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ON THE SOLUTIONS OF DECOMPOSABLE FORM EQUATIONS

K.GYORY (Debrecen)

A homogeneous polynomial F(x)= F(x4,...) X, ) With integer
coefficients is called decomposable if it factorizes into

linear forms with algebraic coefficients. Then the equation

(4) F()= Flxs,-yX)=ta in xe2zZ™

where o is a given non-zero integer, is called a decomposable

form equation. We assume throughout this paper that F contains

. linearly independent linear factors.
The most important types of decomposable form equations

are the
Pell equations: x.?'— Ax; =+4 , where dl >4 is a
square-free integer; ,
Thue equations, where ~»m = 2 , deqfF23 and F is irre-
ducible over AQ ;
norm form equations, when 2w >2 and F is irreducible

over @) ;
discriminant form equations and index form equations.

These equations have a lot of important applications, among
others to other diophantine equations, . algebraic number theory,

linear recurrence sequences, irreducible polynomials, poly-
nomials of given discriminant or of given resultant, canonical
number systems, prime divisors of numbers of the form da+b and
b +4 , and units of integral group rings.

There is an extremely extensive literature of these equa-
tions; several books and hundreds of papers are concerned with
decomposable form equations and their applications. In our paper
we give a short survey of the most significant results obtained
over the past ten years. For more detailed overviews of the sub-
ject we refer to the recent works of Schmidt(1990) and Gydry
(1998,1999,2000).

In the first part we deal with general (but ineffective)
finiteness results and, when the number of solutions is infi-

nite, with the structure of the set of solutions. Part II is
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devoted to effective finiteness results, while in the last part
some numerical results will be presented. We shall mainly concen-
trate on equations in mn >2 unknowns. Further, we do not deal
with decomposable form inequalities. For simplicity, results will
be presented in their simplest forms, over the ring of integers 2

and we shall only indicate extensions to the case of more general

ground rings.

I. FINITENESS RESULTS, THE STRUCTURE OF THE SET OF SOLUTIONS

1) Special decomposable form equations

Pell equations can be written in the form
Niyggl*a + V@)= 24 in Xa,x eZ,

where K-:Q({Z)and d >4 is a square-free integer. As is known,

the general solution is given by

Xa+ V-d—_ X, =% aq'
where & is a fundamental unit in Z {Nd], and @« € Z js

arbitrary.
Thue equations are of the form
) F(xa,x, )=t in X4,x, €2Z,

where & eZ[x,,,xz_}is an irreducible binary form with degree 293 ,

THEOREM A (Thue, 1909). Equation (2) has only finitely many

solutions.

Similar results over more general ground rings and quan-
titative versions providing bounds for the number of solutions
were later obtained by Siegel, Mahler, Lang, Davenport and Roth,
Lewis and Mahler, Schinzel, Evertse, Silverman, Bombieri and

Schmidt, Evertse and Gy8ry, Stewart, Brindza, Gydry and others.

The proofs of these results are mostly based on the Thue—Siegél-
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Roth. diophantine approximation method and its various genera
izations. This method is ineffective, i.e. do not provide any

algorithm for determining the solutions of (2).

Norm form equations. Let K be an algebraic number
field of degree m > 2 , and let «4=4,004,...,el,, be linearly
independent elements of K over @ such that K:QC«-,_,...,«M).

Consider the norm form equation

(%) c N/ (taXat -t LaXp)zta A x: €2Z ,

where ¢ is a_ non-zero rational number such that the norm form
& Ny g (xaxat -k hmXrdhas 1ts coefficients in Z . For m 23 ,
=2 1 (») 1is just a Thue equation.

The Z -module M ={K,,--- )o(.,..\} is called degenerate if
there exist a s e K* and a subfield L of K having infi-
nitely many units (i.e., L. is different from A  and the
imaginary quadratic fields) such that ,.LL.S,MQ . It is known that
if M is degenerate then there is a non-zero a.€Z for which

(>») has infinitely many solutions. As a generalization of Thues

theorem, Schmidt proved the following.

THEOREM B (W.Schmidt,1971). If M is non-degenerate then equa-
tion (3) has only finitely many solutions for all non-zero a &2

Moreover, Schmidt (1972) desdibed in full generality the
structure of the set of solutions of (3. This will be presented
later in a more general form. ‘

Extensions to the case of more general ground rings and
bounds for the number of solutions were later established by
Schmidt, Schlickewei Laurent, Evertse and GY6ry, Gy8ry, Evertse,
‘Voutier and Bérczes. The main tool in the proofs were Schmidtls
Subspace Theorem as well as its generalizations and quantitative

versions.

