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1 Introduction
Structurally finite entire functions axe constructed&0m finitely many quadratic
blocks and exponential blocks by (Klein and) Maskit surgeries, which shall
be defined in Section 3, connecting two functions. For examples, every poly-
nomial of degree $d+1$ is constructed from $d$ quadratic blocks and the complex
errorfunction $a \int_{0}^{z}\exp t^{2}dt+b$ is constructed from two exponential blocks so
they are all structurally finite.

We shall study:

Question. We suppose that astructurally finite entire function has acycle
whose multiplier is $\mathrm{A}=e^{2\pi\cdot\alpha}.$ , $\alpha\in \mathbb{R}$ $\backslash \mathbb{Q}$ (then this cycle is said to be irra-
tionally indifferent). If it is aSiegel cycle, then does $\alpha$ satisfies the Brjuno
condition?

The Brjuno condition is defined by

$\sum_{n>0}\frac{\log q_{n+1}}{q_{n}}<\infty$ ,

where $\{q_{n}\}$ is the sequence of denominators of the rational numbers approxi-
mating $\alpha\in \mathrm{R}\backslash \mathbb{Q}$ defined by its continued fraction expansion. An irrationally
indifferent cycle of an entire function $f$ of period $n$ with multiplier $e^{2\pi\dot{|}\alpha}$ is
called a Siegel cycle if every element of this cycle has aneighborhood where
the $n$ times iteration $f^{n}$ is conformaly conjugate to the $2\pi\alpha$-rotation around
the origin on adisk, otherwise aCremer cycle. The converse of Question is
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true from the Brjuno Theorem which says that if asatisfies the Brjuno con-
dition, then every holomorphic germ fixing the origin with multiplier $e^{2\pi\dot{\iota}\alpha}$

has aneighborhood of the origin where it is conformally conjugate to the
$2\pi\alpha$-rotation around the origin on adisk.

Yoccoz gave abeautiful alternative proof of the Brjuno theorem in [10]
and also showed that if aquadratic polynomial has aSiegel fixed point whose
multiplier is $\lambda$ , then $\alpha$ satisfies the Brjuno condition. P\’erez-Marco proved
it for structurally stable polynomials with Siegel fixed points. In [7], we have
proved it for asubclass of $n$ -subhyperbolic polynomials, which shall be defined
below, with Siegel cycles, and, in particular, we have that Question is true
for Siegel cycles of quadratic polynomials.

In this article, we shall state Main Theorem on Question for structurally
finite entire functions in Section 3. For this purpose, we also survey several
useful theorems on transcendental entire or meromorphic functions with some
kinds of finiteness which are sometimes stated only for polynomials or rational
functions.

2Several theorems related to finiteness
Let $f$ : $\mathbb{C}arrow\hat{\mathbb{C}}$ be ameromorphic function which is neither constant nor
alinear transformation. The Fatou set $F(f)$ is the set of all points each of
which has aneighborhood $U$ where $f^{n}$ is defined for all $n\in \mathrm{N}$ and $\{f^{n}|U\}_{n\in \mathrm{N}}$

is normal. The Julia set $J(f)$ is the compliment of $F(f)$ in C.
Acomponent of $F(f)$ (a Fatou component, in abbreviation) is said to be

cyclic if $f^{n}$ maps $U$ into itself for some $n\in \mathrm{N}$ , otherwise wandering. For the
classification of cyclic Fatou components into one of (super)attractive basins,
parabolic basins, Siegel disks, Arnord-Herman rings and Baker domains, see,
for examples, [6].

First, we assume that the number of singular values of $f^{-1}$ is finite. We
say such $f$ to be of the Speiser class. Then it is known that every singular
value is either acritical value or an asymptotic value.

The following theorem is essentially by Goldberg-Keen [4] and EremenkO-
Lyubich [2], who proved it for entire functions.

Theorem 1(No wandering domain theorem). If a meremor phic func-
tion is of the Speiser class, then it has no wandering Fatou components.

Eremenko Lyubich also proved the following for entire functions. For how
to generalize it to meromorphic functions, see [1], p172.

Theorem 2(No Baker domain). If a meremorphicfunction is of the Speis
class, then it has no Baker domains
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Second, we assume that the number of critical points and asymptotic
values of $f$ is finite. Since the number of critical values is less than that of
critical points, $f$ is then of the Speiser class. However, the converse does not
hold (for example, consider $\sin z$).

