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A Numerical Approximation Method for a Non-local
Operator Applied to Radiation Problem

Haniffa M. NASIR (/N=7 7 ENAR FI)b), University of Peradeniya
KAKO, Takashi (fll&i #), The University of Electro-Communications (BSUBi{E K %) ?

Abstract: In the finite element approximation of the exterior Helmholtz problem, we propose an
approximation method to implement the DtN mapping formulated as a pseudo-differential operator
on a computational artificial boundary. The method is then combined with the fictitious domain
method. Our method directly gives an approximation matrix for the sesqui-linear form for the DtN
mapping. The eigenvalues of the approximation matrix is simplified to a closed form and can be
computed efficiently by using a continued fraction formula. Solution outside the computational
domain and the far-field solution can also be computed efficiently by expressing them as operations
of pseudo-differential operators. An inner artificial DtN boundary condition is also implemented by
our method. We prove the convergence of the solution of our method and compare the performance
with the standard finite element approximation based on the Fourier series expansion of the DtN
operator. The efficiency of our method is demonstrated through numerical examples.

1 Introduction

We consider the following two-dimensional exterior Helmholtz problem:

—-Au—Fku = 0 in Q = R?\0, (1a)
ou Oui™®
- " on on 99, (1b)
. Ou . _
rli)rgo\/v_' (5 - 1ku) = 0, (1c)

where (2 is the interior of the complement of a bounded region O in R? with smooth boundary 6
on which the Neumann boundary condition (1b) is imposed and (lc) is the Sommerfeld radiation
condition at infinity.

The equation can be used to simulate the scattering phenomena of time-harmonic electromagnetic
or acoustic wave by an obstacle O which is sometimes called a scatterer. Here, u'"(x) = e is the
time-harmonic incident plane wave whose direction of propagation is given by the vector k, and n
is the outward unit normal on the scatterer (see Fig. 1).

Figure 1: Obstacle and artificial boundary

In order to solve the exterior Helmholtz problems numerically, it is a common practice to intro-
duce an artificial boundary to limit the area of computation and to prescribe an artificial boundary
condition on this boundary. The boundary condition is expected to “absorb” the outgoing waves -
and to exclude any incoming waves. Various artificial boundary conditions have been proposed in
the literature for this purpose (see Givoli [6], Ihlenburg [8] and the references therein). The artifi-
cial boundary condition that gives the solution to (1) is given by the Dirichlet to Neumann (DtN)

mapping.
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In the finite element approximation of the problem, the implementation of the DtN mapping or
its approximations has been a subject of interest by many authors (see, for example, Kako [9], Liu
[13], Liu and Kako [14] and the references therein). As for the case of using the exact DtN mapping,
MacCamy and Marin [16] used an integral representation of the DtN mapping and obtain its finite
element matrix by explicitly solving some auxiliary integral equations. Keller and Givoli [10] used
the Fourier series representation of the DtN mapping and use the standard finite element technique
to obtain the matrix in an infinite series form (see also Ernst [4] and Heikkola et al. [7]).

In this paper, we propose an approximation method to implement the DtN mapping by expressing
it in a form of pseudo-differential operator. The finite element approximation corresponding to the
sesqui-linear form of the pseudo-differential operator is given by a matrix which we call a mixed
type approximation matrix. This matrix is obtained by replacing the argument of the function
in the pseudo-differential operator, which in this case is the Laplacian on the unit circle, by its
finite element matrix. This gives a matrix in a closed form which can be efficiently computed by a
continued fraction without use of the Hankel function and its derivative. The computational cost
for the boundary condition in this method is O(ng) where ny is the number of partitions in angular
direction.

When the origin of the polar-coordinate system is outside the obstacle domain, one can consider
an inner artificial boundary that excludes the origin from the computational domain and another
DtN boundary condition is imposed on the inner artificial boundary which is also treated by our
method.

The solution outside the computational domain and the far-field pattern are expressed in closed
forms by using pseudo-differential operators and our previous method can also be applied to compute
the quantities.

