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Elliptic Operators and Finite Groups

RFUKEKRE SFHB T (Kenji Tsuboi)
TOKYO UNIVERSITY OF FISHERIES,
4-5-7 KOUNAN, TOKYO 108-8477,JAPAN

0. DIRAC OPERATOR
Definition 0.1. The Clifford algebra C,, and the Lie group Spin(n) are defined by

Co =Y & R/{v@v+hff -1} (v vm=[1® " ®vn] €Cn),
k=0
Cp D Spin{n) = {v) -+ - U ; |vil = 1 (Vi) and m : even},

and the double covering w : Spin(n) — SO(n) (universal covering if n > 3) is defined by
(v Um) (W) =V U - WU - 11 € R® C Cp (Vw € R®). The Lie group Spin(n)
and the homomorphisms € : Spin‘(n) — SO(n) , p : Spin°(n) — S! are defined
by Spint(n) = (Spin(n) x S')/Zy (where Zy : (h,a) ~ (—h,—a)), 7°([h,a]) = =(h),
p([h,a]) = a®.

Now, assume that n = 2m and that M is the 2m-dimensional closed smooth oriented
manifold with a Riemannian metric.

Definition 0.2. Let A denote the 2™-dimensional C-subspace of Cam ® C generated
by 2™-elements {(1 £ eam) - (1 L eq)(1 £ e2)(1 + com—-1)--- (1 +¢c3)(1 +c1)} where
{e;} : standard basis of R®™, cp_; = i*ejeq - -eg—1. Since ;- A C A (for Vi), Com ®
C-A c A. Moreover, it is known that Com ® C = Endc(A), and hence Spin(2m) C
Endc(A). Spin®(2m) also acts on A via Clifford multiplication [(h, a)]-6 = ah-6 ford € A.
A D A4 are defined to be the +1-eigenspaces of T where T = i™ejez - - - €2 (72 = 1). Ay
are irreducible Spint(2m)-representations, and v - A, C A_ for Vv € R*™. '

Definition 0.3. Assume that wo(M) € Image{H*(M;Z) — H?*(M;Z;)}. Then there
exists a Spin®(2m)-structure P — M which is a principal Spin°(2m)-bundle such that
P X gpinc(2m) R?™ = TM. Then the associated complex line bundle n is defined by n =
I X Spinc(2m),p C.

It is known that any 2m-dimensional Spin or almost complex manifold has a Spin®(2m)-
structure and that any closed oriented n-dimensional manifold has a Spin®(n)-structure
if n < 4. On the other hand, it is known that the 5-dimensional homogeneous space
SU(3)/SO(3) does not admit any Spin‘-structure.

Definition 0.4. Since (h(v))-(h-A) = h(v-A) for any h € Spin(2m), we can define the
Clifford multiplication cm : TM®S, ~T*M®S; — S_ where S+ = P X gpinc(2m)A+ and
~ is given by the Riemannian metric. Assume that there ezists a Spin°(2m)-structure
P — M with a connection. For any complex vector bundle E with a connection, the
E-valued (Spint-)Dirac operator D is defined by

Dg : (S ®E) SI(T*M ® S+ ® E) T T(S_ ® E)
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where V is the tensor product connection. In terms of a local orthonomal basis {ex} of
TM, Dg is expressed as Dg(y) = Y ek - Ve, 7-

Definition 0.5. Let £ and F be complex vector bundles over M and T'(E) (I'(F)) the
set of all smooth sections of E (F). A linear operator D : T'(E) — I'(F) is called a
differential operator of order m iff

P (Z“jef) (@)=Y Y al(z)(D* - D2 (z) fi(z)

1,5 |a|<m
where {¢;}, {fi} are local basis of E, F onU C M, z = (2',--- ,z") is a local coordinate
system on U, Dy = —i(0/0z*), a = (a1, , ), |a] = a1 + -+ + ap and a¥(z) is

a smooth function on U such that a¥(z) # 0 for some i, j, o with |a| = m. For any
differential operator D, any ¢ € M and any £ = ¥ & (dzF), € T;M, a linear map
o(D)¢ 1 E; — F, is defined by

o(D)e (Zuj(q)ej(q)) =3y < > ad(g)Er - Z") w(q) fi(q).
J .J \Jaj=m

It s shown that the definition above is independent of the choice of the local coordinate

systems and local basis, and the homomorphism o(D)¢ is determined only by D and

§€T;M. o(D)¢ is called the principal symbol of D at €.
q 3

Definition 0.6. A differential operator D is called an elliptic operator iff o(D)¢ gives
an 1somorphism E; — Fy for any g € M and any T; M > £ # 0.

