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Abstract

This paper presents abrief view of recent applications of smoothing methods in the
area of numerical analysis and optimization. We describe various nonsmooth problems and
illustrate how to apply smoothing methods to these problems. We summarize properties of
smoothing methods which are useful for the convergence analysis and error estimation of
smoothing methods.

1 Introduction
In the last decade smoothing methods have been successfuly applied to many important problems
in the area of numerical analysis and optimization. These problems include. complementarity problems [7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 29, 32, 38, 39, 47, 49, 51,

52, 56, 62, 63, 68, 71, 72],

$\bullet$ variational inequality problems [6, 30, 31, 44, 55, 61, 64, 76],

$\bullet$ optimal control problems with bound constraints on the control $[46, 53]$ ,. nonsmooth Dirichlet problems [23, 26, 28],

$\bullet$ computational fluid dynamics [34],

$\bullet$ shape preserving approximation [35],

$\bullet$ nonsmooth convex programs $[8, 24]$ ,. comfomal mapping [73],

$\bullet$ semi-infinite programs [70],

$\bullet$ mathematical programs with equilibrium $\omega \mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\dot{\mathrm{e}}\mathrm{n}\mathrm{t}8[25, 36,41,42,48]$,

$\bullet$ the unbounded in optimization [2],. stochastic programs $[5, 22]$ ,

$\bullet$ minimizing a sum of Euclidean norms [65],etc.

Acommon feature shared by these problems is that each problem or its reformulation involves
functions which are not differentiable in the sense of Frtchet or G\^ateaux [58]. These functions are
said to be nonsmooth, and the problems are called nonsmooth problems. Traditional algorithms
lack robustness for solving these problems [58].
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There has been agrowing interest in the study of nonsmooth functions in finite dimensional
spaces or functional spaces [27, 28, 33, 43, 45, 50, 59, 63, 69, 75]. Anumber of numerical
methods for solving nonsmooth problems based on the theory of nonsmooth analysis have been
developed [1, 18, 19, 20, 29, 37, 40, 57, 60, 62, 74, 77]. Among these methods, smoothing methods
approximate the nonsmooth functions by parameteried differentiate functions. By updating the
parameters in the numerical methods, many traditional algorithms for smooth problems can be
modified to efficiently solve these nonsmooth problems.

This paper presents abrief illustration on how to apply smoothing methods to some typical
problems. In Section 2, we describe various problems and smoothing approximations for the
problems. In Section 3, we summarize the properties of the smoothing approximations and state
some concepts in nonsmooth analysis which are useful for the convergence analysis and error
estimation of smoothing methods.

Afew words about notations. For two vectors $x,y\in R^{n}$ , $x\geq y$ and $x\geq 0$ denote $x:\geq y$:and
$x:\geq 0$ for $i=1,2$, $\ldots$ , $\mathrm{n}$, respectively. Let $e$:be the $i\mathrm{t}\mathrm{h}$ column of the identity matrix $I\in R^{n\mathrm{x}}$”.
Let $R_{+}=\{\epsilon|\epsilon>0, \epsilon\in R\}$ .

2Problems and Smoothing Approximations
In this section, we consider seven important problems in numerical analysis and optimization.
We show how to define smoothing functions to approximate these problems.

2.1. Complementarity problems
Let $f$ : $R^{n}arrow R^{n}$ be acontinuously differentiate function. The complementarity problem is

to find avector $x$ such that

$x\geq 0$ , $f(x)\geq 0$ and $x^{T}f(x)=0$. (1)

This problem is called anonlinear complementarity problem if $f$ is anonlinear function, or a
linear complementarity problem if $f$ is an affine mapping of the form

$f(x)=Mx+q$,

where $M\in R^{n\mathrm{x}n}$ and $q\in R^{n}$ .
There are several ways to formulate the complementarity problems as asystem of nonsmooth

equations. Among these reformulations, the following two functions $F$ and $\overline{F}$ are well-known,
whose components are defined by

Fi (x) $= \min(x:, f_{\dot{1}}(x))$

and
$\tilde{F}_{\dot{1}}(x)=\frac{1}{2}(x:+f_{}(x)-\sqrt{x_{}^{2}+(f_{}(x))^{2}})$ .

