Linear independence of the values of q-hypergeometric series

Masaaki Amou* (天羽雅昭・群馬大工)

In the present note we are interested in linear independence of the values of a certain class of q-hypergeometric series and its generalizations. We give a brief history on this topic in the first section, then state our results in the second and the third sections. Our results here are in [1], a joint work with K. Väänänen.

1. A brief history

Let us call here q-hypergeometric series the series of the form

(1.1)
$$f(z) = 1 + \sum_{n=1}^{\infty} \frac{q^{-s\binom{n}{2}}}{\prod_{k=0}^{n-1} P(q^{-k})} z^n,$$

where q is a complex number with absolute value greater than one, s is a positive integer, and P(x) is a polynomial with complex coefficients satisfying $P(0) \neq 0$ and $P(q^{-n}) \neq 0$ (n = 0, 1, 2, ...). Note that f(z) represents an entire function. By defining $R(x) = x^s P(1/x)$, the series (1.1) can be expressed as

$$f(z) = 1 + \sum_{n=1}^{\infty} \frac{z^n}{\prod_{k=0}^{n-1} R(q^k)}$$

Then, under the assumption that deg $P \leq s$ (or equivalently, R(x) is a polynomial), f(z) satisfies the q-difference equation

(1.2)
$$\{R(D/q) - z\}f(z) = R(1/q), \qquad Df(z) := f(qz).$$

^{*}Research supported in part by Grant-in-Aid for Scientic Research (No. 13640007), the Ministry of Education, Science, Sports and Culture of Japan.

The cases R(x) = qx and R(x) = qx - 1 correspond to the Tschakaloff function $T_q(z)$ and the q-exponential function $E_q(z)$, respectively.

The study of the arithmetical nature of the values of the function $T_q(z)$ goes back to Tschakaloff [10] in 1921. He proved the linear independence over the rational number field \mathbf{Q} of the numbers 1, $T_q(\alpha_j)$ (j=1,...,m) under a certain condition on $q \in \mathbf{Q}$, where α_j are nonzero rational numbers satisfying $\alpha_i/\alpha_j \neq q^n$ $(n \in \mathbf{Z})$ for any $i \neq j$, while Skolem [8] proved a similar result involving the derivatives of the function. The former result was refined in a quantitative form by Bundschuh and Shiokawa [4], and the later result by Katsurada [5]. Note that both results are valid for $q \in \mathbf{K}$ and numbers $\alpha_j \in \mathbf{K}$ with certain conditions, here and in what follows \mathbf{K} denotes \mathbf{Q} or an imaginary quadratic number field. Then Stihl [9] generalized the result of Bundschuh and Shiokawa to f(z) having $P(x) \in \mathbf{K}[x]$ with $\deg P < s$, and proved the linear independence over \mathbf{K} of the numbers

1,
$$f(q^k\alpha_i)$$
 $(j=1,..,m; k=0,1,...,s-1)$

in quantitative form under a certain condition on $q \in K$, where α_j are nonzero elements of K satisfying the same conditions as above. Since the functional equation (1.2) for f(z) with deg $P \leq s$ has the order s with respect to the q-difference operator D, this result is best possible in qualitative nature. Further, Katsurada [6] put the derivatives of the function in Stihl's result to get the linear independence over K of the numbers

(1.3)
$$1, f^{(i)}(q^k\alpha_i) \quad (i = 0, 1, ..., \ell; j = 1, ..., m; k = 0, 1, ..., s - 1)$$

in quantitative form under the same conditions as Stihl's on q and α_j 's, where ℓ is a nonnegative integer.