Example 0.7. Let Dg : ['(S; ® E) — I'(S- ® E) be the Dirac operator. Let q be
any point in M and (z',--- ,z") a local coordinate system around q such that {X) =
(%)q}lsksn is orthonormal. Then

' 0 O .
De(v)(q) = ;Xk (Vx,7)(q) = zk: (bF)q - (—ax—k) (q) + higher order terms,

and hence, for any TyM 3 & = Y1 & (dz¥)q ~ 31 £ (0/02F), € T,M, we have

o(Dp)e(v(9)) = 3 (583;;)(1 -6k (q) = i;fk <5(-z—k)q v(g) =146 -(q).

k
Thus o(DEg)¢ is invertible for any € # 0 and Dg is an elliptic operator of order 1.

Elliptic operators are “almost” invertible operators and it is known that the kernel and
the cokernel of elliptic operators are finite dimensional. ~

1. MAIN THEOREM

Let M be a 2m-dimensional closed oriented Riemannian manifold with a Spin®-structure
P and n the associated complex line bundle over M. Let G be a finite group. In this
paper, we define an action of G as an orientation-preserving isometric faithful action of
G on M which lifts to an action on the Spin‘-structure P. Assume that there exists an
action of G on M. Then for any complex G-vector bundle E over M we can define the
G-equivariant Spin®-Dirac operator

Dg :T(S; ® E) — I'(S_ ® E)



40

by using G-invariant metric connections of the tangent bundle TM and E, where S:
are the half spinor bundles. Note that the operator Dg is equal to the non-twisted
Spin®-Dirac operator

D :T(S;) — I'(S-)
if F is the trivial complex line bundle with the trivial G-action. Then the determinant
of Dg evaluated at g € G is defined by

(1) det(DE, g) = det(g| ker Dg)/ det(g|coker Dg) € S* C C*.
If g =1 (p > 2), as was proved in Appendix of [9], we have
2mi _ 1
(2) det(Dg, g) = exp ) z - ———{Ind(Dg) — Ind(Dg, ¢*)}
k= p

where &, is the primitive p-th root of unity,
Ind(Dg, ¢*) = Tr(¢*| ker Dg) — Tr(g*|coker Dg) € C
is the equivariant index of D evaluated at ¢* € G and
Ind(Dg) = Ind(Dg, 1) = dimker Dg — dim coker Dg € Z

is the numerical index of Dg (cf. [1]). _
Now since the real part of (1 —&,%)"1is 1/2forany p>2andany 1<k <p-—1,it
follows from (2) that the equality

1 1 r-! 1
%logdet(DE, g) = —Q——Ind( Dg) — I—)}; = ———Ind(DEg, g kY. (mod Z)

holds if g = 1 (p > 2). Hence we can define I(g) € C/Z as follows.
Definition 1.1. Assume that g € G satisfies g = 1. Then I(g) € C/Z is defined by
122 1
(3) I(g) = Ind(DE) - - Z =
P
ifg#1. Ifg=1, we deﬁne I(g) =0.

Then we have

(4) I(g) = —log det(Dg,g)  (mod Z)

———Ind(Dg, g ¥y (mod Z)

and hence I(g) is independent of the choice of p > 2 such that g? = 1.
Now since the equalities

det(DE, gh) = det(Dg, g) det(DE, h)

i—logdet(DE,g)N Nz—-logdet(DE, g) (mod Z)

hold, the next theorem follows from (4).
Thorem 1.2. Assume that there erists an action of G on M. Then we have

(a) I(g) + I(h) — I(gh) =0 for any g, h € G,
(b) NI(g) =0 for any natural number N and any g € G such that det(Dg,g)" =1.
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We can calculate Ind(Dg) and Ind(Dg, k) and hence I(h) by using the equivariant
index theorem. For example, the next proposition is proved by the same argument as in

[6].