The two functions have the same growth rate by the following inequalities [71]:

$\frac{1}{\sqrt{2}+2}|F(x)|\leq\frac{1}{2}|\tilde{F}_{\dot{1}}(x)|\leq\frac{\sqrt{2}+2}{2}|F_{\dot{1}}(x)|$.

Each $F_{\dot{1}}$ can be written as
$F_{}(x)=x:- \max(0, x:-f_{\dot{1}}(x))$ ,

which is piecewise smooth, whose nondifferentiable points form the set:

{$x|x:=f.\cdot(x)$ and $e:\neq f’.\cdot(x)$ }.

The function $\tilde{F}_{\dot{1}}$ is differentiate everywhere except at the point

$\{x|x:=f.\cdot(x)=0\}$ .
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Two typical smoothing functions H and $\tilde{H}$ approximating to these two nonsmooth functions
have the components

$H_{\dot{1}}(x, \epsilon)=\frac{1}{2}(X:+f_{\dot{1}}(x)-\sqrt{(x_{}-f_{\dot{1}}(x))^{2}+4\epsilon^{2}})$

and
$\tilde{H}_{}(x, \epsilon)=\frac{1}{2}(X:+f_{}(x)-\sqrt{x_{}^{2}+(f_{}(x))^{2}+2\epsilon^{2}})$ .

For every $\epsilon>0$, the functions $H$ and $\tilde{H}$ are continuously differentiate with respect to $x$ in $R^{n}$ .
Moreover, for all $x\in R^{n}$ we have

$0\leq F_{\dot{1}}(x)-H_{}(x, \epsilon)\leq\epsilon$

and
$0 \leq\tilde{F}_{}(x)-\tilde{H}_{}(x,\epsilon)\leq\frac{1}{\sqrt{2}}\epsilon$.

The smoothing approximations for complementarity problems can also be applied to the
problems which involve complementarity problems. For example, mathematical programs with
equilibrium constraints [25, 36, 41, 42, 48].

2.2. Variational inequality problems with box constraints
Let $l\in\{R\cup\{-\infty\}\}^{n}$ and $u\in\{R\cup\{\infty\}\}^{n}$ be two vectors which satisfy $l\leq u$ and $l\neq u$ .

Then
$X=\{x\in R^{n}|l\leq x\leq u\}$

is called abox in $R^{n}$ . Let $f$ : $D\subset R^{n}$ be acontinuously differentiate function defined on the
open set $D\subset ffl$ containing $X$ . This problem i8 to find avector $x^{*}\in X$ such that

$(y-x^{*})^{T}f(x.)\geq 0$ for $y\in X$. (2)

When $l_{:}=-\infty$ , $u:=\infty,\mathrm{f}\mathrm{o}\mathrm{r}$ $:=1,2$, $\ldots$ , $n$ , this problem reduces to the system of nonlinear
equations

$f(x)=0$.
When $l_{:}=0$ , $u_{i}=\infty$ for $:=2.2$. $\ldots$ , $n$ , this problem reduces to the nonlinear complementarity
problem (1). Moreover, if $f$ is the gradient of afunction $\phi:R^{n}arrow R$, this problem becomes the
stationary point problem of the following minimization problem with box constriants:

minimize $\phi(x)$

subjcet to $x\in X$.

We can define two reformulations of this problem as asystem of nonsmooth equations:

$\mathrm{F}(\mathrm{x})=x-\Pi x(x-f(x))=0$

or
$\tilde{F}(x)=\mathrm{f}(\mathrm{U}\mathrm{x}(\mathrm{x}-f(x)))+x-f(x)-\Pi \mathrm{x}(x-f(x))=0$,

where $\Pi_{X}(z)$ denotes the projection of the vector $z$ onto $X$ , which can be written as

$(\Pi_{X}(z)):=\{$

$l_{:}$ , $z_{i}\leq l$:
$z_{i}$ , $l_{:}<\sim$ $<u_{\mathrm{f}}$ $:=1,2$, $\ldots$ , $n$.
$u_{i}$ , $z_{i}\geq u_{i}$

