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The sets of non-escaping points of
generalized Chebyshev mappings

Keisuke Uchimura (Nft 1E#H)
Tokai Univ. Dept. of Math. (FR¥ERFEEFH)

1 Introduction

Let G. be the polynomial self-mapping of C? defined by

Gc(m’ y) = (xZ — CY, y2 - Cw)'

It admits an invariant line {z = y} on which it acts as the quadratic
polynomial '
fo(2) = 2% —cz.

If ¢ is real, the map G. admits an invariant plane {z = 7}, on which
it acts as
Fo(2) =2 —cz.
The purpose of this paper is to understand the dynamics of F, as

a self-map of C. The mapping G, can be extended as a holomorphic
self-map of CP?

alle 55 2]) = [6% - ey o7 — ez s .

Ueda [1999] shows that any holomorphic map on CP? of degree 2 is
equivalent to one of the following maps :

) Uil y: ) = 2 4 : 27,

(2) Up([z:y: 2]) = [2° +yz 1 y*: 27,

B)Us([x:y:2]) =[x®+yz:y?>+z2: 27,

(4) Ug([z:y: 2]) = [22 + dzy + 92 : 22 + 2y : yz].

Note that g, is equivalent to Us.
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The map
F(2)=2>—cz

has a connection with a physical model when ¢ = 2. It is Chebyshev
map
Fz(z) = Z2 — 2z.

A. Lopes [1990,1992] considered the dynamics of F; as a special kind
of Potts model and showed that triple point phase transition (three
equilibrium states) exists. He conjectured that if ¢ > 2, a Cantor
set with expanding dynamics exists. It is known that for expanding
systems equilibrium states are unique. We explain triple point phase
transition. We consider the pressure

P(t) = sup {h(v) — - [ log| det(Df(2))ldu(z)}.
veM(f)
M(f) denotes the set of invariant probabilities and h(v) is the entropy
of v. For each t, if the measure u(t) is the solution of the variation
problem, pu(t) is called the equilibrium measure. Multiple equilibrium
measures of Fy(z) = 22 — 2z are stated as follows :

4 3 1
1)if —> < tth t) = u(= =
(1) 3 en A(t) = 72 \/—(22)2 + 4(23 + 23) — 1822+ 27

4
2)if t= —3 then there exist triple point phase transition (%) :
1 1 |
1 (not magnetic), 55p2+—2-6p3 (magnetic), J,, (anti-ferromagnetic),
(3)ift < —% then there exist two equilibrium states u(t) :

1 1
'2_6’)2 + 56};3, 61’1 .

We give an affirmative answer to Lopes’s conjecture. More gen-
erally, we show an analogue of the result which are well known for
quadatic polynomials. In the paper we assume that c is real.



2 Dynamics of G.(z,y) and F.(2)

We show the following two theorems. Let K(g) = {z € C | ¢"(2) :
n=20,1,2,...,is bounded}. | ,
Theorem 1. K(F,) is connected with the simply connected comple-
ment in CP' if and only if —4 < ¢ < 2.

Theorem 2. Ifc>2, then}
(1) K(F,) is a Cantor set;
(2) the two-dimensional Lebesgue measure of K(F;) is 0;

(3) F. restricted to K(F.) is topological conjugate to the shift on 4

symbols;
(4) the measure of mazximal entropy of G.(z,y) is supported in the
real plane {z = §}.

We see the analogue as follows .
Let f.2)=2°4+c and F,(z)=2°—cz.

(a) K(f.) is connected with the simply connected complement if and
only if -2 <c¢ <1

(A) K(F,) is connected with the simply connected complement if and
only if -4 <c¢<2.

Note that f.(z) on [—2, 1] and F(z) on [—4, 2] are topological con-
jugate. '

(b) If ¢ < —2 then,
(1) K(f.) is a Cantor set ;
(2) the one dimensional Lebsgue measure of K(f;) is 0;
3) {K(f.), fc} and {X3,0} are equivalent;
(4) Julia set of f, is included in the set [—g, g].

(B) If ¢ > 2 then,
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K(F,.) is a Cantor set ;

(1)

(2) the two dimensional Lebsgue measure of K(F.) is 0;

(3) {K(F.), F.} and {34, 0} are equivalent;

(4) the smallest Julia set of G, is included in the set {z = 7}.

