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Abstract : For primes $p$, the multiplicative group of reduced residues modulo $p$ is cyclic,
with cyclic generators being referred to as primitive roots. Here we survey afew results
and conjectures on this subject, and we discuss generalizations to arbitrary moduli. A
primitive root to amodulus $n$ is aresidue coprime to $n$ which generates acyclic subgroup
of maximal order in the group of reduced residues modulo $n$ .

Introduction

For aprime $p$ , the multiplicative group $(\mathrm{Z}/p\mathrm{Z})^{*}$ is cyclic. Number theorists refer to
any cyclic generator of this group as aprimitive root modulo $p$ . There are many attractive
theorems and conjectures concerning primitive roots, and we shall survey some of them
here. But it is also our intention to broaden the playing field, so to speak, and introduce
the concept of aprimitive root for acomposite modulus $n$ . It is well-known that for most
numbers $n$ , the multiplicative group $(\mathrm{Z}/n\mathrm{Z})^{*}$ is not cyclic (namely, $(\mathrm{Z}/n\mathrm{Z})^{*}$ is not cyclic
for any number $n>4$ that is not of the form $pa$ , $2p^{a}$ for $p$ an odd prime). So what then
do we mean by aprimitive root for $n$?In any finite group $G$ one may look at elements
whose order is the maximum order over all elements in $G$ . We do precisely this, and say
that such elements for the group $G=(\mathrm{Z}/n\mathrm{Z})^{*}$ are primitive roots modulo $n$ . That is, a
primitive root modulo $n$ is an integer coprime to $n$ such that the multiplicative order of
this integer modulo $n$ is the maximum over all integers coprime to $n$ . This concept reduces
to the usual notion in the case that $G$ is cyclic, so there should be no confusion. We shall
see that there are afew surprises in store when we consider primitive roots for composite
moduli. For amore traditional survey on primitive roots, see Murty [12].

The number of primitive roots for agiven modulus

Abasic question that one might ask is aformula for $R(n)$ , the number of primitive
roots for agiven modulus $n$ , and beyond that, astudy of the order of magnitude of $R(n)$ as a
function of $n$ . For primes, the situation is straightforward. If $g$ is aprimitive root modulo $p$

then all of the primitive roots for $p$ are of the form $g^{a}$ where $a$ is coprime to $p-1$ . Thus
$R(p)=\varphi(p-1)$ where $\varphi$ is Euler’s function. This fact is well-known, but less well-known
is that $\varphi(p-1)/(p-1)$ has acontinuous distribution function. That is, let $D(u)$ denote the
relative asymptotic density in the set of all primes of the set {$p$ prime : $R(p)/(p-1,)\leq u$ }.
Then $D(u)$ exists for every real number $u$ , $D(u)$ is acontinuous function of $u$ , and $D(u)$

is strictly increasing on [0, 1/2], with $D(0)=0$, $D(1/2)=1$ . This beautiful result, which
echoes Schoenberg’s theorem on $\varphi(n)/n$ , is due to K\’atai [5].

It is not so easy to get aformula for $R.(n)$ in general. It may be instructive to first
consider the case of ageneral finite abelian group $G$ . Write $G$ as aproduct of cyclic groups
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of prime power order. For each prime p dividing the order of G, let $p^{\lambda_{p}}$ be the highest
power of p that appears as an order of one of these cyclic factors, and let $\nu_{p}$ be the number
of times that this cyclic factor appears. Then the maximal order of an element in G is

$\prod_{p||G|}p^{\lambda_{p}}$

,

and the number of elements of $G$ with this order is

$|G| \prod_{p||G|}(1-p^{-\nu_{p}})$
.

To see the latter assertion, note that an element $g$ will have $p^{\lambda_{\mathrm{p}}}$ dividing its order if and
only if at least one of its projections in the $\nu_{p}$ cyclic factors of order $p^{\lambda_{\mathrm{p}}}$ has order $p^{\lambda_{p}}$ .
The chance that one particular projection does not have this order. that is, it is killed
by the exponent $p^{\lambda_{\mathrm{p}}-1}$ , is $1/p$. Thus, the fraction of elements $g$ for which each of the $\nu_{p}$

projections is killed by the exponent $p^{\lambda_{\mathrm{p}}-1}$ is $7^{-\nu_{\mathrm{p}}}$ , so the fraction for which at least one
projection has order $p^{\lambda_{p}}$ is $1-p^{-\nu_{\mathrm{p}}}$ . The assertion folows.