We now come to the general case in which the degree of P(x) is not necessarily less than s. In this direction Lototsky [7] in 1943 proved an irrationality result on $E_q(\alpha)$ with $q \in \mathbb{Z}$ at a rational point α different from q^n $(n \in \mathbb{N})$. A quantitative refinement of this result with $q \in \mathbb{K}$ was obtained by Bundschuh [3]. After the work of Stihl [9], on noting that $\{R(q^k)\}$ is a linear recurrent sequence, Bézivin [2] introduced a class of entire series as follows. Let $\{A(n)\}$ be a linear recurrent sequence of the form

(1.4)
$$A(n) = \lambda_1 \theta_1^n + \cdots + \lambda_h \theta_h^n \qquad (n = 0, 1, 2, ...),$$

where θ_i are nonzero algebraic integers and λ_i are nonzero algebraic numbers. Assume that A(n) belong to \mathbf{K}^{\times} , and that

$$(1.5) |\theta_1| > |\theta_2| \ge \dots \ge |\theta_h| \ge 1 \text{and} 1 = \theta_h < |\theta_{h-1}| \text{ if } |\theta_h| = 1.$$

Then we define an entire function $\Phi(z)$ by

(1.6)
$$\Phi(z) = \sum_{n=0}^{\infty} \frac{z^n}{\prod_{k=0}^{n} A(k)}.$$

Denote by $\tilde{\mathcal{G}}$ the multiplicative group generated by $\theta_1, ..., \theta_h$, Bézivin [2] proved the linear independence over \mathbf{K} of the numbers

(1.7)
$$1, \ \Phi^{(i)}(\alpha_j) \quad (i = 0, 1, ..., \ell; j = 1, ..., m),$$

where α_j are nonzero elements of **K** such that $\alpha_i/\alpha_j \notin \tilde{\mathcal{G}}$ for any $i \neq j$, and in addition that $\lambda_h \alpha_j \neq \tilde{\mathcal{G}}$ (j = 1, ..., m) if $\theta_h = 1$. This result implies that, for f(z) with deg $P \leq s$ and an integer q in **K**, the numbers (1.3) without powers of q are linearly independent over **K**.

2. Generalizations of Bézivin's result

We can relax the condition (1.5) in Bézivin's result to get the following result.

Theorem 1. Let $\theta_1, ..., \theta_h$ be nonzero algebraic integers such that

$$|\theta_1| > 1$$
, $|\theta_1| > |\theta_2| \ge \cdots \ge |\theta_h|$,

and that $|\theta_h| < |\theta_{h-1}|$ if $|\theta_h| < 1$ and $\theta_h = 1 < |\theta_{h-1}|$ if $|\theta_h| = 1$. Let $\{A(n)\}$ be the recurrent sequence (1.4) with nonzero algebraic numbers $\lambda_1, ..., \lambda_h$, and assume that A(n) belong to K^{\times} for all n. Let $\alpha_1, ..., \alpha_m$ be elements of K^{\times} satisfying $\alpha_i/\alpha_j \notin \widetilde{\mathcal{G}}$ for any $i \neq j$. If $\theta_h = 1$, assume in addition that $\lambda_h \alpha_j^{-1} \notin \widetilde{\mathcal{G}}$ (j = 1, ..., m). Then the numbers (1.7) are linearly independent over K.

We give an example of this theorem. Let $\{F_n\}$ be the Fibonacci sequence defined by $F_0 = F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ (n = 0, 1, 2, ...), which is expressed as

$$F_n = \lambda_1 \alpha^n + \lambda_2 \beta^n \quad (n = 0, 1, 2, \ldots),$$

where $\alpha = (1 + \sqrt{5})/2$, $\beta = (1 - \sqrt{5})/2$, $\lambda_1 = \alpha/\sqrt{5}$, $\lambda_2 = -\beta/\sqrt{5}$. Since $\beta = -\alpha^{-1}$, the multiplicative group generated by α^{ν} and β^{ν} with a positive integer ν is $\langle -1 \rangle \times \langle \alpha^{\nu} \rangle$ or $\langle \alpha^{\nu} \rangle$ according as ν is odd or even. Hence the numbers

1,
$$\sum_{n=i}^{\infty} \frac{n(n-1)\cdots(n-i+1)\alpha_{j}^{n-i}}{F_{0}F_{\nu}\cdots F_{n\nu}} \quad (i=0,1,...,\ell; \ j=1,...,m)$$

are linearly independent over Q, if ν is odd and α_j are nonzero rational numbers having distinct absolute values, or if ν is even and α_j are nonzero distinct rational numbers.