It is known that for every meromorphic function, each of its attractive
basins and parabolic basins contains at least one of critical points and asymp-
totic values. To describe arelation between other cyclic Fatou components
or Cremer cycles and singular values, we prepare:

Definition (Omega limit set and recurrence). Let $g$ be ameromorphic
function. For $c\in \mathbb{C}$ , the omega limit set $\omega(c)=\omega_{g}(c)$ is the set of all $z\in\hat{\mathbb{C}}$

such that $\lim_{\dot{1}arrow\infty}g^{n}‘(c)=z$ for some $\{n:\}\subset \mathrm{N}$ .
Apoint c is recurrent if $\omega(c)\ni c$ .
The following theorem is essentially due to Mane [5]. For an alternative

proof, see [8].

Theorem 3 $(\mathrm{M}\mathrm{a}\tilde{\mathrm{n}}\text{\’{e}})$ . 1. Let Abe a compact subset of $J(f)$ which is foreuard
invariant, that is, $f(\Lambda)\subset \mathrm{A}$ . If it contains none of parabolic periodic points
and critical points and satisfies

$\Lambda$ $\cap$ (
recurrent critica

$\mathrm{p}o\cdot.nt\cup$

or an $awmp\omega uc$

$vd\mathrm{u}e\omega(s)$) $=\emptyset$ ,

then $f|\Lambda$ is expanding, that is, there exists $N>0$ such that for all $n>N$ ,
$\dot{\mathrm{m}}\mathrm{n}_{z\in \mathrm{A}}||(f^{n})’(z)||_{\sigma_{C}}>1$ , where $\sigma e$ is the spherical metric on $\hat{\mathbb{C}}$ .

2. Let $\Gamma(\subset J(f))$ be any one of a Cremer cycle, a union of boundary $\omega m-$

ponents of a Siegel disk and that of an Arnold-Herman ring. Then there exists
a point $s\in J(f)$ which is either a recurrent critical point or an asymptotic
value such that $\omega(s)\supset\Gamma$ .
Definition (corresponding). Let $\Gamma$ be any one of aCremer cycle, aunion
of boundary components of aSiegel disk and that of an Arnold-Herman ring.
Arecurrent critical point or asymptotic value $s$ corresponds to $\Gamma$ if it satisfies
$\omega(s)\supset\Gamma$.

Finaly, we assume that the number of critical points of $f$ and trvsnscen-
dental singularities of $f^{-1}$ is finite. We fix the definition of the latter, which
are ideal points, and see that the number of transcendental singularities of
$f^{-1}$ is less than that of asymptotic values of $f$ .
Definition. For $a\in\hat{\mathbb{C}}$ , let $A:=\{A(r)\}_{r>0}$ be afamily of domains in $\mathbb{C}$ such
that for $r>0$ , $A(r)$ is acomponent of $f^{-1}(\mathrm{D}_{r}(a))$ and if $0<r_{1}<r_{2}$ , then
$A(r_{1})\subset A(r_{2})$ .
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Then $\bigcap_{\mathrm{f}>0}\overline{A(r)}^{\mathbb{C}}$ contains at most one point. If it is the infinity, the $A$

is called atranscendental singularity of $f^{-1}$ over a. Note that then the a is
an asymptotic value of f. We say that the A corresponds to $\Gamma$ if so does a.

Now we define the $n$-subhyperbolicity of such f.
Definition ($n$-subhyperbolicity[7]). For anon-negative integer $n$ , $f$ is
$n$ -subhyperbolic if

(i) there exist exactly $n$ recurrent critical points of $f$ or transcendental
singularities of $f^{-1}$ corresponding to irrationally indifferent cycles,

(ii) every critical point in $J(f)$ other than such ones as (i) and asymptotic
values in $J(f)$ over which there is no such transcendental singularities
of $f^{-1}$ as (i) is eventually periodic, and

(iii) no orbits of singular values in $F(f)$ accumulate to $J(f)$ .

An $n$-subhyperbolic $f$ is $n$ -hyperbolic if it has no such ones as (ii).

Remark. The O-(sub)hyperbolicity agrees with just a(sub) hyperbolicity.

3The structurally finite entire functions
First we explain two kinds of building blocks. Ones are quadratic blocks

$az^{2}+bz+c:\mathbb{C}arrow \mathbb{C}$ $(a\neq 0)$ ,

and the others are exponential blocks ($\exp$ blocks)

$a$ $\exp bz+c$ : $\mathbb{C}arrow \mathbb{C}$ $(ab\neq 0)$ .