We consider the fictitious domain method to form the linear equations and use the Krylov
subspace iterative method to solve the linear system (Kuznetsov et al. [12], Heikkola et al. [7]).

The rest of the paper is organized as follows. In Section 2, we review the artificial boundary
condition and its standard finite element approximation. In Section 3, we introduce a mixed type
method for the artificial boundary and its application in fictitious domain method. In Section 4,
we consider the application of the mixed type method for the solution outside the computational
domain and the far-field pattern. In Section 5, we prove the convergence of the solutions. We present
the results of numerical tests in Section 6 and make some concluding remarks in Section 7.

2 Artificial boundaries and artificial boundary conditions

For the numerical treatment of the problem (1), the unbounded domain §? is truncated by an artificial
boundary, denoted by I'r, and an artificial boundary condition is introduced. The artificial boundary
is a circle of radius R and we denote by Bpg the circular domain of radius R bounded by I'r. The
approximate boundary value problem is then given by

—Au—Fku = 0 in Qr = QN Bpg, (2a)
inc

g—z = - 6';" on 99, (2b)

% = —Mu on I'g, (2¢)

where M is the DtN mapping which we regard as a pseudo-differential operator as a function of the
Laplacian operator D? := —9?/86? and is given by

[o <] ) X
M(D*)u(R,6) = 2,, Z Hm(‘,’jﬁ ")) u(R, ¢)e"*~*)dg 3)
= kw (R,9), (4)

HO(kR; VD?)
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where we denote by H(")(z;v) the Hankel function of the first kind of order . The basic definition
of pseudo-differential operator can be found, for example, in Nirenberg [18] and Taylor [19).

2.1 Weak formulation and FEM

Let V = H'(Qg) where H*(Qg) is the Sobolev space of order s € R in Qf and v : H(Qg) —
H'/2(T'g) be the trace operator. Then, the weak formulation of the boundary value problem (2) is:
Find u € V such that

a(u,v) + (yu, ) pr = (84" /0n, v)sq Yv eV, 5)

where the sesqui-linear forms a(-,-), (-,-)ar and (-, -)aq respectively are

_ Oudv  18udv ., _ 1
a(u,v) = /Qn (87‘ Ee + 23090 k uv) rdrdf, wu,v€ H (Qp),
27

P = (Mp)(8)3(6) R,  p,q € H/*(Tg),

0
and (f,g)on = /a fado, f.g € 1*00).

Now, based on the element partitioning of the computational domain described in Subsection 3.2,
we form a finite dimensional subspace V,, of V. The finite element approximate problem is then
given by: Find u, € V4 such that

a(uh, vn) + (Yun, Yor) M = (Oui™/On,vs)sq, Vo € Vj,. (6)

2.2 FEM matrix of DtN mapping by the Fourier mode representation

The finite element approximation matrix corresponding to the DtN mappings given in the form of
(3) has been obtained by several authors (e.g., Ernst [4]). '

According to the finite element partitioning of g, the artificial boundary I'g is discretized by
a uniform partitioning with ng nodes and an equal number of intervals. We use piecewise linear
continuous functions {¢;};5 ! as the basis for the finite element approximation. The sesqui-linear
form corresponding to the DtN mapping is represented in terms of the Fourier modes as

o0
(Yun,yor)m = > RM(n®)Fuy 705 . (7)
n=-—oo
where py, ,, is the Fourier coefficient of p, given by pp , = ‘/—12=7r f02 " pr(p)e in?dp.

