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Linear independence of the values of
g-hypergeometric series

Masaaki Amou* (KIJHEHE - HEKXTI)

In the present note we are interested in linear independence of the values of
a certain class of ¢-hypergeometric series and its generalizations. We give a brief
history on this topic in the first section, then state our results in the second and the
third sections. Our results here are in [1], a joint work with K. Vainénen.

1. A brief history

Let us call here g-hypergeometric series the series of the form
o 4—°()
q 2
(1.1) fle) =14 /=",
"= I P

k=0

where ¢ is a complex number with absolute value greater than one, s is a positive
integer, and P(z) is a polynomial with complex coefficients satisfying P(0) # 0
and P(g™™) # 0 (n = 0,1,2,...). Note that f(z) represents an entire function. By
defining R(z) = z°P(1/z), the series (1.1) can be expressed as

n

f2)=1+ fj L
n=1 k]:':[ R(qk)

Then, under the assumption that deg P < s (or equivalently, R(z) is a polynomial),
f(2) satisfies the ¢-difference equation

(1.2) {R(D/q) — z}f(2) = R(1/q),  Df(2) = f(q2)-
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The cases R(z) = gz and R(z) = gz — 1 correspond to the Tschakaloff function
T,(2) and the g-exponential function Eq(2), respectively.

The study of the arithmetical nature of the values of the function T (z) goes back
to Tschakaloff [10] in 1921. He proved the linear independence over the rational
number field Q of the numbers 1, T,(c;) (j =1, ..,m) under a certain condition on
g € Q, where o; are nonzero rational numbers satisfying a;/a; # q" (n € Z) for
any i # j, while Skolem [8] proved a similar result involving the derivatives of the
function. The former result was refined in a quantitative form by Bundschuh and
Shiokawa [4], and the later result by Katsurada [5]. Note that both results are valid
for ¢ € K and numbers a; € K with certain conditions, here and in what follows K
denotes Q or an imaginary quadratic number field. Then Stihl [9] generalized the
result of Bundschuh and Shiokawa to f(z) having P(z) € K[z] with deg P < s, and
proved the linear independence over K of the numbers

1, f(¢*fey) (G =1,..,mk=0,1,..,5s— 1)

in quantitative form under a certain condition on ¢ € K, where a; are nonzero
elements of K satisfying the same conditions as above. Since the functional equation
(1.2) for f(z) with deg P < s has the order s with respect to the g-difference operator
D, this result is best possible in qualitative nature. Further, Katsurada [6] put the
derivatives of the function in Stihl’s result to get the linear independence over K of
the numbers

(1.3) 1, f9*e;) (=0,1,...6j=1,.,mk=0,1,.,s-1)

in quantitative form under the same conditions as Stihl’s on ¢ and a;'s, where £ is
a nonnegative integer.

We now come to the general case in which the degree of P(z) is not necessarily
less than s. In this direction Lototsky [7] in 1943 proved an irrationality result on
E,(a) with ¢ € Z at a rational point o different from ¢" (n € N). A quantitative
refinement of this result with ¢ € K was obtained by Bundschuh [3]. After the
work of Stihl [9], on noting that {R(g*)} is a linear recurrent sequence, Bézivin [2]
introduced a class of entire series as follows. Let {A(n)} be a linear recurrent
sequence of the form

(1.4) AR) =07 +---+ M0  (n=0,1,2,..),
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where 6; are nonzero algebraic integers and ); are nonzero algebraic numbers. As-
sume that A(n) belong to K*, and that

(L8) (61> 18] > - > |64 >1 and 1=06 < |Ba_s] if 6] = 1.

Then we define an entire function ®(z) by

(1.6) 3= .
i n=0 A(k)

Denote by G the multiplicative group generated by 6, ..., 05, Bézivin [2] proved the
linear independence over K of the numbers

(1.7) 1, 80(a;) (6=0,1,...6j=1,..,m),

where o are nonzero elements of K such that aifa; ¢ G for any ¢ # j, and in
addition that Aya; # G (j = 1,..,m) if 6, = 1. This result implies that, for f (2)
with deg P < s and an integer ¢ in K, the numbers (1.3) without powers of q are
linearly independent over K.

2. Generalizations of Bézivin’s result

We can relax the condition (1.5) in Bézivin’s result to get the following result.
Theorem 1. Let 6, ...,0, be nonzero algebraic integers such that
01] > 1, [61] > [62] > --- > |64l

and that |p] < |6h—1| if |0h| <1 and 6y = 1 < |4y if |04 = 1. Let {A(n)} be the
recurrent sequence (1.4) with nonzero algebraic numbers AL, .., An, and assume that
A(n) belong to K* for alln. Let ai, ..., ay, be elements of K* satisfying oifa;j ¢ G
forany i # j. If 6y = 1, assume in addition that )\ha]-‘l ¢GG=1, ...,m). Then
the numbers (1.7) are linearly independent over K.