To apply this result to $G=(\mathrm{Z}/n\mathrm{Z})^{*}$ we must compute the numbers $\nu_{p}$ for this group.
By the Chinese remainder theorem, $G$ has adecomposition into the product of the groups
$(\mathrm{Z}/q^{a}\mathrm{Z})^{*}$ , where $q$ is prime and $q^{a}||n$ . Further. the groups $(\mathrm{Z}/q^{a}\mathrm{Z})^{*}$ are themselves cyclic
unless $q=2$ and $a\geq 3$ , in which case $(\mathrm{Z}/2^{a}\mathrm{Z})^{*}$ is the product of acyclic group of order 2
and acyclic group of order $2^{a-2}$ . It is thus asimple task to further refine the decomposition
afforded by the Chinese remainder theorem into afactorization of $(\mathrm{Z}/n\mathrm{Z})^{*}$ into cyclic
groups of prime power order. We thus can work out aformula, albeit not so simple, for
$R(n)$ . For the sake of completeness, we record this formula: If $q^{a}$ is aprime power, let
$\lambda(q^{a})$ be the order of the largest cyclic subgroup of $(\mathrm{Z}/q^{a}\mathrm{Z})^{*};$ thus, $\lambda(q^{a})=\varphi(q^{a})$ if $q$

is odd or if $q=2$ and $a<3$ , while if $q=2$ and $a\geq 3$ , then $\lambda(2^{a})=\frac{1}{2}\varphi(2^{a})=2^{a-2}$.
If the prime factorization of $n$ is $\prod_{\dot{|}=1}^{k}q_{\dot{1}}^{a}$:, and $p$ is aprime with $p|\varphi(n)$ , let $\lambda_{p}$ be the
largest number such that $p^{\lambda_{\mathrm{p}}}|\lambda(q_{\dot{l}}^{a})$

: for some $i$ . If $p$ is odd, let $\nu_{p}$ be the number of $i$ ’s
with $p^{\lambda_{p}}|\lambda(q_{\dot{1}}^{a}$: $)$ . If $p=2$ and either $\lambda_{2}>1$ or $n\not\equiv 8(\mathrm{m}\mathrm{o}\mathrm{d} 16)$ , the definition of $\nu_{2}$ is the
same. If $p=2$ , $\lambda_{2}=1$ , and $n$ $\equiv 8(\mathrm{m}\mathrm{o}\mathrm{d} 16)$ , then $\nu_{2}=k+1$ . Then

$R(n)= \varphi(n)\prod_{p|\varphi(n)}(1-p^{-\nu_{p}})$
.

In analogy with Katai’s theorem about $R(p)$ , one might ask if $R(n)/\varphi(n)$ , has a
distribution function. That is, for agiven real number $u$ does the set