The projection is the only nonsmooth term in $F$ and $\tilde{F}$ . Hence we can derive asmoothing
function for this problem by smoothing the projection. In particular, we have

$H(x,\epsilon)=x-P(x-f(x), \epsilon)$
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$\tilde{H}(x, \epsilon)=f(P(x-f(x), \mathrm{t}))+x-f(x)-P(x-\mathrm{f}(\mathrm{x})$ ,
where

$P_{}(z, \epsilon)=\frac{1}{2}(\sqrt{(l_{\dot{1}}-z_{\dot{l}})^{2}+4\epsilon^{2}}-\cdot\sqrt{(u_{1}-z_{})^{2}+4\epsilon^{2}}+l_{\dot{1}}$ $+\mu.)$ $i=1,2$, $\ldots,n$ .

For every $\epsilon>0$ , $P$ is continuously differentiate with respect to $x$ in $R^{n}$ , and so are $H$ and $\tilde{H}$.
Moreover, there are two positive constants $\mathrm{q}$

. and $\tilde{\mathrm{q}}.$ , which are only dependent of $l_{:}$ and $u_{\dot{1}}$ , such
that

$|F_{\dot{1}}(x)-H_{}(x, \epsilon)|\leq \mathrm{q}.\epsilon$ ,
and

$|\tilde{F}_{\dot{1}}(x)-\tilde{H}_{\dot{1}}(x, \epsilon)|\leq\tilde{\mathrm{q}}\epsilon$.
2.3. Optimal Control Problems with Bound Constraints on the Control
Let $\Omega\subset R^{m}$ be aclosed and bounded convex set. Let $K$ be acompletely continuous map

ffom $L^{\infty}(\Omega)$ to $C(\Omega)$ , and 1be the map on $C(R^{m})$ given by

$\Phi(K(x))(t)=\{$

$l(t)$ , $K(x)(t)\leq l(t)$

$K(x)(t)$ , $l(t)\leq K(x)(t)\geq u(t)$

$u(t)$ , $K(x)(t)\geq u(t)$ ,

for given $l$ and $u$ in $C(\Omega)$ . This problem is to find $x\in C(\Omega : R^{m})$ such that

$F(x)=x(t)-\Phi(K(x))(t)=0$, on $\Omega$ . (3)

Aparadigm for problems of the form (3) is the integral equation with

$K(x)(t)= \int_{\Omega}k(t, s)x(s)ds$,

where $k\in C(\Omega \mathrm{x}\Omega)$ is asmooth kernel function. Discretization of this problem gives the
variational inequality problem (2).

2.4. Nonsmooth Dirichlet Problems
Let $\Omega$ be abounded domain in $R^{2}$ with aLipschitz boundary $\partial\Omega$ . Given ared number $\lambda$ ,

this problem is to find $u$ such that

$\{$

$-\triangle u+\lambda\xi(u)=f(x, y)$ in $\Omega$

$u=g(x, y)$ on $\partial\Omega$ ,

where
$\xi(u)=\{$

$u^{\mathrm{p}}$ , $u\geq 0$

0, $u<0$

and $p\in(0,1]$ is apositive number. Such problem is related to reaction-diffusion problems $[3, 4]$

and to MHD(magnetohydrodynamics) equilibria [66]. If $p=1$ , the term $\xi(u)=\max(0,u)$ is
Lipschitz continuous. We can define two smoothing approximations for $\max(0, u)$ as

$\phi(u, \epsilon)=\frac{1}{2}(u+\sqrt{u^{2}+4\epsilon^{2}})$

and

$\tilde{\phi}(u,\epsilon)=\{$

$\frac{1}{2\epsilon}(\frac{\epsilon}{2}+u)^{2}$, $|u| \leq\frac{\epsilon}{2}$

$\max(0, u)$ , otherwise.