We give an example of this theorem. Let {F,} be the Fibonacci sequence defined
by h=Fy=1and Foyy=F,1 + F, (n=0,1,2, ...), which is expressed as

Fn = A].an"'/\2ﬂﬂ (n= 011127"')1
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where a = (1+ v5)/2,8 = (1 — V5)/2,\ = a/V5,)2 = —B/V/5. Since B =
—a~!, the multiplicative group generated by a” and §* with a positive integer v is
(1) x (@) or {&*) according as v is odd or even. Hence the numbers

® nn—1)---(n—i+1)a}™"
L2 FoF, - Fo,

n=i

(i=0,1,...6j=1,..,m)

are linearly independent over Q, if v is odd and a; are nonzero rational numbers
having distinct absolute values, or if v is even and a; are nonzero distinct rational
numbers.

For the next result let 6;,); € K in the above, and assume that G is a free
abelian group. We take a free abelian group G of finite rank satisfying GcGcQ~
Let r be the rank of G, and ©;, ...,;, be a set of generators of G. By using these
generators we can express §; as

g, =0 ...et"  (i=1,..,h).

Define
S={en...er|0<v<sj,j=1,.,1}

where
s; = max(0, (1, ), ..., e(h, §)) — min(0, e(1,5), ...,e(h,5)) (=1, ey T).
Note that s; > 1 for all j. Then we have the following result.

Theorem 2. Let the notations and the assumptions be as above. Let ay,...,0m
be nonzero elements of K satisfying o;/a; ¢ G for any i # j. If 6, = 1, assume in
addition that Ao’ ¢ G (j =1,...,m). Then the numbers

1, <I>(")(/\aj) (i =0,1,...,6j=1,..,.mAE€ 3)

are linearly independent over K.
3. g-hypergeometric series

We can apply Theorem 2 for considering the values of a series generalizing the
series (1.1). Let gy, ...,g- be 7 nonzero multiplicatively independent integers in K
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with |g;| > 1 for all 4, and G be the multiplicative group generated by them. Let
P(zy,...,z,) be an element of K[z, ..., z,] satisfying ‘

(31) P00 £0, P"\q ) A0 (1=0,1,2,..).

Then, for positive integers ti, ..., t,, we define

| ! Bt
(3.2) | #(z) =1+ E — i=1 2",
n=1 H P(g*,..,¢7%)

k=0

This series is a particular case of the series (1.6), and reduces to the series (1 1)
when r = 1. We first restrict ourselves to the case deg, P <t (i=1,..,7).

Theorem 3. Let g; be as above, and ¢(2) be the series (9.2) with deg, P <
ti(i=1,..,7). Let ay, ..., a4, be nonzero elements of K such that aifa; ¢ G for any
i # j, and assume in addition that p;,, 407" € G (i =1,...,m) if py,,..s. # 0, where
Diy,..t, 18 the coefficient of ¥ ...zt in P(zy,...,x,). Then the numbers

(3.3) L, ¢9(ey)  (E=0,1,..,65=1,.,mA€S8)
are linearly independent over K, where

={g" g |0<k<t;(i=1,..,7)}

To give a result without the condition deg,, P < t; (i = 1,...,7) we assume that
P(z,,...,z,) is a product of polynomials P;(z;) € K[z;].

Theorem 4. Let ¢(2) be the series (8.2) with P(z,,...,z,) = Py(z1) - -- Bo(z,),
where Py(z;) € K[z;] and the condition (31 ) is satisfied. Let o, ...,y be nonzero
elements of K such that o;/a; # G for any i # j, and assume in addition that
Pru - Drg,0;  #£G (i =1,..,m) if pry, - Drs, # 0, where p;y, is the coefficient of
o in P(z;). Then the numbers (8.8) with S, instead of S; are linearly independent
over K, where

={git-- g |0<ki<s(i=1,..7)} 8; = max(t;, deg P;).



The following is a direct consequence of Theorem 4, which generalizes Kat-
surada’s result [6] in qualitative form.

Corollary. Let q be an integer in K with |d| > 1. Let f(z) be the series (1.1)
with P(z) € K|z] satisfying P(0) # 0,P(¢™™) # 0 (n =0,1,2,..). Let ay,...,am
be nonzero elements of K such that o;/c; # ¢" (n € Z) for any i # j. Assume in
addition that p,aj_l £¢*(neZ,j=1,..,m) if p, # 0, where p, is the coefficient
of z* in P(x). Then the numbers (1.3) are linearly independent over K.
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