$R_{u}:=\{n : R(n)/\varphi(n)\leq u\}$

have anatural density? Our first surprise is that the answer is no. It is shown by the first
author in [7], [8] that there are values of $u$ so that $\mathcal{R}_{u}$ does not have anatural density. In
fact, there is asmal positive number $\delta$ such that for every $u>0$ , $\mathcal{R}_{u}$ has upper density
at least $\delta$ , but the lower density tends to 0as $uarrow \mathrm{O}$ .
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There are other naturally occurring sets in number theory where there is no natural
density. For example, consider the set of integers $n$ with an even number of decimal digits.
While the natural density does not exist (the fraction of numbers in the set at 10$2n$ is at
least 9/10 while the fraction in the set at $10^{2n+1}$ is at most 1/10), note that this set does
have alogarithmic density. That is, the sum of the reciprocals of the numbers in the set
that are $\leq x$ , when divided by $\ln x$ , approaches alimit, namely 1/2. (It is interesting to
note that logarithmic density is equivalent to the concept of Dirichlet density from analytic
number theory.) Well, perhaps the set of numbers with an even number of decimal digits
is not so natural aconcept. But also consider the set of integers $n$ with $\mathrm{n}(\mathrm{n})>\mathrm{l}\mathrm{i}(n)$ .
(Here, $\pi(x)$ is the number of primes in the interval [1, $x\rfloor$ and $1 \mathrm{i}(x)=\int_{0}^{x}dt/\ln t$ , where the
principal value is taken for the singularity at $t=1.$ ) It was once thought that there should
be no values of $n$ with $\pi(n)>1\mathrm{i}(n)$ , until Littlewood showed that there are infinitely
many with the inequality holding, and also infinitely many with the reverse inequality. It
is shown in Rubinstein and Sarnak [13] that assuming reasonable conjectures concerning
the zeroes of the Riemann zeta function, the set of integers $n$ with $\pi(n)>1\mathrm{i}(n)$ does not
have anatural density, but it does have alogarithmic density. Similar results pertain to
the set of integers $n$ with $\pi(n, 4,1)>\mathrm{n}(\mathrm{n})4,3)$ , where $\pi(x, k, l)$ denotes the number of
primes $p$ in $[1, x]$ that are in the residue class $l(\mathrm{m}\mathrm{o}\mathrm{d} k)$ .

So maybe the sets $\mathcal{R}_{u}$ have alogarithmic density? Alas, the answer is again no, as is
shown in [7]. In fact, the oscillation persists at even the double logarithmic density (where
one sums $1/a$ In $a$ for members $a$ of the set that are in $[2, x]$ and divides the sum by In In $x$).
Maybe the triple logarithmic density exists: In [7] it is shown that at the triple level, $R_{u}$

has upper density tending to 0 as $uarrow \mathrm{O}$ .

The source of the oscillation

Where does this surprising oscillation come from? The answer lies in the numbers $\nu_{p}$

described above. Consider agame played with $n$ coins: We give you $n$ coins, and at the
end of the game you will either have given us back all $n$ of the coins, or you will have given
us back $n-1$ coins, keeping one for yourself. Here’s how the game is played. You flip the
$n$ coins (assume they are all fair coins with a1/2 probability of landing heads–the front
of the coin–and a1/2 probability of landing tails–the back of the coin.), returning to us
all of the coins that land tails. If there is more $\mathrm{t}\mathrm{h}\mathrm{a}\acute{\mathrm{n}}$ one coin left, you repeat the process.
If at any time you have exactly one coin left, you get to keep it. What is the probability
$P_{n}$ that you win the game by getting to keep acoin? It is not so hard to work out an
expression for $P_{n}$ , it is

$P_{n}= \sum_{k=1}^{\infty}n2^{-k}(1-- 2^{1-k})^{n-1}$

Indeed, if one keeps flipping until no coins are left, and the last coin leaves on round
$k$ , with the other $n-1$ coins leaving on earlier rounds, then the probability of this is
$n2^{-k}(1-2^{1-k})^{n-1}$ (There are $n$ choices for the “last” coin, the probability it falls heads
$k-1$ straight times followed by atails is $2^{-k}$ , and the probability that each of the other
$n-1$ coins has at least one tails in the first $k-1$ flips is $(1-2^{1-k})^{n-1}.)$ But more
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interestingly, one can ask:
What is $\lim_{narrow\infty}P_{n}$ ?

It is easy to convince oneself that when $n$ is large, the biggest contribution to the sum for
$P_{n}$ is from the terms $k$ with $2^{k}\approx n$ . Suppose $0\leq\alpha<1$ and $S_{\alpha}$ is an infinite set of natural
numbers $n$ such that the fractional part of the base-2 logarithm for $n\in S_{\alpha}$ converges to $\alpha$

modulo 1. For example, if $\alpha=0$, then we might take $S_{0}$ as the set of powers of 2. Or we
might also throw in the numbers of the form $2^{m}-1$ and numbers of the form $2^{m}+m^{2}$ .
Then

$\lim_{narrow\infty,n\in S_{\alpha}}P_{n}=\sum_{j=-\propto}^{\infty}2^{-\alpha-j}e^{-2^{1-\alpha-\mathrm{j}}}$

Prom this result it surely looks like the lmiting value of $P_{n}$ actually depends on $\alpha$ , the
limiting value of the fractional part of the base-2 logarithm of $n$ . That is, it looks like
$\lim_{narrow\infty}P_{n}$ does not exist!