Discriminant form and index form equations. Let again
K be a number field of degree m 2z 3 ‘with discriminant Dy,
ring of integers O, , and integral basis {4500, ., Y .
FOT o = X, 4alyXy4---tedXnWith X¢ e Z , we have
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DK/Q Cota o+ 4 ofn X)= (XL (%2 5y X ))® D“

and | T (X2, , X)) = [_Q: : ZC+«1% ) .The decomposable forms
Die s (FaXy+ - 4etnXn)and I(x,,...,x,)are called discriminant form
and index form, while the equations

(k) ’DKIQC“LXQ_+~--+°<“ x.&)‘=*—'Q in xl)"'/xv;ez
and
(5 I Cxﬁ-)“'?"ﬂ) =*71 in Xq .. ;X €Z

are called discriminant form equation and index form equation,

respectively.

| Example: For K-_—(D(%fé'f ), where <& #  full cube, one
has
3 3 ‘
Diu/a (VA xo+ Vdrxa)= —23 L2 (x2 - A x2)%
For a <l r Nagell, Delone, and Delone and Faddeev
proved, in an ineffective form, the finiteness of the number of

solutions of (4) and (S).

THEOREM C (Gydry, 1976). Equations (4)and (s5) have only
finitely many solutions, and all them can be effectively deter-

mined.

Extensions to the case of more general ground rings and
bounds for the number of solutions were later given by Gydry and

Papp, Trelina, Gydry, Evertse and Gydry, and Bérczes.

2) Description of the structure of the set of solutions;

general case

Consider now the general decomposable form equation (4) .

In (4) , the decomposable form F can be written in the form
t
X = . X
F(x) C_E Ny rq (£L02),

where the K{ ‘are appropriate number fields, the ‘2¢ are linear
forms with coefficients in k:{ , and ¢ 1is a fixed non-zero
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rational number. For + =4 , (4) is just a norm form equa-
tion.

In the @ -algebra A =K, @ .--® K_ , the algebra norm
of o(:(a“.-.,a(t)eA has the property

t
NA/Q (=) = .‘T‘A NK"_/Q ()
Let .
(€3] M::{X3(24(53,-“;2{;(&\3&A:.’.‘.ezm}.

Then (4) can be reformulated as

Ay = rta in xeM |
4") < Njsia (x)
For a subalgebra B of A with 4,=(C4,-..,4)eB , let Og

denote the integral closure of Z in B , and (Da the
unit group in Opg . Put V:zM@Q - and

» VB:={VGV:V&9_V} ,M,B;—_-VBf\M..
Then

LJ}t,& c = 4 E.G:CDE . & MB= ftﬁ'}
is a subgroup of finite index in O% . If ¥ eMB isa
solution of (4') , thenso is every element of % U, g . This
set X Uy, g is called an (M,B) -family of solutions of (4",
It is called maximal if is not properly contained in another
family. Further, rank U, aa  is called the rank of the family

X Un.s .

——— | — — S——————————————————  —

union of finitely many families of solutions. Further, there

are only finitely many maximal families of solutions.

Moreover, in Gydry(1993) an explicit upper bound has been
given for the number of maximal families. These include (in an
ineffective form) all the above-mentioned finiteness results on
special decomposable form equations.

The proof is long and difficult. Equation (4) 1is first
reduced to unit equation systems. The remaining paft of the
proof depends among other things on a quantitative version of
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the Subspace Theorem.
As a consequence of Theorem D, we proved with Everest(1997)
that if (A) has infinitely many solutions, then the counting

function
PINYi=&{xezZ™: (A)Fx)=ta ,ixiz N}

satisfies ‘

P(N) = ¥ C'e“°‘3 N)-r+ O(C&ogi\l)*-‘)'

where Y >o is constant, and' denotes the maximal rank of
the families of solutions of (4') . This includes as special cases
some earlier results of Lang, Babaev, and Gy8ry and Pethd on
special decomposable form equations.
Recently, Everest,Gadl, Gydry and Rottger described the
spatial distribution of the solutions x of (4) , more precise-
ly the distribution of X /(x| .

3) Finiteness criterion; general case

Consider again equation (A) and its reformulation (4') .
The Z -module M defined by (&) is called degenerate if
there is a M e A* and a subalgebra B of A with infini-
tely many units such that Bcocm@ . As a consequence of

Theorem D, I proved the following general criterion.

THEOREM E (Gydry,1993). The equation (4)<«&=> (41') has only
finitely many solutions for every non-zero a € Z if and

only if M is non-degenerate.