We express pp, = Z;.‘;O_I Ph,j#;(0) and set [Pr] := [Ph,0,Pr1, " ,Phme—1)T- By performing the_
integration, we get AU, ,, = pnQn[Y0s], where po = vhe, pn = 2(1 - cosnhg)/(n2hg/2) for
n#0,Qpn = [1,ei2’"‘/"", e ,ei2""(""‘1)/"9]/,/ng and hy = 2m/ng. Clearly, Qp ;j = Qhn,ing+; for
0 <j <ny,l € Z. Substituting Fu, ,, and 70, ,, in (7), we have :

(vum vl = D (AITQT . RM(n®)uk Qn n[7is]
n=-o00
ng—1 oo
= ) oATRE; D RM((ing + 5)*) ity 1 Qn.i[70)
j=0 l=—00

=: (M3 [7,], You))cwe , (8)

where M54 = Q1 A$*4Qy; Q4 is the unitary matrix formed by the rows Qh,;,0 < j < ng, and A3
is a diagonal matrix whose jth diagonal element is the eigenvalue of M5! and is given by

RM(0)hs, j=0,
td _ _ . 2 o0 2
X = ¢ 40 C%SJho) )3 RM((ing -!-J) ), i £0.
hy = (Ing + j)*



Note that A§'d = ,\’;f‘la From the estimate |M (n?)] £ C(1 + |n|) (see Masmoudi [17]), the sum

tends to RM (]2) /3 and 4(1 — cosjhg)?/hy — j* as hg — 0. Thus, we get the following facts for
0<j<ng/2:

“d/h, — RM(j%) as hg = 0, 9)
Il < Che(1+ 1)) (10)

3 A mixed type method

We propose a method which gives an approximation matrix directly for the sesqui-linear form
(yu,vv) pr. The matrix is circulant and its eigenvalues are one term expression which can be com-
puted efficiently by means of a continued fraction (see Section 3.1). The standard finite element
matrix M5 is then replaced by this matrix in the linear equations to be solved.

With the same partition and basis functions considered in the last section, the finite element
matrices corresponding to the sesqui-linear forms (u',v')L2(0,2x) and (u,v)L2(0,2x) respectively are
given by

[A]n = —hl—Circ(—1,2,—1), [Bls = %Circ(l,4, 1, (11)
()

where we denote by Circ(a, b, ¢) the circulant matrix for which the main diagonal is formed by b and
the lower and upper diagonals are formed by a and c respectively.

Definition 1. A mixed type approximation matrix corresponding to the operator M (D?) is defined
by

Mpixed .— [B], RM([B];; ' [A]s), (12)
where the matrices [A], and [B], are given in (11).

In the error analysis, we introduce a sesqui-linear form (15) corresponding to this matrix. Since
Mprixed s circulant, it can be expressed as Mpixed — Q*APixdQ as in the standard FEM case.
The jth eigenvalue of Mi*ed is given by /\““"ed RM (12 J)/\[B]" where uh ,\[A]" /,\%B}", )\w" =
2(1 — cos jhg)/he and /\gﬂ" = hg(2 + cos jhg)/3. Clearly, we have Apxed = )\“",’::d_ j and the smular
estimates to (9) and (10) hold for Afixed as well as 3.

3.1 Continued fraction

In this subsection, we present an efficient computation of the logarithmic derivatives of the Bessel and
Hankel functions which appear in the DtN mappings. The key idea is to use continued fraction forms
for the logarithmic derivatives. These continued fractions are rapidly converging and an efficient
algorithm for computing them is readily available as the modified Lentz’s method (Thompson and
Barnett [20]). The continued fraction for the DtN mapping on the exterior artificial boundary is
given by

H<1> "(z;v) _ . (1722 =% (3/2)2 -2
H(l)(z v) + 2(z +i)+ 2(z+2i)+-

where £ = kR, and the continued fraction for the DtN mapping on the inner artificial boundary is
given by

J'(a: v) _ z 1
J(z v) —v 2w+ 1)/z—2(v+2)/z—---

where = = kry.
These continued fractions converges for all values of v and = except those in the neighborhood
of zero. It converges very rapidly for z > /v(v + 1).
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3.2 Fictitious domain method

In order to solve the problem with general obstacle, we use the fictitious domain method [4, 7]
to form the approximation subspace Vj,. For this, the computational domain Q is extended to a
fictitious domain Qf which is a circular annulus and includes the obstacle boundary. When the
obstacle is not narrow and contains a larger neighborhood of the origin, Q is extended inside the
obstacle to form the fictitious domain. When the obstacle is thin, we choose the polar coordinate
system such that the origin is outside of the obstacle and Qﬁ is obtained as the union of Qg and
the obstacle domain O (see Fig. 2).