For the next result let $\theta_i, \lambda_i \in K$ in the above, and assume that $\tilde{\mathcal{G}}$ is a free abelian group. We take a free abelian group $\hat{\mathcal{G}}$ of finite rank satisfying $\tilde{\mathcal{G}} \subseteq \hat{\mathcal{G}} \subset \bar{\mathbf{Q}}^{\times}$. Let r be the rank of $\hat{\mathcal{G}}$, and $\Theta_1, ..., \Theta_r$ be a set of generators of $\hat{\mathcal{G}}$. By using these generators we can express θ_i as

$$\theta_i = \Theta_1^{e(i,1)} \cdots \Theta_r^{e(i,r)} \quad (i = 1, ..., h).$$

Define

$$\hat{S} = \{\Theta_1^{\nu_1} \cdots \Theta_r^{\nu_r} \mid 0 \le \nu_j < s_j, j = 1, ..., r\},$$

where

$$s_j = \max(0, e(1, j), ..., e(h, j)) - \min(0, e(1, j), ..., e(h, j)) \quad (j = 1, ..., r).$$

Note that $s_j \geq 1$ for all j. Then we have the following result.

Theorem 2. Let the notations and the assumptions be as above. Let $\alpha_1, ..., \alpha_m$ be nonzero elements of K satisfying $\alpha_i/\alpha_j \notin \widehat{\mathcal{G}}$ for any $i \neq j$. If $\theta_h = 1$, assume in addition that $\lambda_h \alpha_i^{-1} \notin \widehat{\mathcal{G}}$ (j = 1, ..., m). Then the numbers

1,
$$\Phi^{(i)}(\lambda \alpha_j)$$
 $(i = 0, 1, ..., \ell; j = 1, ..., m; \lambda \in \widehat{S})$

are linearly independent over K.

3. q-hypergeometric series

We can apply Theorem 2 for considering the values of a series generalizing the series (1.1). Let $q_1, ..., q_r$ be r nonzero multiplicatively independent integers in K

with $|q_i| > 1$ for all i, and \mathcal{G} be the multiplicative group generated by them. Let $P(x_1, ..., x_r)$ be an element of $\mathbf{K}[x_1, ..., x_r]$ satisfying

(3.1)
$$P(0,...,0) \neq 0, \quad P(q_1^{-n},...,q_r^{-n}) \neq 0 \quad (n = 0,1,2,...).$$

Then, for positive integers $t_1, ..., t_r$, we define

(3.2)
$$\phi(z) = 1 + \sum_{n=1}^{\infty} \frac{\prod_{i=1}^{r} q_i^{-t_i\binom{n}{2}}}{\prod_{k=0}^{n-1} P(q_1^{-k}, ..., q_r^{-k})} z^n.$$

This series is a particular case of the series (1.6), and reduces to the series (1.1) when r = 1. We first restrict ourselves to the case $\deg_{x_i} P \leq t_i$ (i = 1, ..., r).

Theorem 3. Let q_i be as above, and $\phi(z)$ be the series (3.2) with $\deg_{x_i} P \leq t_i$ (i=1,...,r). Let $\alpha_1,...,\alpha_m$ be nonzero elements of K such that $\alpha_i/\alpha_j \notin \mathcal{G}$ for any $i \neq j$, and assume in addition that $p_{t_1,...,t_r}\alpha_i^{-1} \notin \mathcal{G}$ (i=1,...,m) if $p_{t_1,...,t_r} \neq 0$, where $p_{t_1,...,t_r}$ is the coefficient of $x_1^{t_1} \cdots x_r^{t_r}$ in $P(x_1,...,x_r)$. Then the numbers

(3.3)
$$1, \ \phi^{(i)}(\lambda \alpha_i) \qquad (i = 0, 1, ..., \ell; j = 1, ..., m; \lambda \in \mathcal{S}_1)$$

are linearly independent over K, where

$$S_1 = \{q_1^{k_1} \cdots q_r^{k_r} \mid 0 \le k_i < t_i \ (i = 1, ..., r)\}$$

To give a result without the condition $\deg_{x_i} P \leq t_i \ (i = 1, ..., r)$ we assume that $P(x_1, ..., x_r)$ is a product of polynomials $P_i(x_i) \in \mathbf{K}[x_i]$.