For =41 , this gives Schmidtfs Theorem B on norm form
equations. Theorem E was proved in a more general form, over
finitely generated subrings of &5 over Z . Further, in case
of finitely many solutions, an explicit upper bound was given

for the number of solutions.
The upper bound for the number of solutions was later

improved by Evertse, and Evertse and the author. The best known

upper bound is as follows.
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THEOREM F (Evertse and Gyd8ry,1997). If equation (4) has

finitely many solutions, then this number does not exceed

(q_) Cz?a%mz)e, C) (w(a.)-t-'\')v

where a = ol,e% F t> Ca) denotes the number of distinct prime

factors of o , and Q(m):%m(m+'\)(2m+4)—9— Ci/w\})‘

4) Generalizations to decomposable polynomial equations,
bounds for the number of solutions

Let now F € ZLx") be a decomposable polynomial, i.e.
suppose that F factorizes into linear (not necessarily homo-
geneous) polynomials £4,-.., £, over @Q . Assume that
rank{L4,---) £n} = 4.

Let § denote a finite set of primes {Pa)---, PaY} , letZ

be. the ring of S -integers, and 2 the group of S -units.

THEOREM G (Bérczes and GySry, 2002). If the number of solutions

of the decomposable polynomial equation

* . .
(4a.) F(x)z F(XayeyXam) eZg o X €Zq
is finite, then this number does not exceed
¢ (22> AF)Cm ) Ca+r)

(3) and (¥)give uniform explicit bounds for the numbers
of solutions of norm form, discriminant form and index form
equations and of their '"inhomogeneous" generalizations, subject
only to the condition that the number of solutions is finite.
It should be observed that the bounds obtained are independent
of the coefficients of F .

Theorem G makes explicit a result of Evertse, Gaal and
GySry (1989) on decomposable polynomial equations, and general-
izes, with e (~~ +4) instead of e C~.) , the Theorem F of
Evertse and Gydry (1997) on decomposable form equations.

We note that (&) is not far from being best possible.in
terms of A . Indeed, Evertse,Moree,Stewart and Tijdeman (2007?)
gave for each m 22, 2 £ a~~ £~-A and sufficiently large A ,

an example for equation (4a ) with more than
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exp{e s/ (Reg 4 YD -4 }
solutions.

Theorems E, F and G have many applications, among others to
irreducible polynomials (Gydry,1994), to prime divisors of
integers of the form a+b and ab +4 (Gyéry, Sirkdzy and
Stewart,1996), and to resultant equations (Bérczes and Gydry,

2002).

II. EFFECTIVE FINITENESS RESULTS

Thue equations

Consider again the Thue equation (2), where F € Z.Ix,4,x,}is
an irreducible binary form of degree m.z 3 with height H .
Using his fundamental results concerning linear forms in loga-
rithms, A.Baker gave the first effective version of Thués

theorem.

THEOREM H (Baker,1968). All solutions X4, X2 of C(2) satisfy

. 2 a
rM-aL K (\X4l)lx1__\) £ ex_P {m'\’ H\’m + cng ‘q-\)lm-&-‘Z}l

wWhere =422 o (1),

For Thue equations, this gave a positive answer to Hilberts
1oth problem. Theorem H was improved and generalized to the
case of more general ground rings by many people, including
Baker, Sprind%uk, Coates, Feldman, Stark, Gydry and Papp. The
best known bound is due to Bugeaud and Gydry (1996).

Let K=@(x), where F («,4) =o . Denote by R, the

regulator of K .

THEOREM I (Bugeaud and Gyd8ry,1996). All solutions of (2)
satisfy

C
(8)  mnax (Ixa), a)) < cq (H-lad)™h

where ASCm+A)

C,_:M RK (zﬁ%Rg) 1 ‘CA:QX_P {QLQK}-
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It is an open question whether there exist Cc,,C, depending
only on ~m  for which (9) holds.
In the proof the first main step is to reduce (2) to

inequalities of the form

(40‘) O<lo.4£o%£1+--.+0¢£o¢58+—2aca F\“e;—gA,

where £4,..., &8+, [» are fixed non-zero algebraic numbers, Q:eZ
are unknowns with A =z max la;| , and d>0 is a constant. Then
Baker’s method gives an exglicit upper bound A, for A which
leads to a bound for max (Ixa),1xz]).