And this is indeed the case, though the oscillation in $P_{n}$ is very gentle. We have
$\lim\sup P_{n}\approx 0.72135465$ which is achieved when $\alpha\approx 0.139$ , and $\lim\inf P_{n}\approx 0.72134039$

which is achieved when $\alpha\approx 0.639$ . That is, the oscillation is only in the fifth decimal
place! (For more on this kind of oscillation in probability theory, see [1] and the references
in the acknowledgment of priority therein, and [6].)

It may be unclear what this game has to do with $R(n)$ . Consider the number 1/2: If
$2^{\lambda_{2}}$ is the highest power of 2dividing the order of an element modulo $n$ , then 1/2 is the
number of cyclic factors of order $2^{\lambda_{2}}$ in $(\mathrm{Z}/n\mathrm{Z})^{*}$ . We might ask where these $\nu_{2}$ factors
come ffom. But for aset of numbers $n$ of density 0we have 1/2 equal to the number of
primes $p|n$ with $p\equiv 1$ $(\mathrm{m}\mathrm{o}\mathrm{d} 2^{\lambda_{2}})$ . Now think of the odd primes dividing $n$ as the coins
in the game. Those primes $p\equiv 3$ $(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ are the “coins” that turn tails on the first
round and are returned. Those primes $p\equiv 5$ $(\mathrm{m}\mathrm{o}\mathrm{d} 8)$ are returned on the second round
of flips, and so on. The number of primes that are alive in the last round is $\nu_{p}$ , and ffom
our coin experience, we see that there is some oscillation for the probability that $\nu_{p}=1$ .
But what corresponds to the number of coins? This is the number of odd prime factors
of $n$ , which is normally about $\ln\ln n$ . Thus the limiting probability should depend on the
ffactional part of In In In $n/\ln 2$ . With all of these iterated logarithms, it may begin to be
clear why the density oscillation persists at logarithmic and double logarithmic levels.

But we noticed that the oscillation for the coin game is very slight. To see why there
are great oscillations in the normal value of $R(n)$ , we need to bring the other numbers $\nu_{p}$

into play for higher values of $p$ . This then suggests agame played with unfair coins, where
the probability of landing heads is $1/p$. An analysis of this game shows that there is again
oscillation for the probability of winning, and as $p$ tends to infinity, the ratio of the $\lim\sup$

of the probability to the $\lim\inf$ of the probability tends to infinity. In particular, if $x$ tends
to infinity in such away that the fractional part of In In $\ln x/\ln p$ is very nearly 1for all
small primes $p$ , then for most numbers $n$ up to $x$ , the values $\nu_{p}$ will frequently be 1for
these small primes $p$ , so that then $R(n)=o(\varphi(n))$ for most numbers $n$ up to $x$ . But if $x$

tends to infinity in such away that In In $\ln x/\ln p$ has fractional part about 1/2 for all small
primes $p$ , then the values $\nu_{p}$ will mostly be $>1$ , so that $R(n)\gg\varphi(n)$ for most numbers $n$
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Artin’s conjecture

Rather than fixing the modulus and asking for the number of primitive roots, as we
have been doing, we may do the reverse: Fix an integer $a$ and ask for the number of primes
(or integers) for which $a$ is aprimitive root. Artin’s famous conjecture deals with primes,
and gives asupposedly necessary and sufficient condition on when there are infinitely
many primes $p$ with primitive root $a$ . For example, take $a=10$ . (Note that in the special
case $a=10$, Gauss already had conjectured that there are infinitely many primes $p$ with
primitive root 10.) Note that 10 is aprimitive root for aprime $p\neq 2,5$ if and only if
the length of the period for the decimal for $1/p$ has length $p-1$ . Thus, the Artin-Gauss
problem might even be understandable to aschool child.