For $p\in(0,1)$ , $\xi$ is not Lipschitiz continuous. To use the smoothing approximations $\phi$ and $\tilde{\phi}$, a
Lipschitz reformulation was introduced in [23]:

$\{$

$-\triangle u+\lambda \mathrm{m}\mathrm{m}(0,v)$

$u$

$u$

$=$ $f(x, y)$ in $\Omega$

$=$ $\psi(v)$ in $\Omega$ ,
– $g(x,y)$ on $\partial\Omega$
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$\psi(v)=\{$
$v^{1/\mathrm{p}}$ , $v\geq 0$

0, $v<0$ ,

which is continuously differentiate.
2.5. Computational Fluid Dynamics
We consider Euler equations for flow through anozzle of length $L$. The nozzle is asurface of

revolution about the $x$ axis with cross section area $S(x)$ .
The governing equations for Quasi-One Dimensional Euler flow in conservative variables are

$\frac{\partial(\rho S)}{\partial t}+\frac{\partial(\rho uS)}{\partial x}$ $=$ 0

$\frac{\partial(\rho uS)}{\theta t}+\frac{\partial[(\rho u^{2}+p)S]}{\partial x}$ $=$ $p \frac{dS}{dx}$

$\frac{\partial(\rho ES)}{\theta t}+\frac{\partial(\rho uHS)}{\partial x}$ $=$ 0

where $\rho(x,t)$ is density, $p(x,t)$ i8 pressure, $u(x,t)$ is velocity,

$E(x,t)= \frac{c^{2}}{\gamma(\gamma-1)}+\frac{u^{2}}{2}$ ,

is total energy and
$H(x,t)= \frac{1}{\rho}(\rho E+p)$

is stagnation enthalpy. Here $\mathrm{c}=\sqrt{\gamma p}/\rho$ i8 the speed of sound, and $\gamma$ i8 the ratio of the specific
heat at constant pressure to the specific heat at constant volume.

In many applications, the cr0e&8\propto ti0nd area of the flow domain is nonsmooth. For instance,
we consider the following example [34]:

$S(x)=\{$
$1+4(x-1)^{2}$ , $0.5<x<1.5$
2, otherwise.

The boundary conditions are supersonic flow in the inlet. It is easy to find that

$\mathrm{S}(\mathrm{x})=\min(2,1+4(x-1)^{2})$ .

Since 11 $4(x-1)^{2}$ is continuosuly differentiate, we can define the smoothing functions in the
similar way as for complementarity problems. In particular, we have

$\tilde{S}(x,\epsilon)=\frac{1}{2}(3+4(x-1)^{2}-\sqrt{(1-4(x-1)^{2})^{2}+4\epsilon^{2}})$ .

Replacing $S(x)$ by $\tilde{S}(x,\epsilon)$ in the governing equations, we obtain asmoothing approximation for
this problem.

2.6 Shape Preserving Approximation
This problem arises from practical applications in computer aided geometric design where one

has not only to approximate data points but ako to achieve adesired shape of acurve or surface.
Aspecial case of shape preserving approximation is one-dimensional convex best interpolation,
which is to find areal valued function that is convex and passes through given points in $R$. We
write this problem as aconstrained minimization problem:

$\{$

minimize $||f’||_{2}$

subject to $f(t:)=y$ , $:=0,1$, $\cdots$ $n$ $+1$

$f$ is convex on $[a, b]$

$f\in W^{2,2}[a, b]$ ,
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where $a=t_{0}<t_{1}<\cdots<t_{n+1}=b$ and $y_{i}$ , $i=0,1$ , $\cdots$ , $n+1$ are given numbers, $||\cdot$ $||_{2}$ is the
Lebesgue $L^{2}[a, b]$ norm, and $W^{2,2}[a, b]$ denotes the Sobolev space of functions with absolutely
continuous first derivatives and second derivatives in $L^{2}[a, b]$ , and equipped with the norm being
the sum of the $L^{2}[a, b]$ norms of the function, its first and its second derivatives.