Recently Bombieri, and Bombieri and Cohen have developed a
new effective method in diophantine approximation which provides
almost the same bounds for the number of solutions of Cz) as
those obtained by Bakers theory concerning linear forms in

logarithms.
Discriminant form and index form equations

Let K be a number field of degree mz A with. discrimin-
ant D,, , ring of integers Oy and integral basis
L kasAyete ey A Twitb  wmax leil = Al

By Theorem C of GySry presented above, equations (4) and (S)
have only finitely many solutions. Further, in Gydéry (1976)
explicit upper bounds were given for the solutions, which bounds
depend only on A, ., D,, and lal and |X) , respectively. This
theorem yielded many consequences and applications,Let me

mention some of them.

- Up to translation by elements of 2Z , there are only
finitely many o € ©, with a given non-zero discriminant,
and all them can be effectively determined (Gyéry,1976).
This confirmed, in an effective form, a conjecture of
Nagell. ‘

- Up to translation of the form f£(x)—> £(x+a.) (aeZ) there
are only finitely many monic :C & 2{x]} with a given non-
zero discriminant, and all them can be effectively deter-
mined (Gydry,1976). This gave a positive answer to a

problem of Delone and Faddeev.
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- Up to translation by elements of Z , there are only

finitely many & € O such that O, =2 (x]. Further, an
explicit bound was given for the heights of & (Gydry,
1976). This provided the solution of an old problem
going back to the XIX century.

- An algorithm was given for the existence of canonical

number systems in number fields (B.Kovacs,1981,1984).

The main steps in the proof of Theorem C are as follows.
Combining some methods from algebraic number theory, geometry of
numbers and combinatorics, one can reduce equations (%) and (§)

to systems of unit equations of the form

) Q Q o aQa (o}
(443 Cu 8 ESM T+ Q8L ETT =M,

where €4,.-.,84+ are fundamental units in RORDRE o in the
normal closure of K/ ay , and q_x\a‘e Z are unknowns.

Then one can reduce (447) to an inequality of the shape (10).

Now Bakers method gives a bound for!Merlaii\ which yvields a

‘bound for max {x;|.

Recenti;, I succeeded (Gyd8ry,1998,2000) to refine signif-
icantly the above method of proof by reducing (4) and (§) to
unit equations over much smaller number fields (over appropriate
subfields of K_Cﬂ K<), This led to smaller + and smaller other
parameters involved, hence giving a much better bound forrn?x\xd.

THEOREM J (Gydry,2000). All solutions (-*z,-.-,x,‘_) ezm.-ég (1‘)
satisfy
- -4 nCm-4) A
ok 1221 < A oo {c D | T (oq!De) (Dl ™+ Loglabd}

wvhere ¢ = m§m§“4+ ) and i g Cm=-4/2 .

On the other hand, the refinement mentioned above provided a
much more efficient algorithm for the resolution of (47 and(s§)

in concrete cases.

Norm form equations and decomposable form equations of

general type

Subject to some conditions concerningciA,“.)oLw\ , effective



152

bounds for the solutions of the norm form equation ) were
given by Gy&ry and Papp (1978), Gydéry (198l), Kotov (1981),
Bugeaud and Gydry (1996), GySry (1998) and, in the "inhomoge-
neous" case,by Gadl (1985). .

In 1998 I proved (cf. Gyéry,1998) that if o, is of degree
at least 3 over M@, ,...,el .4 then all solutions of (3a) with

Xa + © satisfy

e
mmax (%)< cq (A-Ta)) 1,'
A

where max [#;{] £ A and the constants Ci=C: Cn D) ,A=4,2,
are expiacitly given. It is easy to show that here the conditions
concerning «,. and ¥,. are necessary.

In 1981 and 1998 I gave (cf. Gydry,1998) common generaliza-
tions of the above-presented effective results concerning Thue
equations, discriminant form and index form equations, and norm

form equations.
In the proof, the method applied earlier to discriminant

form and index form equations was generalized in an appropriate

way; see e.g. Gydry(1998).

III. NUMERICAL RESULTS

Thue equations

The general bounds obtained for the solutions of Thue

equations are too large for practical use in concrete cases.

Example: All solutions %,,X, € Z of the equation

(42) X«“—"lx?x,_—GXf'x:,' FUXAXD +X2 =4 A €2
satisfy

o
max (Ixq), Ix2l) < e<p {10 t.

Further, one can deduce from (42) an inequality of the form

O < laslogéitarleog &L +aylogé, "z"%/s“?’.SA)

where the ;€ "Z are unknowns and A = M‘%&‘Q.‘_l . Then Bakers
method gives A <« Ao°© which is still too large for practical
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In the last two decades many people, including Pethd, de
Weger, Tzanakis, Mignotte, Wakabayashi, and Bilu-Hanrot devel-
oped efficient algorithms for the resolution of concrete Thue
equations (see e.g. Bilu and Hanrot)1996, and Smart, -1998).

