

( 0, if31§1—26+a3,

1_@, ifl-2b+a3<s1<1—fs,
GI(sl,q’a)=< 1—@, ifl—ﬁ3<31§1—ﬁ2,
1+%_( a_—3+%)l\/§-§, if1—,32<31§1—2a+ag,
\1, if1 —2a+ a; < sy,
(0, if s <1 —2b+ G,
A S T
G3(s2,9,a) = < e, fl-a3<s;<1-—ay
ey fl-ay<s;<1—2a+B,,
\ 1, if].—-2(l+ﬁ2<32.

These functions will represent the optimal strategies, iff
H(sy,G3(s2,q,a)) = const for s; € (1 —2b+ as;1 — B3] U (1 — B2;1 — 2a + a3,

H(G3(s1,4q,a),s;) = const for s; € (1 —2b+ B3;1 — a3 U (1 — az;1 = 2a + B3]. .

Denote Gf ;,(s1) and Gf 3,(s1) as the form of function Gj(s1,g,a) at the intervals (1 —
2b + as;1 — (B3] and (1 — Ba;1 — 2a + ] and G 15(81), G5 a4(s1) for the G3(s1, g, a) at the
intervals (1 — 2b+ 83;1 — a3], (1 — az;1 — 2a + (], respectively.

We obtain for s; € (1 — 2b+ a3;1 — (3] ‘

l—~cg3 1-2a+p;
H; = H(Sl, G;(Sl,q, a)) =q {sng,n(Za - 31) + / S2dG;'12(82) + / SQdG;’M(S'z)} +
2a-3) 1-ar

a_

4ps; = ¢ ¥EL2 ((ag — 26) — (2 — 2a)) + plaa + 24 — 1) +q(1 = ).

Qo — Q

If s; € (1 = f2;1 —2a + 3], then

l1-a3 1-2a+02
H;=H(sl,G;(sl,q,a»=q{o~G;(0,q,a)+ [ s2dGalen) + / sszz,m(Sz)}‘*‘
' 1-2b403 : 1-az
1-2a+82

+p {31G3,34(2b —s1)+ Ssz;,u(32)} =

2b—s;
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\/%((03 —2b) — (02 — 2a)) + p(az +2a — 1) + ¢(1 — B2)—
E Vvos —
—q(1 ,33)\/ e iT
If s, € (1 =2b+ B5;1 — a3), then

Q

=4q

+P(1 —ﬁz) -p(1 ‘,33)\/;%-

2a—32
H3 = H(G}(s1,9,a),82) = ¢ { / $1dG] 12(s1) + s2(1 - GI'12(2d - 32))} +
—2b+a3
-Ps 1-2a+a2 '
+p{ / $1dGT 15(s1) + / 814G 34(s1) +1- (1 - G}‘(l))} =
1-2b+a3 1-6;
= PV (26— fs) — (20 = 52) + (1 as) — (1 2~ By}
. Vabvah, . . iR
p(1 - ) =g Ve Tl as) —q(l — )

vaz —a +
If s3 € (1 - az;1—2a+ B3], then

1-8;
Hy = H(Gi(s1,9, a),s2) =gqsz+p { / sldG;,n(sl)'*'
1-2b+a3
2b—s2
+ / sldG;m(sl) + 32(1 - GI,34(2b - 32))} =
1-52
=p s —

R (2~ ) ~ (20— )+ (1 — ) = a(1 - 26— ),
where 7 {0, if G3(1) = 1,

—14 ( e g) Yeh i Gi(1) < 1.

We have

b= Hy = H = =gl = ) S YRR (1 ) — 1~ ) Y= E,

o= Hy= By = —p(1 - Ve et + (1 - e a1 - a) V=B

There are only four possible forms for the functions F}(s1,p,a) and F}(sz,p,a). With
X1 = x2 =0, it gives:

1. For a; = a3 = A, B, = B3 = B take place A = l”_”—A and % = %5, consequently,
Y1 =13 =0.

2. For a; = a3 = A, f3 = 2b — 1 take place o= % and x; = —,, consequently,
Y1 =19, = '



129
. For a; = 2a, B3 = 1 — 2a take place x; = —¢2 and X2 = —1)1, consequently, ¥, =, =
0.

. For oy = a3 = 2a, ay = 1, fi = B; = 0, B3 = 2b — 1, the form of Gi(s1), G3(s2) is:

: 2

' ' P
0, if s; <a+=—,
. : ) 4a
—_ H r.
Gilsnga) = ~wavam fetw<s < 2,
1-£, if 2a < 5, <1,
\17 ifl< S1,
0, : ' lf S2 S 0,
G;(S%Qaa): 1—';'(1—;\7;57:5;2-), if0<32 S'a——%z-,

1, 1fa —_ % < 8.

Then for s, € (0; a— gz_]
2a—s2
H(Gi(s1,9:9),2) = ¢ / 514G} (51,9, 0) + 3(1 = G5(20 = 52,4,0)) ¢ +
a+;L:
2a
p?
+p{ [ sdGi(onq.0)+1- 0= GilLga) g =a+ L
a+é
For s, € (a + %;2(1]
B
4a 2
H(SI’G;(Sz’ q’a)) =49 31G3(2a — 31,9, a) + / s2dG;(32aq,a) +pspi=a+ Z—a
2a—31
Finally, for s; =1
22
¢ 4a 2
H(s:,Gilona,a) =4 [ s1dGi(sna0) +p=a+ L
0

In all cases the payoff is constant, and with H, + Hy =1, Hy+ H; =1 and H, = Hy,
sives H, = H!, and all H,i = 1,..,4 are equal. It proves the optimality G3(s;1,¢,a) and
(32)‘11“)‘
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