Proposition 1.3. Assume that the fizxed point set of h consists of points qi, g2, -+, qn
and the Zy-action on M lifts to an action on a complex line bundle L over M. Suppose
—Tj1 Tim

that the eigenvalues of h|Ty, M are (& ,&p 7%, -+ ,&'™, & ™) with respect to an oriented
orthonormal basis of T,, M. Then we have

Ind(Dyp) = e DM ATM)[M] , Ind(Dp,h) =Y ——F——
: =1 [ (1=&77) |
where c1(L), c1(n) € H2(M;Z) are the first Chern classes of L and n respectively, A is
the A-class and \; is an integer. : BN

When M has an almost complex structure, the next proposition follows from the
Riemann-Roch theorem (4.3) and the holomorphic Lefschetz theorem (4.6) in [1] (see
also Theorem 3.5.10 in [3]). :

Proposition 1.4. Let M be an almost complex manifold with the natural Spin®-structure
and the action of a finite group G, L a complex G-line bundle over M and h an element
of G. Assume that the G-action preserves the almost complex structure and that the fixed

point set of h consists only of points qi, qa, - , qn. Suppose that h acts on the tangent
space Ty, M via multiplication by a diagonal matriz with diagonal entries (&, -+ &™)
and acts on the fiber L|q; via multiplication by &°. Then we have
n il
Ind(Dy) = CH(LY) Td(TM)[M] , Ind(De,h)=Y" 4

= M (1-6™)

where Dy denotes Dye, Ch is the Chern character, Td is the Todd class and [M] is the
fundamental cycle of M.

2. FINITE SUBGROUP OF THE MAPPING CLASS GROUP

Let M be a compact Riemann surface of genus ¢ > 2. In this section, we define an
action of a finite group G on M as a biholomorphic action of G with respect to some
complex structure of M. Then it is known that G is not a subgroup of the mapping class
group 'y if M does not admit an action of G (see [7]).

Assume that M admits an action of the cyclic group Z, of order p generated by g and
suppose that the quotient map 7 : M — M/Z, is a branched covering with b branch
points y1, -+, yp € M/Z, of order (ny,--- ,np). For 1 < i <b, set r; = p/n;. Then the
‘Riemann-Hurwitz equation '

b
(5) - 20-2=p(26-2)+) (p—mi)

i=1
holds where 7 is the genus of M/Z,. In this section, applying Theorem 1.2 and the
Riemann-Hurwitz equation, we examine whether M admits actions of cyclic groups and
dihedral groups.

Let L be the tangent bundle of M and D, the L‘-valued Spin°-Dirac operator on M.
Under the notation above, we have the next theorem. ' '
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Thorem 2.1. Assume that M admits an action of G = Z, = (g). Then for 1 <i<b
there exists a natural number 1 < t; < n; — 1 which is prime to n; such that

‘Pl,z(tla"' )tb) GZ, Nwl,z(tl1”' )tb) GZ
for any € and for any z (1 < z < p) which is prime to p where

‘Plz(tly"' ,tb)
b 1 m-l jatit jtit
1-z2 1-0)(20+1) - M — 2 ni_-.),
( ) ( )( ; ; 12; 1__ (1_6 ?zt. l-gn.'ﬁ'
1 ni—1 jztil

b
) =2 a4y e
Yooty o) =S5 2 (=)@ 1) =30 Y e

and N is a natural number such that det(Dy, g)V = 1.

Proof. We have
T 1
1—-e= 1+ 5:”
where z is the first Chern class ¢;(TM) of the tangent bundle TM. Moreover since
z[M] = ci(TM)[M] = 2 — 20, it follows from Proposition 1.4 that

Ch(L) =1+¢x, Td(TM)=

nd(Dy) = (¢+ %) o[M] = (1-0)(20+1).

Now let (k) be the fixed point set of g* (1 < k¥ < p— 1) and ¢; any point in 7~ (z;).
Then we can see that 7~!(y;) consists of r; points ¢;, g-¢i, --- , g"~! - ¢;, which are fixed
points of g™ and therefore it follows that

T y) CQk) <= 1N yw)NQUK) £ p= k=17 (j=1,2,--,n—1).

Since g acts transitively on 77(y;), g™ acts on the tangent space of each point in 7~!(y;)
via the same rotation and therefore we can suppose that g™ acts on the tangent space
of each point in 771(y;) via multiplication by &% where 1 < t; < n; — 1 and ¢ is prime
to n;. Let z be any integer with 1 < z < p such that gecd(z, p) = 1 and &, the primitive
n;-th root of unity. Then since the order of g% is p, M/(g*) coincides with M/(g) and
(97)" acts on the tangent space of each point in 771(y;) via multiplication by £k, it
follows from Propotion 1.4 that

N p— 1 b n;—1 ;.-jzt.-l
fe)= T(l Bah '2 L T a 6
p—1 1 & Jaut
= —5(1 —-0)(2¢+1) - Z ;—:1 LD (mod Z).