Since primes $p>2$ are all odd, the groups $(\mathrm{Z}/p\mathrm{Z})^{*}$ all have even order, so that squares
cannot be cyclic generators. Clearly too, the $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}-1$ has order dividing 2in $(\mathrm{Z}/p\mathrm{Z})^{*}$ ,
so $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-1$ cannot be acyclic generator when $p>3$ . Thus, anecessary condition on $a$ for
there to be infinitely many primes $p$ with primitive root $a$ is that $a$ should not be asquare
and that $a$ should not $\mathrm{b}\mathrm{e}-1$ . Artin’s conjecture is that these trivially necessary conditions
are also sufficient:
Artin’s conjecture. If the integer a is not a square and not-1, then there are infinitely
many primes with primitive root a.
Artin also formulated astrong form of this conjecture:
Artin’s conjecture, strong form. If the integer $a$ is not a square and not -1, then
there is a positive number $A(a)$ such that the number of primes $p\leq x$ with primitive root
a $is\sim A(a)\pi(x)$ .

Artin gave aheuristic argument for aformula for the numbers $A(a)$ appearing in
the conjecture, but, as reported in [4], after some numerical experiments of the Lehmers
which cast some doubt on Artin’s formula, Heilbronn revised Artin’s heuristic argument
and came up with aformula which agreed better with the numerical experiments. Let

$A= \prod_{q\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}}(1-\frac{1}{q(q-1)})=0.3739558136\ldots$ ,

the number known as Artin’s constant. Write a $\mathrm{a}_{\iota}\tilde{\mathrm{s}}a_{1}a_{2}^{2}$ , where $a_{1}$ is squarefree. We are
assuming that $a$ is not asquare, but it $\mathrm{m}$ ight be some other power. Let $h$ be the largest
integer for which $a$ is an $h$-th power, so that necessarily $h$ is odd. In the case that $h=1$ ,
that is, that $a$ is not any power higher than the first power, the Artin-Heilbronn formula
for $A(a)$ is fairly simple; it is

$A(a)= \{A(1-\prod_{q|a_{1}}\frac{1}{1+q-- q^{2}})A,$

,

$\mathrm{i}\mathrm{f}a_{1}\equiv 1\mathrm{i}\mathrm{f}a_{1}\not\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} 4)\mathrm{a}\mathrm{n}\mathrm{d}h=1(\mathrm{m}\mathrm{o}\mathrm{d} 4)\mathrm{a}\mathrm{n}\mathrm{d}h=1$

.

In particular, if $h=1$ , then $A(a)\gg 1$ , that is $A(a)$ is uniformly bounded away from 0. In
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the case that h $>1$ , the formula is more complicated:

$A(a)=\{\begin{array}{l}A\prod_{q|h}\frac{q^{2}-2q}{q^{2}-q-1}A\prod_{q|h}\frac{q^{2}-2q}{q^{2}-q-1}(\end{array}$

if $a_{1}\not\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} 4)$

1- $\prod_{q|a_{1}}\frac{1}{1+q-q^{2}}\prod_{q|(a_{1\prime}h)}\frac{q^{2}-q-1}{q-2})$ , if $a_{1}\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ .

(This more complicated formula reduces to the earlier one in the case that $h=1.$ )
Where do these formulas come from? Understanding at least the appearance of Artin’s

constant is relatively simple. Assume that $h=1$ , that is, assume that $a$ is not anontrivial
power. For $a$ to be aprimitive root modulo aprime $p$ , it must be the case that for each
prime $q$ that divides $p-1$ (namely, the order of the group $(\mathrm{Z}/p\mathrm{Z})^{*}$ ), $a$ is not a $q$-th power
modulo $p$ . These conditions are not only necessary, they are sufficient. Say that $p$ “passes
the $q$-test”if either $q$ does not divide $p-1$ or $q|p-1$ and $a$ is not a $q$-th power modulo $p$ .
(Passing the $q$-test for aprime $p$ is equivalent to $q$ not dividing the index of the subgroup
generated by $a$ in $(\mathrm{Z}/p\mathrm{Z})^{*})$ . By the Chebotarev density theorem, the proportion of primes
$p$ with $p\equiv 1$ $(\mathrm{m}\mathrm{o}\mathrm{d} q)$ and $a$ is a $q$-th power modulo $p$ is $1/q(q-1)$ . Thus, the proportion
of primes $p$ that pass the q-t et is $1-1/q(q-1)$ . Assuming “independenc\"e, the product
of these expressions, which is Artin’s constant, should then give the density of primes $p$