Definition (Maskit surgery [9]). Let $\pi$ : : $R_{j}arrow \mathbb{C}(j=1,2)$ be apossibly
incomplete and branched holomorphic covering of $\mathbb{C}$ by asimply connected
Riemann surface $R_{j}$ , and let $A_{j}$ be the set of all singular values of $\pi_{j}$ for each
$j=1,2$ . Assume that there is across-cut $L$ in $\mathbb{C}$ , i.e., the image of aproper
continuous injection of the real line into $\mathbb{C}$ such that

1. $L\cap A_{1}$ equals to $L\cap A_{2}$ , and either is empty or consists of only one
point $z_{0}$ , which is an isolated point of each $A_{j}$ ,

2. $\mathbb{C}\backslash L$ consists of two connected components $D_{1}$ and $D_{2}$ , where $D_{j}$

contains $A_{j}\backslash \{z_{0}\}$ for each $j=1,2$ , and
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3. if $L\cap A_{1}(=L\cap A_{2})$ $=\{z_{0}\}$ , then $z_{0}$ is acritical value of each $\pi_{j}$ , i.e., for
asmall disk U with center $z_{0}$ satisfying $U\cap A_{j}=\{z_{0}\}$ , there exists a
component $W_{j}$ of $\pi_{j}^{-1}(U)$ which is relatively compact in $\mathbb{C}$ and contains
acritical point of $\pi_{j}$ for each j $=1,$ 2.

Under the above assumption, suppose that the projection $\pi$ of a(possibly
incomplete and branched) holomorphic covering of $\mathbb{C}$ by asimply connected
Riemann surface $R$ satisfies the following conditions: There exist

1. acomponent $\tilde{D}_{1}$ of $\pi_{1}^{-1}(D_{2})$ and acomponent $\tilde{D}_{2}$ of $\pi_{2}^{-1}(D_{1})$ such that
for each $j=1,2$ , $\pi_{\mathrm{j}}$ : $\tilde{D}_{j}arrow \mathrm{D}\-\mathrm{j}$ is aholomorphic surjection and
$\tilde{D}_{j}\cap W_{j}\neq\emptyset$ if $L\cap A_{j}\neq\emptyset$ ,

2. across cut $\tilde{L}$ in $\mathbb{C}$ such that $\pi$ gives ahomeomorphism of $\tilde{L}$ onto L,
and

3. conformal maps $\phi_{j}$ of C) $D\sim j$ onto $U_{j}$ such that $\pi_{j}=\pi\circ\phi_{j}$ on $\mathbb{C}\backslash \tilde{D}_{j}$

for each j $=1,$ 2, where both $U_{1}$ and $U_{2}$ axe the components of $\mathbb{C}\backslash \tilde{L}$ .

Then we say that the holomorphic covering $\pi:Rarrow \mathbb{C}$ is constructed from the
coverings $\pi_{j}$ : $R_{j}arrow \mathbb{C}(j=1,2)$ by the Maskit surgery with respect to $L$ and
also, if $L\cap A_{j}\neq\emptyset$ , to $\{W_{j}\}_{j=1,2}$ . We also say that $\pi:Rarrow \mathbb{C}$ is constructed
from $\pi_{j}$ : $R_{j}arrow \mathbb{C}$ by the Maskit surgery attaching $\pi_{3-j}$ : $R_{3-j}arrow \mathbb{C}$ with
respect to $L$ and possibly to $\{W_{j}\}_{j=1,2}$ .

We especially call such asurgery aKlein surgery with respect to $L$ if
$L\cap A_{j}$ is empty for $j=1,2$ .

Definition (structural finiteness). Astructurally finite entire function of
type $(p, q)$ is an entire function constructed from $p$ quadratic blocks and $q$

exp-blocks.

Clearly, if $f$ is astructurally finite entire function, then $f$ has only finitely
many critical points of $f$ and transcendental singularities of $f^{-1}$ . Conversely,
that characterizes the structural finiteness of an entire function. For acom-
binatorial study of such entire functions, see Taniguchi [9].

Now we return our Question in Section 1and state our Main Theorem:

Main Theorem. If $a$ 1-hyperbolic structurally finite entire function of type
$(p, q)\neq(0,1)$ has a Siegel fixed point whose multiplier is A $=d^{\pi\dot{|}\alpha}$ , then $\alpha$

satisfies the Brjuno condition.

Remark. An example of such afunction as the above is A $\int_{0}^{z}(1+t)e^{t}dt$ . The
above theorem for this function is first proved by Geyer [3]
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