Therefore it follows from Theorem 1.2 (a) that
0=1I(g") — 21(g) = pe(t1, -~ ,tp) (mod Z)
and it follows from Theorem 1.2 (b) that
0= NI(9°) = Ntpe,(t1,--- ,tp) (mod Z).
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Example 2.2. Let M be a compact Riemann surface of genus o. Then the necessary
and sufficient condition for M to admit a Zy-action is given in Theorem 4 in [5] (see
also Proposition 2.2 in [4]). In this example, we consider one hundred cases that 2 <
o,p<11. Then if

(6) (o,p) =(2,7), (2,11), (3,11), (4,11), (5,7), (7,11), (8,11), (9,11),

the Riemann-Hurwitz equation is not satisfied for any &, b, r; and hence M does not
admit a Zy-action. Moreover using Thoerem 4 in [5], we can see that M does not admit
an action of Zy if and only if (o,p) is contained in (6) or

(7) (o,p) = (2,9), (3,5), (3,10), (4,7), (5,9), (6,11), (11,7).
In this example, using the Riemann-Hurwitz equation and Theorem 2.1, we prove that M
does not admit a Z,-action for (o,p) in (7).
Now using the Riemann-Hurwitz equation, we can see that
(0,p) = (2,9) = (b,{m, -, m}) = (3,{3,3,9})
(0,p) = (3,5) => (b,{n1, ---, m}) = (1,{5})
(0, p) = (3’ 10) = (ba {nla Ty nb}) = (3? {5’ 5, 5})’ (4: {2: 2,2, 10})
(0,p) =(4,7) = (b,{n1, ---, m}) = (1,{7})
(0,p) = (5,9) = (b, {n1, -+, m}) = (4,{3,3,3,9}), (1,{9})
(0,p) = (6,11) = (b,{n1, ---, m}) = (1, {11})
(0,p) = AL 7) = (b,{ns, -+, m}) = (1,{7}).
When (o,p) = (2,9), (b,{n1, ---, m}) = (3, {3,3,9}), direct computation using a com-
puter shows that
1<p12(1,1,1) <2, 1 <912(2,1,1) = 012(1,2,1) <2, 0 < ¢12(2,2,1) <1,
2<¢12(1,1,2) <3, 1 <¢12(2,1,2) = 912(1,2,2) <2, 0< ¢12(2,2,2) < 1 ,v
2<p12(1,1,4) <3, 1 <¢12(2,1,4) = 012(1,2,4) <2, 1 < 12(2,2,4) <2,
1<$12(1,1,5) <2, 1 <912(2,1,5) = ¢12(1,2,5) < 2, 0<¢12(2,2,5) <1,
2<12(1,1,7) <3, 1 <912(2,1,7) = 12(1,2,7) <2, 0< 912(2,2,7) <1,
2<¢12(1,1,8) <3, 1 <¢12(2,1,8) = ¢12(1,2,8) <2, 1 < ¢12(2,2,8) <2,
and therefore none of p; 2(t1,t2,t3) is an integer. Hence it follows from Theorem 2.1 that

the Riemann surface of genus 2 does not admit an action of Zg.
When (o,p) = (3,5), (b,{n1, -+, n}) = (1, {5}), direct computation shows that

2 < 12(1), 01,2(2), ¥1,2(3), p12(4) <3.

Hence the Riemann surface of genus 3 does not admit an action of Zs. Hence it is clear
that the Riemann surface of genus 3 does not admit an action of Ziy.
When (o,p) = (4,7), (b,{n1, -+, mp}) = (1, {7}), direct computation shows that

3<w12(1), p12(4), ¢12(5) <4< ¢12(2), ¥12(3), 12(6) <5.
Hence the Riemann surface of genus 4 does not admit an action of Zr.
When (o,p) = (5,9), (b,{n1, --- , np}) = (4, {3, 3,3,9}), direct computation shows that
none of @12(t1,t2,t3,t4) is an integer for 1 < t; <ty <t3 < 2,1 <ty <8ty #3,6.
Moreover if (o,p) = (5,9), (b,{n1, ---, m}) = (1,{9}), direct computation also shows



44

that none of 1 2(t1) is an integer for 1 < t; < 8,t; # 3, 6. Hence the Riemann surface
of genus 5 does not admit an action of Zy. ,

When (o,p) = (6,11), (b, {n1, ---, m}) = (1,{11}), direct computation shows that
none of p12(t1) is an integer for 1 < t; < 10. Hence the Riemann surface of genus 6
does not admit an action of Z;.