These algorithms consist of two main parts: one first reduces

the bound on A (in several steps) by means of the Baker-Daven-
ports reduction method or by the LLL basis reduction

algorithm. Then the remaining "small" vactors (a.) are
enumerated by using computer. There are currently computer
packages, e.g. the KANT for performing various number theoretic
calculations and proViding all the solutions of Thue eguations
with a = odlegF ¢ 20 and with "small" H(F)and la|. For example,
all solutions (x.,%,) of (42) are, up to sign, (0,4) 1(1)0), (2,3), (3,2),

Index form equations

Index form equations (5) are of pafticular interest in the
case when I =4 .If the index form in (§) is associated to the
integral basis {4,o<,_)...,o<,h} of a number field K , then, for .
I=14 r(xz,-..)x.._)ezﬁ-‘is a solution of (‘5“) if and only.if
o2 K+ Xy ky 4ot X an (fOr any xa€ Z ) satisfies O, =Z[«],
i.e. if {4 ,,()_,,),("“-""_} is a  power integral basis of 'K .

For number fields of degree mm =2 and L4 , Gaél)Schulte,
Pethd, Pohst and Koppenhdfer gave efficient algorithms for
solving (s)'by reducing~(sj)to cubic and guartic Thue equations
( see e.g. Smart,1998). They determined the minimal I for
which (&) 1is solvable, and gave all solutions in several

hundred number fields. Some extensions were also established
However,

to some special number fields of degree m.=6,8,3 .
these methods do not work in general for number fields of

degree m o= .
Our general method (Gydry,1976) reduces (&) to unit

equations of the form

a
(A4 Sa E:l“.. . E%*-;- S & 1. e.?.""" =4 inay;eZ unknowns

over K‘”K(NK(‘)or the normal closure of K /@ , where

(43) T EL<m (m=-A)(n-2)-1.
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Bakers method can be used to derive a "large" upper bound A,
for A:wz\-'a.x ’Clca" . Then, in concrete case, the reduction
algorithms provide a much "smaller" bound A, for A . Howev-
er, the number of remaining possibilities to enumerate is still

2+ , which is hopeless if - is large.

in general about 200

In special number fields K with "small" A+ Smart (1996)
and Wildanger (1997) gave efficient algorithms for the enumera-
tion of the "small" ag;

However, their methods do not work for the degrees ~-= L, S

and hence for the resolution of (S).

if ~+ is "large".
Oour refinement of the general method (Gydry,2000) reduces

(5) to equations (44) over a much smaller number field, an
appropriate subfield of KIK D), This yields a significant
improvement of (43) :

cn *ﬁ———m(z'43—4.
Comparing (429 and (av) for m =5 , it is easily seen that
the general method gives 4+~ £ £9 , while its improvement
yields ~+< 9 .

On combining the refined general method with Baker's method,
the LLL reduction algorithm and Wildanger's algorithm, Gaial and
Gydry (1999) gave an efficient algorithm for the resolution of (5)
for number fields WK  of degree 5 .

Example (Gaéi and GyS&ry,1999): Let m = § ’ K:Q(}) ’ _F a
root of X3-C x> 4 xZ+4x +14 = © . Then Dy =364 3,
{,,)}132-,‘;3,}."‘} is an integral basis of K , K is totally
real, and the Galois group of K is SS‘ (most difficult

case !). Then, up to sign, all solutions (x,,X.,%,,%s)€ 2"'

of the corresponding index form equation
T (x2,%s,%u,%xg) =%1
are:

(A,-6,0,4), (4,0,0,0), (2,-6,0,4),(2,-5,0,4), (3,-44,0,2),

(2,-5,0:4),(%,0,-552),(H,-5,-4,4), (4,0,-3,-4), (4, §,-4,-4),
(C1-C1-414),(6,45,-2,-3),(F,-42,-4,2), (':{-,-44,—4,2),(8,—42’.4,2)’
(‘3.-42;-4;3).C%,-4’!-,-4,3),(44;‘23,-4,1.),(43'_48,_2' 3)

? ’
<4g’-2‘-‘)_2ll‘|)) (4Gi"23)‘2,“‘\)) C4§,-H4 ,-2: 1'),'(34,—1‘6, -4,8),
(s3,62,-44,-13), (80,-459,-9,23), (445,-4648 ,~-15,29),
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Remark. In order to solve concrete index form equations in nu
ber fields of degree & , it would be sufficient to give an
efficient algorithm for enumerating the "small" solutions Qa,,

in (14) for A+ <244 .
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