Now, the annulus fictitious domain is partitioned by an orthogonal polar mesh. The nodes of the
mesh next to the boundary of the obstacle O are shifted onto the boundary 9Q, and the modified
quadrilateral elements in the computational domain are triangulated such that the resulting mesh
gives a shape regular triangulation (Borgers [1]). This leads to a locally fitted mesh, which is
topologically equivalent to the original mesh and differs from it only in an h-neighborhood of the
obstacle boundary. The mesh inside the obstacle domain is discarded to obtain the mesh for Qg.

The approximation subspace V}, consists of functions uj, such that the restrictions of uy, in the
unmodified rectangles are bilinear and the restrictions on the triangles near the obstacle boundary
are linear.

Figure 2: : Fictitious domains and locally fitted mesh

For more details on the fictitious domain method, see Kuznetsov and Lipnikov[12] and Heikkola[7].

4 Further applications

The mixed type method can be used in other cases of radiation problems where pseudo-differential
operators appear. We consider cases of an inner artificial boundary, computing solution outside the
computational domain and computing the far field pattern.

4.1 Inner artificial boundary

When the obstacle does not contain the origin, one can introduce an inner artificial boundary I,
which is a circle of radius ro. Then we consider the computational domain Qz which also excludes
the disc of radius ro and we impose an inner DtN boundary condition on I',, given by

1 ero /2
Ou _ Ny = 7 (kro; vD?)
or J(kro; vV D?)
where J(z;v) is the Bessel function of order v. Its corresponding sesqui-linear form (vou, vov) N will

be added to the weak form (5). In the finite element approximation, we replace its standard FEM
matrix by the mixed type matrix Ni*ed defined analogous to Definition 1.

u(ro,0) on Ty,



4.2 Solution outside the computational domain and far field pattern

The solution on a circle of radius r outside the computational domain can be represented by series
with respect to the solutions on the artificial boundary. For the exterior region, the solution p,(f) =
u(r,8) can be expressed as a pseudo-differential operator form as follows:

H(kr;/D?)

-(8) = S1(D? 9), r>R, 13
pr(0) = SuD"u = T pa(O), 72 (13)
and for the interior region the solution is given by
VD2
J(kr; vV D?) r < ro.

— 2 —
pr(o) = S52(D )“ = J(kro;m)pfo(o)’

The far-field pattern corresponding to the solution is obtained by using the asymptotic formula of
the Hankel function in the solution (13) and is given by

FD? \/_2‘ e—im/2(VD?+1/2)

In order to compute these solutions, one can use the finite element method in which we apply
the mixed type method. The weak formulation of the generic form p,(6) = S(D?)po(8) is given by
(pr,q) = {(po,q)s and hence, using the uniform partition as before, and using finite element method,
we get the matrix equation

[BIwP, = SF>*4P,, (14)

where the matrix SP**d is given as in (12) for the function S and P, and P are column vectors
corresponding to p,(6) and po() respectively with respect to the nodal basis functions. One can
cancel the pre-multiplication of the matrix [B], on both sides of (14). Hence, computing the solution
is reduced to a matrix multiplication which can be performed efficiently by using FFT. Clearly, the
solution at radius r is not coupled with solutions of the adjacent circles. Hence, in order to save
computing time, one can choose the minimum amount of circles for the solution that will provide
the resolution of the waves. As a rule of thumb, one can choose 10 radial intervals per wavelength.