When (o,p) = (11,7), (b, {ny, --- , m}) = (1, {7}), direct computation shows that none
of p12(t1) is an integer for 1 < t; < 6. Hence the Riemann surface of genus 11 does not
admit an action of Z.

Example 2.3. Let M be a compact Riemann surface of genus o (2 < o < 11) which
admits an action of Z, (3 < p < 11). Note that M always admits an action of Z, because
we can embed M symmetrically into R® with respect to the m-rotation around z-ais.
In this example, applying Theorem 2.1, we examine whether M admits an action of the
dihedral group D(2p) generated by g, h with the relation

(8) P=ht=1, hlgh=g"!

Note that M clearly admits an action of the dihedral group D(2p) if o =0, 1 (mod p)
because we can embed M symmetrically into R® with respect to the 27 /p-rotation around
Z-aT1S.

If M admits an action of D(2p), the relation (8) implies that

det(Dy, g) = det(Dy, h~1gh) = det(Dy, g~!) = det(Dy, g)™! <= det(Dy,g)° =1.
Since we have det(Dy, g)P = det(Dy, g?) = 1, it follows from Theorem 2.1 that

det(Dy, ) =1 => 24y, (t1,--- ,ts) € Z when p is even,
det(Dy,g) =1 => tp.(t1,--- ,ts) €EZ when p is odd

for any £ and any z (1 < z < p) which is prime to p.
Now it follows from the Riemann-Hurwitz equation and Thoerem 4 in [5] that

(Uap) = (2’ 5) = (b7 {nh Ty nb}) = (3, {51 9, 5})

(0,p) = (7,5) = (b,{n1, -~ , m}) = (3,{5,5,5})
( ) = (3,9) = (b7 {nl, Ty nb}) = (3’ {31 9, 9})

( ) (4 9) = (b’ {nI, Tty nb}) = (37 {9,9,9})
(0,p) = (11,9) = (b, {n1, -~ , m}) = (5,{3,9,9,9,9})
(0,p) = (2,10) => (b, {n1, .-+, mp}) = (3,{2,5,10})
(o,p) = (7,10) = (b, {ny, ---, mp}) = (4, {2,10,10,10}), (5,{2,2,2,5,10})
(o,p) = (5 11) = (b,{n1, ---, mp}) = (3, {11,11,11}).
When (o,p) = (2,5), (b,{n1, ---, np}) = (3, {5,5,5}), direct computation shows that

=2 < 11(t1,t2,t3) < —1

for any 1 < t; <ty < t3 < 4 and therefore none of 11,1(t1,t2,t3) is an integer. Hence the
Riemann surface of genus 2 does not admit an action of D(10).
When (o,p) = (7,9), (b,{n1, ---, mp}) = (3, {5,5,5}), direct computation shows that

—8 < ¢11(ty, b2, t3) < =7
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forany 1 <t <ty <t3 <4 and therefore none of 111(t1,t2,t3) is an integer. Hence the
Riemann surface of genus 7 does not admit an action of D(10).

When (o,p) = (3,9), (b,{n1, -, m}) = (3,{3,9,9}), direct computation shows that

(t1,t2,t3) = (1,1,1), (1,1,5), (1,1,7), (1,5,5), (1,5,7), (1,7,7),
(2,1,1), (2,1,2), (2,1,4), (2,1,5), (2,1,7), (2,1,8),
(2,2,5), (2,2,7), (2,4,5), (2,4,7), (2,5,5), (2,5,7),
(2,5,8), (2,7,7), (2,7,8)

= -3< ’(ﬁl,l(tl,tz,t,?,) < -2

and that —4 < 111(t1,t2,t3) < —3 for other 1 < t; < 2,1 <ty < t3 <8, ta,t3 # 3, 6.
Hence the Riemann surface of genus 3 does not admit an action of D(18).

When (o,p) = (4,9), (b,{n1, -+, n}) = (3,{9,9,9}), direct computation shows that
none of Y1 1(t1,te,t3) is an integer for 1 < t; <ty < t3 < 8, ty,to,t3 # 3, 6. Hence the
Riemann surface of genus 4 does not admit an action of D(18).

When (o,p) = (11,9), (b,{n1, - -+, np}) = (5,{3,9,9,9,9}), direct computation shows
that none of Y1 1(t1,t2,t3,t4,t5) is an integer for 1 < t; < 2,1 <ty <t3 <ty <tg <
8, ta,t3,t4,t5 # 3, 6. Hence the Riemann surface of genus 11 does not admit an action
of D(18).