To prove the assertion (1) of Theorem 2, we show the following result
for non-conformal maps F,. If ¢ > 2, for any connected component
K(i1,...,i,) in F_™(D), the diameter [K(iy,...,i,)] approaches 0 as
n — 0o. To prove this we introduce a Riemannian metric

%{(72 — 3z)d2® + (9 — 2z)dzdz + (2? — 3z)dz?},

where u = —2°2% + 4(23 + 2°%) — 182z + 2T.

This metric goes to co on the boundary 8S. This is a generalization
of the invariant measure

1
z(1 —z)

for f(z)= 42:(1‘— ).

3 Proofs

We show only the proof of the assertion (4) of Theorem 2 in this paper.
Proofs of the other assertions of Theorem 2 and that of Theorem 1 are
stated in Uchimura [2001] and so are omitted. In this paper we use
the same definitions and notations as are used in Uchimura [2001].

Lemma 1.  The number of periodic points of order n of g.([z : y :
2]) = [z — cyz : y? — cxz : 2%] with z # 0 is 4™.

Proof. From Corollary 3.2 of [Fornaess and Sibony, 1994], this
lemma follows immediately. m|

Lemma 2. Ifc > 2, the number of periodic points of order n of the
function F,(z) = 22 — cZ is 4™.



Proof. From the proof of Theorem 4.1 of [Uchimura, 2001], we see
that there exists a positive integer n such that

(F)™(Dx) C 55.
Let N be the smallest integer satisfying the above property. Let
I = (F,) N (int(D.)).

Then it can be proved that I' is an open connected set. From Propo-
sition 2.2 of [Uchimura, 2001}, we know that there exist homeomor-
phisms ¢;, (k=0,1,2,3), from %S to S; with S; C 55 such that
the composition F, o ¢y is an identity map. From Proposition 3.1 of
[Uchimura, 2001], we have

(F,) (') c T.

3

Hence Uee() cT
k=0

and so
pr(I)  CT.

Applying Fixed Point Theorem to ¢, we get a fixed point py in T’
such that ¢r(pr) = pr. Hence we have 4 fixed points of F.

By the similar argument, we can prove this lemma when n > 1.
O

Combining Lemma 1 and Lemma 2, we have the following proposition.

Proposition 3. If ¢ > 2, then any periodic point of G.(x,y) lies
in the plane {(z,z)|z € C}.

Let H = {(z, )|z € C}. We denote the Jacobian matrix of the map
G.(z,y) at the point (u,v) by DG.(u,v). G, restricted on H is the
map F,(z). The map F.(z) may be viewed as a map from R? to R2.
We denote the Jacobian matrix of the map F. at (uy,us) by DF,(u)
where u = u; + iug, U, u2 € R.
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Lemma 4. We consider the map G.(x,y) when c is real. Let (u,v)
be a periodic point. Suppose the periodic point (u,v) lies in H. Then
the set of eigenvalues of DG (u, %) are identical with that of DF,(u).

Proof. Clearly,
DG(z,y) = (2x N )

—C 2y
Then 0 _
DG (u,5) = (u1 + ug) —c )
—c 2(u; — tuy)
On the other hand,
_[2u1—c  —2uy
DFe(u) = ( Quy  2uy +c)'
Set v .
1 +1 —1+41
= 2
v (1 +1 1— z) '
Clearly U is an unitary matrix. Then we can easily prove that
U 'DG,(u, @)U = DF,(u). O

In Proposition 3, we show that if ¢ > 2, all periodic points of
Gc(z,y) lie in H. Next we show they are all repelling.

Proposition 5. If ¢ > 2, then any periodic point of G.(z,y) is
repelling.

Proof. From Lemma 4, we see that to prove this proposition it
suffices to show that any periodic point of F.(z) is repelling. This
follows from the fact that for any connected component K (i, ..., 1,)
in F_™(D), the diameter [K(3y,...,4,)] approaches to 0 as n — oo.
O

Combining Proposition 5 and Corollary V.2.1. in [Briend, 1997], we
can prove the assertion (4) of Theorem 2. a
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