Empolying the normalized $\mathrm{B}$-splines $B_{i}$ of order two associated with $(t_{\dot{1}}, y_{})$ , $i=0,1\ldots$ $n+1$ ,
and the corresponding second divided differences $d_{\dot{1}}$ , the problem can be rewritten as nonsmooth
equations

$F(x)=G(x)-d=0$ (4)
where

$G_{:}(x)= \int_{a}^{b}(\sum_{i=1}^{n}x_{j}B_{j}(t))_{+}B_{\dot{1}}(t)dt$ .

Here $(z)_{+}$ denotes $\max(0, z)$ .
Using the solution $x^{*}$ of (4), we can define the second derivative of the desired function as

$f’(t)=( \sum_{=1}^{n}x_{j}^{*}B_{j}(t))_{+}$

It is well-known that afunction $f$ is convex if and only if the second derivative $f’$ is nonnegative.
The function $G$ is nonsmooth. To see it, we consider the following example. Let $t_{:}=i$ %1, $i=$
$0,1,2,3$ . The Bsplines are defined by

$B_{1}(t)=\{$
$t-1$ , $t\in[1,2]$

$3-t$, $t\in[2,3]$

and
$B_{2}(t)=\{\begin{array}{l}t-2,t\in[2,3]4-t,t\in[3,4]\end{array}$

In this case, the function $G$ is given by

$G(x)=G(x_{1}, x_{2})=(\begin{array}{l}\int_{1}^{2}(x_{1}B_{1}(t))_{+}B_{1}(t)dt+\int_{2}^{3}(x_{1}B_{1}(t)+x_{2}B_{2}(t))_{+}B_{1}(t)dt\int_{2}^{3}(x_{1}B_{1}(t)+x_{2}B_{2}(t))_{+}B_{2}(t)dt+\int_{3}^{4}(x_{2}B_{2}(t))_{+}B_{2}(t)dt\end{array})$.

The function $G$ is not differentiate at $(x_{1}, x_{2})=(0,0)$ . If we replace the term $(\cdot)_{+}$ by smoothing
approximation as we have done for $\mathrm{m}\alpha(0, u)$ , we can get asmoothing function for $F$.

2.7. Stochastic Programs
Aversion of two stage stochastic program with recourse is

mimimize $c^{T}x+\mathrm{F}(\mathrm{x})$

subject to $Ax=b$, $x\geq 0$

where

$F(x)= \sum_{\dot{|}=1}^{N}Q(x,w_{i})\rho:$ .

Here $\rho:\geq 0$ , $\sum_{=1}^{N}\rho:=1$ and $Q$ is calculated by finding for given decision $x$ and even $w$ , an
optimal recourse $y\in R^{n_{2}}$ , namely

$Q(x, w)= \max\{(h(w)-T(w))^{T}z|W^{T}z\leq q\}$.
The cost coefficient vector $c\in R^{n}$ , the constrianed matrix $A\in R^{m\mathrm{x}n}$ and the vector $b\in R^{m}$

in the first stage (a master problem), and the associated cost coefficient vector $q\in R^{n_{2}}$ and
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the recourse matrix $W\in R^{m_{2}\mathrm{x}n_{2}}$ in the second stage (a recourse problem) are assumed to be
deterministic. In the second stage, the demand vector $h(\cdot)\in R^{n_{2}}$ and the technology matrix
$T(\cdot)\in R^{m_{2}\mathrm{x}n_{2}}$ are allowed to depend on the random vector $w\in\Omega\subset R^{\epsilon}$ .

The function $F$ presents the expected value of minimum extra cost based on the first-stage
decision and random events, which is convex and nonsmooth. Two smoothing approximations to
$F$ were defined in $[5, 22]$ . One of them is given by [22]

$\tilde{Q}(x,w,\epsilon)=\max\{-\frac{\epsilon}{2}z^{T}z+(h(w)-T(w)x)^{T}z|W^{T}z\leq q\}$

and

$H(x, \epsilon)=\sum_{=1}^{N}\tilde{Q}(x,w:, \epsilon)\rho:$ .

Assume that the feasible set $Z$ of the second stage is bounded. Let

$\beta\geq\max_{z\in Z}z^{T}z$.