When (o, p) = (2,10), (b,{n1, - -+, np}) = (3,{2,5,10}), direct computation shows that
none of 21 1(t1,t2,t3) is an integer fort; =1,1<t,<4,1<t3<9,t3#2,4,5,6, 8.
Hence the Riemann surface of genus 2 does not admit an action of D(20).

When (o,p) = (7,10), (b, {n1, - -+, mp}) = (4, {2, 10, 10, 10}), direct computation shows
that none of 211 1(t1, t2,t3,t4) is an integer fort; =1, 1 <ty <t3 <ty <9, to, 13,14 #
2,4,5,6,8 When (o,p) =(7,10), (b,{n1, ---, m}) = (5,{2,2,2,5,10}), direct compu-
tation also shows that none of 2111(t1,t2,ts,ts,t5) is an integer for t; = to = t3 = 1,
1<t4<4,1<1t<9,ts #2,4, 5,6, 8. Hence the Riemann surface of genus 7 does
not admit an action of D(20).

When (o,p) = (5,11), (b,{nq, -+, mp}) = (3,{11,11,11}), direct computation shows
that

{(t1,t2,t3) | Y11(t1, 82, t3) € Z} N {(t1,t2,83) |21 (1, b2, t3) EZ} = ¢

Hence the Riemann surface of genus 5 does not admit an action of D(22).

Theorem 2.1 is useful in determining the rotation angles around the fixed points of the
action of an element of the mapping class group.

Example 2.4. Assume that a Riemann surface M of genus o (2 < 0 < 11) admits an
action of Z3 generated by g and let q1, -+, qo € M be the fized points of g. Note that
b =0 if g acts freely on M. In this example, we use Theorem 2.1 to determine the
rotation angle 21;;’31 of g|Tg; M, where we can assume that 2 > t; >ty > -+ > &, > 1.
If g acts on T, M via rotation of 515’5, then g? acts on Ty, M via rotation of %" Hence
it suffices to determine ty, to, - - -, tp under the condition that t, = 1, which we assume
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Now 1t follows from the Riemann-Hurwitz equation and Theorem j in [5] that a Rie-
mann surface M of genus o (2 < o < 11) admits an action of Z3 if and only if
(o,b) =(2,4), (3,2), (3,5), (4,0), (4,3), (4,6), (5,4), (5,7), (6,2), (6,5), (6,8),
(9) (7,0), (7,3), (7,6), (7,9), (84), (8,7), (8,10), (9,2), (9,5), (9,8), (9,11),
(10,0), (10, 3), (10,6), (10,9), (10,12), (11,4), (11,7), (11,10), (11,13).

If (0,b) = (4,3), then the direct computation shows that
Pez(t te,t3) €Z, 3pa(ty,t2,t3) €EZ
for any 1 < €,z < 2 if and only if (t1,t2,t3) = (1,1,1) (or = (2,2,2)). Hence it

2r 27 2x

follows from Theorem 2.1 that g acts on Ty M, To,M, Ty, M via the rotation 5, 5, 3
respectively. On the other hand, if (o,b) = (4,6), the direct computation shows that

ezt ta, ta, ta, ts, t6) € Z, 3z (t1,t2,t3,ta,t5,16) € Z

for any 1 < ¢,z < 2 if and only if (ty,ts,13,84,t5,86) = (1,1,1,1,1,1) or (2,2,2,1,1,1).
This result does not imply that there are two types of rotation angles because Theorem 2.1
gwes only a necessary condition. But this result implies that there does not exist another
type of rotation angles. Further computation leads to the next result.

10
(bi2=> (tl,tz) = (2,1), b=3= (tl,tz,t,g) = (1,1,1),
b=d = (ty,tg, ta) = (2,2,1,1), b=5=> (tn,85,--- ,85) = (2,1,1,1,1)
b=6=> (t1,t2,--- 1) = (1,1,1,1,1,1) or (2,2,2,1,1,1)
b=T7=> (t1,t2, - ,t7) = (2,2,1,1,1,1,1),
b=8=> (ti,bs,- ,ts) = (2,1,1,1,1,1,1,1) or (2,2,2,2,1,1,1,1)
b=9=> (ti,ts,-- ,t) = (1,1,1,1,1,1,1,1,1) or (2,2,2,1,1,1,1,1,1)
b=10=> (ti,t2,--- ,t0) = (2,2,1,1,1,1,1,1,1,1) or (2,2,2,2,2,1,1,1,1,1)
b=11=> (tr,ts, - ,tu) = (2,1,1,1,1,1,1,1,1,1,1) or (2,2,2,2,1,1,1,1,1,1,1)
b=12 = (t1,ts, - ,t12) = (1,1,1,1,1,1,1,1,1,1,1,1) or (2,2,2,1,1,1,1,1,1,1,1,1)

or (2,2,2,2,2,2,1,1,1,1,1,1)
b=13 = (t1,t2,--- ,t13) = (2,2,1,1,1,1,1,1,1,1,1,1,1)

or (2,2,2,2,2,1,1,1,1,1,1,1,1).