Theorem 4. Let $\phi(z)$ be the series (3.2) with $P(x_1, ..., x_r) = P_1(x_1) \cdots P_r(x_r)$, where $P_i(x_i) \in \mathbf{K}[x_i]$ and the condition (3.1) is satisfied. Let $\alpha_1, ..., \alpha_m$ be nonzero elements of \mathbf{K} such that $\alpha_i/\alpha_j \neq \mathcal{G}$ for any $i \neq j$, and assume in addition that $p_{1,t_1} \cdots p_{r,t_r} \alpha_j^{-1} \neq \mathcal{G}$ (i = 1, ..., m) if $p_{1,t_1} \cdots p_{r,t_r} \neq 0$, where p_{i,t_i} is the coefficient of $x_i^{t_i}$ in $P_i(x_i)$. Then the numbers (3.3) with S_2 instead of S_1 are linearly independent over \mathbf{K} , where

$$S_2 = \{q_1^{k_1} \cdots q_r^{k_r} \mid 0 \le k_i < s_i \ (i = 1, ..., r)\}, \qquad s_i = \max(t_i, \deg P_i).$$

The following is a direct consequence of Theorem 4, which generalizes Katsurada's result [6] in qualitative form.

Corollary. Let q be an integer in K with |q| > 1. Let f(z) be the series (1.1) with $P(z) \in K[z]$ satisfying $P(0) \neq 0$, $P(q^{-n}) \neq 0$ (n = 0, 1, 2, ...). Let $\alpha_1, ..., \alpha_m$ be nonzero elements of K such that $\alpha_i/\alpha_j \neq q^n$ $(n \in \mathbb{Z})$ for any $i \neq j$. Assume in addition that $p_s\alpha_j^{-1} \neq q^n$ $(n \in \mathbb{Z}, j = 1, ..., m)$ if $p_s \neq 0$, where p_s is the coefficient of x^s in P(x). Then the numbers (1.3) are linearly independent over K.

References

- [1] M. Amou and K. Väänänen, Linear independence of the values of q-hypergeometric series and related functions, preprint.
- [2] J.-P. Bézivin, Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles, Manuscripta Math. 6 (1988), 103-129.
- [3] P. Bundschuh, Arithmetische Untersuchungen unendlicher Produkte, Inventiones Math. 61 (1969), 275-295.
- [4] P. Bundschuh and I. Shiokawa, A measure for the linear independence of certain numbers, Results Math. 14 (1988), 318-329.
- [5] M. Katsurada, Linear independence measures for certain numbers, Results Math. 14 (1988), 318-329.
- [6] M. Katsurada, Linear independence measures for values of Heine series, Math. Ann. 284 (1989), 449-460.
- [7] A. V. Lototsky, Sur l'irrationalité d'un produit infini, Math. Sbornik 12(54) (1943), 262-272.
- [8] K. Skolem, Some theorems on irrationality and linear independence, in "Den 11te Skandinaviske Matematikerkongress Trondheim, 1949", pp. 77-98.
- [9] Th. Stihl, Arithmetische Eigenschaften spezieller Heinescher Reihen, Math. Ann. 268 (1984), 21-41.
- [10] L. Tschakaloff, Arithmetische Eigenschaften der unendrichen Reihe $\sum_{\nu=0}^{\infty} x^{\nu} a^{-\frac{1}{2}\nu(\nu+1)}$ I, Math. Ann. 80 (1921) 62–74; II, ibid. 84 (1921), 100–114.