5 Convergence Analysis

Let ag(u,v) = [y _(Vu- Vu+ub)dz and bo(u,v) = [ —(k?+1)uvdzr and let PF® . HY(Tg) — V®

be the orthogonal projection with respect to H!(I'g)-inner product where VF" ={yv, :vp € Vp}.
We define a sesqui-linear form on H(I'g) corresponding to the mixed type method as

—

@)yt = (M“""°"[P,,r =pl,[Pf*q))ce,  p,q € H'(Tr). (15)

With a$f(u,v) = ao(u,v) + bo(u,v) + (yu,Y0)nm and aF5%(un,vn) := ao(un,vn) + bo(un,vn) +
(7un, Yon)§y R4, we have the following problems:
(E): a3 (u,v) = (£,v), Vo € V;

(Eypixed af % (un, vn) = (f,vn), Vo, € Vi,

where (f,v) = (Ou'"®/0r,v)sq- In the following, we denote by ||-||5,a , s € R the norm on the Sobolev
space H?(2),) = Qg or Ty (Ciarlet and Lion {3]).

Theorem 1. Let u € V be the solution of (E). Then, there ezxists hg such that for all h € (0, ho),
there exist unique solutions up € Vi, of (E)*®d such that

lim ||u — =0.
Jim [lu = unll1. 00 = 0

178



179

To prove the theorem, we need some lemmas. Let u and up, be the solutions of (E) and (E)T?xefd
respectively, and put e, = u — up. Since 9§ is smooth, u € H*(Qg). Equating (E) and (E)Rixed

and adding and subtracting (yu, 'yvh)‘j\'},ijzed, we have,

ao(er, vn) + bo(en, vn) + (ven, Yon) i + rn(u,vp) =0, (16)

where 74 (u,v) = (yu, yv)pr — (yu, ’yv)“‘”‘ed Now we have the following lemmas.

Lemma 1. There ezists a constant Cy(h) with limp_,o C1(h) = 0 and ho such that for all h € (0, he),
Ira(u, va)| < Cr(R)llullz, 0 llvalliog, for all va € V.
Lemma 2. For every € > 0, there ezists a constant Cs (e, h) with limp_9 C2(e, h) = 0 such that
|afii? (en, en)] < ellenll} ap + Cale, W)lIull3 0,

Lemma 3. There exist two constants C3(h) and Cy(h) with limp_o C3(h) = limp_,0 C4(h) = 0 such
that

lbofen, en)| < Cs(R)llenll} o + Ca(h)lull} o -

Proof. Proof of Theorem 1

Since Re M (¥2) > 0 for all v € R (Koyama [11]), we have Re (yes, 'yeh)‘“"‘ed >0.

Considering the real part of [lex[|} o, = ao(en,er) = affed(en, en) — bolen, en) — (ven, ver) e
and lemmas 2 and 3, we have

mixed

lleallia, < Reali5%en,en) — Rebo(en, en)
ellerll? op + Ca(e, )lull3 op + Cs(W)llenll} o + Ca(B)lull? -

Hence, we have (1 — e — C3(h))llenll} o, < (C2(e, h) + Ca(h))||ull o, Choosing e small enough
such that (1 —¢ — C3(h)) > 1 —2¢ > 0, we get llen|? ar S(1-2)" 1(Cy(e, h) + C'4(h))||u||§nH —
Oash—0. ~ .

For the uniqueness, if f = 0, then u = 0 by the solvability of (E). Then, by the last inequality,
en = —up =0. O O

IA

Proof. Proof of Lemma 1 First, we establish an estimate for ||ps||s,rr,s € R. Analogous to (7) and
(8) (with M (j2) = (1+ j2)* and R = 1), we have :

ng—1 oo

oallle, = D Y 1+ (np+3)%) w1 ;1Qn. 6]

7j=0 l=-—00
ng—1 ng—1

> Y (457 uIQn Bl 2 C Y he(1+4%)° |Qh,,[ph1|2 (17)
j=0 j=0

due to the fact that u? = ho(sin(jho/Z)/(jh9/2))4 > Chg for 0 < j < mny/2.

We write r4(u, v) = (yu— P Ryu, YR) M+ ((PE R yu, yor) ar — (yu, yor)irwd) =: (I)+(II). From
standard estimates: |[|(I— Pr")'yu)”m Tr < Chy™™|lvulli,rp;m = 0,1, we get ||(I - PFR)’YU)HI e <
Cho [lvulli,r, by interpolation.