3. ALMOST FREE ACTION

In this section we call the action of a finite group G on M is almost free if the fixed
point set of any G 3 g # 1 is empty or consists only of points. Note that M does not
admit an almost free action of the cyclic group Zy,, if M does not admit an almost free
action of Z,.

Now let Z, be the cyclic group of prime order p generated by g and L a complex Z,-line
bundle over M. Then since the fixed point set of g* is independent of k, the number n of
the fixed points of g* is independent of k and the action of Z, is almost free if and only
if the fixed point set of g is empty or consists only of points. In this section, applying
Theorem 1.2, we examine whether Z, can act almost freely on M.
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First we have the next theorem for p = 2.

Thorem 3.1. Assume that M admits an almost free action of Z;. Then we have the
following results.

(1) If the almost free action of Zy lifts to an action on a complez line bundle L over M
and Ind(Dy) is an odd number, then we have n > 2™.

(2) If M has an almost complex structure and the almost free action of Zy preserves the
almost complex structure, then we have n =0 orn > 2™.

Proof. (1) It follows from Proposition 1.3 that

2I(g) = % (Ind(DL) ~ o Z(—1)*f) (mod Z).

The right-hand side of the equality above is not an integer if n < 2™ because Ind(Dy) is
an odd number. Hence it follows from Theorem 1.2 (b) that n > 2™.
(2) It follows from Proposition 1.4 that

21(g) = Z%Ind(D) - _}_ 5 Jz: = (1_ = % (Ind(D) _ 2_"";) (mod Z)

The right-hand side of the equality above is not an integer if 0 < n < 2™. Hence it
follows from Theorem 1.2 (b) that n =0orn >2™. O

Remark 3.2. Let L be the trivial complez line bundle over M. Then any action of Z,
lifts to the trivial action on L.

Remark 3.3. Professor Akio Hattori has pointed out to the author that (2) of the theo-
rem above is also deduced from the equivariant index theorem by using the fact that the
equivariant index of any involution is an integer.

Example 3.4. Let M = CP™ be the m-dimensional complex projective space with the
Spint-structure determined by the condition that ci(n) = (m + 14 2s)x where s is an
integer and x is the positive generator of H*(M;Z) = Z. Assume that M admits an
almost free action of a finite group G and let g be any element of G. Then g*z = *z,
(m+1+42s)g*z = (m+ 1+ 2s)z and (¢g*z)™ = ™ imply that g*z = x. Hence it follows
from the Lefschetz fized point theorem that g has m + 1 fized points. For ezample, if
m < p, the fired point set of the action of Z, = (g) on M defined by

g-l20i 21220t zm] — [20: &p21 i E220 1+ 1 2]

consists of m + 1 points and hence the action is almost free. Moreover it follows from
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Proposition 1.3 that
Ind(D) = ™22 A(M)[M]
z \™t! 1 elm+s)z
— pm_ . s [ % - - d
x™-coefficient of e (1 — e_z) 5 }g(z) @ - e*dz
(where C(z) is a sufficiently small counterclockwise loop around the origin)
m+s
= —1— }{ ___(u +1) du
2mi Jow) —umtl
(via the substitution u = e*, where C(u) is a counterclockwise loop around the origin)

= u™-coefficient of (u + 1)™** = ( mr:; s )

Now we assume that m > 2, which implies that m +1 < 2™. Then it follows from
Theorem 8.1 (1) that M does not admit an almost free involution which preserves the

Spin®-structure of M if the number ( m+s ) is odd.

Example 3.5. Let M = S% be the 6-dimentional sphere with any almost complez struc-
ture. Note that any orientation-preserving free involution has two fizred points. Then
since 2 < 2™ = 8, it follows from Theorem 3.1 (2) that S® does not admit any almost free
involution which preserves the almost complex structure. On the other hand, S® clearly
admits an orientation-preserving almost free involution defined by

R7 D Sﬁ B (xla"' )$6,$7) — (—xla"' ,—1?6,177),

which preserves the unique Spin°-structure of S®. Note that the involution above has two
fized points and that Ind(D) is equal to O because Ind(D) = A(TM)[M] is a Pontrjagin

number of S8.
For p = 3, 5, we have the next theorem.