Then we can show that for every $\epsilon>0$, $F$ is continuously differentiate and for every $x$ , there is
an $\overline{\epsilon}(x)>0$ such that for any $\epsilon\in(0,\overline{\epsilon}(x)]$

$\mathrm{H}\{\mathrm{x},\mathrm{e})\leq F(x)\leq H(x,\epsilon)+\frac{1}{2}\beta\overline{\epsilon}(x)$ .

3What are Good Smoothing Approximations
For anonsmooth function $F:R^{n}arrow R^{n}$ , agood smoothing function $H$ : $R^{n}\mathrm{x}R_{+}arrow R^{n}$ should
have the following three properties.

$\mathrm{P}\mathrm{I}$ . For every $\epsilon>0$ , $H(\cdot, \epsilon)$ is continuously differentiate with respect to $x\in R^{n}$ .
P2. There is aconstant $\mathrm{c}>0$ such that $||F(x)-H(x, \epsilon)||\leq c\epsilon$ for $x\in R^{n}$ and $\epsilon\in R_{+}$ .

P3. For every $x\in R^{n}$ , the limit
$\lim H’(x,\epsilon)$

40

exists, say $F^{o}(x)$ , and satisfies

$\lim_{harrow 0}\frac{F(x+h)-F(x)-F^{o}(x)h}{h}=0$ .

The first property states that $H$ is asmoothing function, the second property implies that the
error of $H(x,\epsilon)$ to $F(x)$ is bounded by the smoothing parameter $\epsilon$ and the third property is
required for designing locally fast convergent algorithms. These smoothing functions discussed
in Section 2satisfy the three properties.

For anonsmooth problem, we can construct many smoothing approximations of the nons-
mooth functions involved in the problem, and design many smoothing algorithms to solve the
problem. Using smoothing approximations satisfying the three properties, we can obtain globally
and superlinearly convergent algorithms for solving the nonsmooth problems.

The system of nonsmooth equations

$F(x)=0$

where $F:R^{n}arrow R^{n}$ , provides the prime candidate for illustrating the methodology of smoothing
methods. For this reason, let us end this paper by considering how to use smoothing approxima
tions to design smoothing methods for solving nonsmooth equations.

Most smoothing methods for solving nonsmooth equations include three steps
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1. Newton Step Find asolution $\hat{d}^{k}$ of the system of linear equations

$F(x^{k})+F^{o}(x^{k})d=0$. (5)

Use the smoothing parameter $\epsilon_{k}$ to check whether $||F(x^{k}+\hat{d}^{k})||/||F(x^{k})||$ is small enought.
If it is true, let $x^{k+1}=x^{k}+\hat{d}^{k}$ , otherwise perform Step 2.

2. Global Smoothing Step Find asolution $d^{k}$ of the system of linear equations

$F(x^{k})+H’(x^{k}, \epsilon_{k})d=0$ . (6)

Let $mk$ be the smallest nonnegative integer $m$ such that

$||H(x^{k}+\rho^{m}d^{k}, \epsilon_{k})||^{2}-||H(x^{k}, \epsilon_{k})||^{2}\leq-\sigma\rho^{m}||F(x^{k})||^{2}$, (7)

where $\sigma$, $\rho\in(0,1)$ . Set $t_{k}=\rho^{m_{k}}$ and $x^{k+1}=x^{k}+t_{k}d^{k}$ .
3. Update Smoothing parameter $\epsilon_{k}$

If $F$ is continuously differentiable, then (P3) implies that $F^{o}(x)=F’(x)$ . Thus, the Newton
step (5) is ageneralization of the Newton method. Hence, the algorithm will have fast local con-
vergent rate. Using the smoothing function $H$ in the second step, which satisfies $(\mathrm{P}1)-(\mathrm{P}2)$ , will
ensure that the solution $d^{k}$ of (6) is adescent direction, that is, there exists afinite nonnegative
integer $m_{k}$ such that (7) holds. Updating $\epsilon$ in Step 3makes connection between the Newton
step and the global smoothing step. We can show that the smoothing methods are globally and
superlinearly convergent. Hence these methods are not only highly efficient but are also robust.
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