Since the DtN operator is a bounded operator from H'/2(T'g) into H~1/2(I'g) (Masmoudi [17]),
we have,

1
(DI < CIA = Py =)vu)lly pelivonlly o < CRG llvulliellvoilly rg-

For the treatment of (II), we adjust the index range as —ng/2 < j < ng/2 for simplicity. We
have from the estimates (9) and (10) for A}’S and Ajxed that for an arbitrarily fixed jo, there



exists C(jo,h) with limp_0 C(jo,h) = 0 such that |/\Std /\"‘i?‘edl < C(jo, h)hg, for all |j| < jo

and | X — Apxed| < Chg(1 + |j]), for all j # 0. Now, denoting Q, = |Qx ;[PF*vu]| and Q,, =
|@n,j[7v,]| for brev1ty, and using (17), we get

———

[044] |(M3d — Mipixed)[PLR ], [75,))

< E '/\std mlxedIQuth + E |/\s /\;‘n’?ced'Quth
l31<do 131> 3o
< Clio,h) Y hoQuQu, +C Y ho(1+i)QuQu,
lil<do 131> Jjo

< C(jo, WIIPE *yullo,rallvonllo,rs
- . 1 . 1
+Cljol ™% Y he(1+13%)7Qu(1 +15%) *Qu,
13l>do
< (Clo, B + Cliol™/®)llvully,rallvenlly rr
Hence, adding (I) and (II), we have |ra(u, vs)| < C1(W)l|7ulli,rallvonlly,rp < Cr(A)llull2.0nllvnlli0n

with Ci(h) = Ch(l,/ % + C(jo, h) + Cljol~1/2. For an arbitrary € > 0, we first choose jo such that

ljol~1/2 < €/2, and then we can see that there exists hg > 0 such that Chl/2 + C(jo, h) < €/2 for
all 0 < h < hy. O O

Proof. Proof of Lemma 2 By (16), we have ayed(en, en) = a5 (en, u —up) = a3 (en, u—vp) +
rh(u,u — vy — €4), and hence,

nd(en,en)l < Cllenllarlly — vrllior + C1(B)|lu — va — enlloxllull2.0n

la <
< (Ch+ Cr(W)|ullz 0z llenlon + Ci(h)hllull3 o,
< e/2enll? o + Ca(e, B)lull? o
where Cy(e,h) = 5=(Ch + Cy(h))? + C1(h)h - 0 as h — 0. m] O

Proof. Proof of Lemma 3 There exists a unique w € H2(2g) such that a%f (v,w) = —(v, (k% + 1)es)
for all v € V, and

[lwll2,0r < Cllerllo,x- (18)

where C' is a constant independent of e, and w. Using (16), we have, for all v, € V},

bo(en,en) = afy (en,w) = afy ¥ (en, w) + rhen, w)
= a§d(en, w — vn) — ru(u,vn) + rr(en, w)
= af(en,w — va) + ra(u, w — vp) — rh(u, w) + ralen, ). (19)

Now, from the boundedness of tr(-,-) in H}(Qg), lemma 1 and with the use of orthogonal projection
Py : V 5 V,, with respect to H!(Qg)-inner product, we have,

Ira(u,w)] < |ra(u,w — Pyw)| + |ra(u, Paw)|
< Cllullarllw = Pawl|liar + Cr(B)|ullz,0x 1 Pawlli,0n
< (Ch+ Ci(h)llull2,erllwllz,0x;
Ira(en,w)l < |ra((I — Pr)en,w)| + |ra(Pren,w)|
< ClI - Py)ulliaxllwlliax + Cr(h)llenllr,erllwlizaq
< (Chllullz,0r + Ci(h)llenllr,or)llwll2,04-
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Using |bo(en,en)| = (k% + 1)||ehl|(2,,QR, the boundedness of afi*®d(-,-) and r4(:,-), the fact that
infy, ev, |lw — vnll1,0r < Chllw|l2,0r, and (18), we have from (19),