Thorem 3.6. Assume that M admits an almost free action of Z, where p is an odd
prime number and that the action lifts to an action on a complez line bundle L over M.
Let d be the distance from Egllnd(DL) to pZ defined by d = minsez |sp — p—gllnd(DL)l.
Then for any real number v such that 0 < v < d, we have

T m+1
(2 sin —)
) P

2
n>
- -1

3(p
Moreover if det(Dy, g) = 1, then we have

Proof. Set

—1 —1
p 1 Y4

Ki=3 =g {Ind(Dr,g™) — 2nd(D1, )}, Ka= 3

———Ind(Dy, ¢).
k=1 P =116 ¢
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Then since |1 —&f| > |1 —&p| for any integer ¢ which is not a multiple of p, it follows from
Proposition 1.3 that

’ 1 1
K - -2k +2 —kT '
' 1| ZZIl_é‘pkl{ 1|1 2’C]1 1|1_ k‘pl}

1j5=1
3n(p—1)  3n(p—1)
p

On the other hand, it follows from Theorem 1.2 (a) that

-1 1
2I(g) — I(g%) = %Ind(DL) +2Ki =0 (mod 2)

PR 1Ind(DL) + K, =0 (mod p).

Hence we have |K;| > 7 and therefore it follows that

3n(p — 1)

~ T m—+1
———Tg Y= n> (2sin—>
(2sinz)™" 3(p—1) p

If det(Dy, g) = 1, then we have

I(g) = p2;11nd(DL) _ %Kz =0 (mod Z) += P d(Dy) ~ K; =0 (mod p),

which implies that |K,| > «. Hence it follows from the same argument as above that

m+1
(2sin ) T p-1 p

O

Remark 3.7. Note that if M admits a free action of Z,, then Ind(Dy) is a multiple of
p and hence v = 0.

Example 3.8. Let M = CP™ be the m-dimensional complex projective space with the
Spin°-structure determined by the condition that c1(n) = (m + 1+ 2s)z. As was seen in

Ezample 3.4, we have Ind(D) = [ ™ ") and hence we can set v = 1 unless ( mrjz- ’ )

15 a multiple of p. Therefore it follows from Theorem 3.6 that
. - m+1 A
3m+1(p—-1) > (2sin ;)

if p is an odd prime number and s not a multiple of p. This inequality implies

m-+ S
m
that M does not admit any almost free actions of Zs, Zs if m > 6, m > 37 respectively.

m—+ s

Moreover if p = 5 and =1, 4 (mod 5), then we can set v = 2 and hence it

follows that M does not admit any almost free actions of Zs if m > 32.
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Example 3.9. Let M = CP™ be the m-dimensional complez projective space with the
Spinc-structure determined by the condition that ¢;(n) = (m + 1+ 2s)z, p an odd prime
number and D(2p) the dihedral group generated by g, h with the relation in (8).

Then there ezists an action of D(2p) on M defined by

g:lootziizm] — [205613213"'351?21'2‘.:§p—%z%+1:---:§£_lzm] ,
h:[zﬂzzl:"':zm]——’[zO:Zm:"':Z%.{.l:Z%‘.:"':Zl]
if m 1s even, and
92[201211'--22m]—>[Epzozﬁﬁzlz---:gfgizm_z__l; :—%lz"'T‘lH:'”:E;_lzm] :
h:[zozzli"'lzm]—’[Zml'-'IZ@HiZmT—II“':zl:zo]

if m is odd. Note that the action of Z, = (g) defined above is almost free if m < p.

On the other hand, the same argument as in Ezample 2.8 shows that det(Dy,g) =1
for any action of D(2p) on M. Therefore as in the previous example, it follows from
Theorem 3.6 that the inequality

(m+1D(p-1) 2~ (ZSin %)mﬂ

holds if M admits an almost free action of Z, = (g). If m7;: s ) is not a multiple of p,

then we can set v = 1 and the inequality above implies that M does not admit any action
of D(2p) = (g, h) such that the action of Z, = (g) is almost free if p = 3, m > 3 or

m+s

p=>5,m >29. Moreoverifp =5 and =1, 4 (mod 5), then we can sety =2

and the inequality above implies that M does not admit any action of D(10) = (g, h) such
that the action of Zs = (g) is almost free if m > 23.
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