(k+DllealBa, < Clllenllsan + llulliaz) inf flw—val
VhEVR
+{C1(h)lenll1,ar + (2Ch + Cr(A))llullz.0q HIwll2.0r
llenllo.or{Cs(A)llenll.an + Co(h)llull2,0q}
ellenllfan + CE{CE(R)llell} 0, + C(W)llullz0x}

where Cs5(h) = Ch + C1(h),Ce(h) = 3Ch + Ci(h). Rearranging the inequality completes the
proof. O O

IAN A

6 Numerical tests and results

We present in this section some of the results of numerical testings of our method for various
examples. We compare the efficiency of our mixed type method with the standard FEM.

All computations were carried out on VT-Alpha5, 533Mhz, 512MB RAM with Linux operating
system environment with double precision arithmetic using object oriented C++ codes. The iteration
scheme in solving the system of linear equations using fictitious domain method, we use the transpose
free quasi minimal residual (TFQMR) by Freund [5]. The residual tolerance was set to € = 107°.

6.1 Convergence testing

To test the convergence of the computed solutions and compare with the standard FEM solutions as
the mesh size decreases, we consider an example of a circular obstacle of radius r; = 1 with artificial
boundary radius R = 1.3927. We choose the wave numbers k = 7, 27 and 107 and the incident wave
as a plane wave in the z-axis direction ¢ = 0. For the finite element mesh, we choose orthogonal
partition with size (n,,ny) ranging between (2,16)-(2049,32768). For the standard finite element
approach, the infinite series in eigenvalues are computed until machine precision is achieved. The
resulting separable linear system is solved by using fast direct method with FFT.

The maximum errors ||u — 4§, 0, [|lu — uP™*9||o0,0p against the angular partition size are
shown in Fig. 3(a). The maximum error between the two computed solutions ||u$td — urixed|| o, o, is
shown in Fig. 3(b) in logarithmic scale. Both solutions converge linearly as well as their difference.

na |, maxju - u |
g = - s

Un
8

maxju
§

Angular partition size (nt) Angular partition size (nt)
@ (€]

Figure 3: Convergence

6.2 Efficiency testing

To test the computing time difference between the methods, we consider the first test example above
and an example with an elliptic shape obstacle with axes 2a = 2.0 and 2b = 1.2. The wave number
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k = m. We choose the artificial boundary radius R = 1.1 and 3.0. The radial and angular partition
sizes n, = 40 and ng = 256 respectively. The results are shown in Table 1.

Table 1: Comparison between MTM and standard FEM

R | Obstacle | Std FEM time (sec.) | MTM time (sec.) | Iterations
1.1} Circle 2.42 1.33 11(both)
1.1| Ellipse 5.01 2.74 33 (both)
3.0 | Circle 6.41 5.18 11(both)
30| Ellipse 14.22 13.51 30 (both)

We also considered an arc shaped obstacle and the Helmholtz resonator with the domain truncat-
ed by inner and outer artificial boundaries. The scattering waves and the far-field pattern are com-
puted by using the formula for solution outside the computational domain. From the far-field pattern,
the radar cross section (RCS) is computed by using the formula RCS(6) = 10log,o(w|F(6)[*) which
is in decibel units [7]. The total waves (real part) for circular arc with waves number k = 67 and
scattering waves (real part) for the Helmholtz resonator with wave number k = 37 and their radar
cross sections are shown in Fig. 4.

Figure 4: Wave pattern for antenna and Helmholtz resonator

Figure 5: Radar cross sections for antenna and Helmholtz resonator

7 Conclusions

In this paper, we proposed a mixed type method for the finite element approximation of non-local
radiation boundary condition written in the form of pseudo-differential operator. We defined a
mixed type approximation matrix to approximate the sesqui-linear form corresponding to the DtN
operator. The method is also efficiently applied to compute the solution of the radiation problem
outside the computational domain and to compute the far-field pattern.

Numerical tests show that the mixed type method is computationally efficient. The convergence
is confirmed for the mixed type method and is observed to be of the same order as the standard
finite element approximation.
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