for which $a$ is aprimitive root.
But are the events independent? In fact, if $a_{1}$ , the squarefree part $\mathrm{o}\mathrm{f}a$ , is not 1 $(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ ,

then it can be shown by the Chebotarev theorem that for fixed primes $\mathrm{g}$ , the $q$ tends are
independent. And in the general case, the correct joint densities may be computed.

So why then is the strong form of Artin’s conjecture not atheorem? The answer lies
in the tail of the inclusion-exclusion. One can prove rigorously that if $\psi(x)$ tends to infinity
very slowly with $x$ , then the proportion of primes $p$ for which the index of the subgroup
generated by $a$ in $(\mathrm{Z}/p\mathrm{Z})^{*}$ is not divisible by any prime $q\leq\psi(x)$ is indeed asymptotically
$A(a)$ . To complete the proof one needs to exclude those primes $p$ which fail the q-test
for some prime $q>\psi(x)$ . We would only need acrude upper bound for these counts,
such as $\ll 1/q^{2}$ of all primes, or even $\ll 1/q\ln q$ of all primes. However, we have nothing
better than $\ll 1/q$ afforded by the Brun-Titchmarsh inequality. And so, the strong form
of Artin’s conjecture remains just that, aconjecture.

Hooley [4] however, has made the above heuristic into arigorous proof under the
assumption of the Generalized Riemann Hypothesis. This hypothesis allows astronger
form of the Chebotarev theorem which gives an estimate of $\ll\pi(x)/q^{2}+x^{1/2}\ln x$ primes
up to $x$ which fail the $q$-test, uniformly for $q\leq x^{1/2}/\ln^{2}x$ . Larger primes $q$ may then be
handled by an elementary argument that does not involve the GRH.

Aparallel with another problem may be instructive here. Let $S(x)$ be the number
of primes $p\leq x$ with $p-1$ squarefree. Here the $” \mathrm{g}$-test”is that we should not have
$q^{2}|p-1$ . The proportion of primes $p$ which pass this $q$-test is then $1-1/q(q-1)$ , by
the prime number theorem for arithmetic progressions. The Chinese remainder theorem
implies we have independence, without any exceptional cases, so that we may conjecture
that $S(x)\sim A\pi(x)$ . However, in this case, the heuristic may be turned into arigorous and
unconditional proof, since Brun-Titchmarsh allows agood uniform upper estimate for the
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distribution of primes $p$ which fail the $q$-test for the primes $q<x^{\epsilon}$ , and atrivial argument
can be used for larger primes $q$ . (Actually, we can use the Page-Siegel-Walfisz theorem
instead of Brun-Titchmarsh.) The difference here is that we have tools for handling large
primes $q$ that are not readily available in the Artin context.

It is interesting that not only do we not have aproof of the strong form of Artin’s
conjecture, we do not have aproof of the weak form either, not for any single number
$a$ . However, if several numbers $a$ are thrown in together, there are theorems. The most
intriguing perhaps is the result of Heath-Brown [3] (based on earlier work of Gupta and
Murty [2] $)$ that there are at most two prime values of $a$ for which the weak form of Artin’s
conjecture is false. Nevertheless, we repeat, we do not know asingle value of $a$ for which
the conjecture is true.

Allowing more values of $a$ , we can even show the strong form of Artin’s conjecture
unconditionally on average. Let $Pa(x)$ denote the number of primes $p\leq x$ which have $a$

as aprimitive root. It is relatively easy to estimate $\frac{\mathrm{l}}{x1\mathrm{n}x}\sum_{1\leq a\leq x\ln}{}_{x}P_{a}(x)$ , showing it to
$\mathrm{b}\mathrm{e}\sim A\pi(x)$ . (Note that the average of the numbers $A(a,1$ $\mathrm{i}\mathrm{s}\sim A$ , so that this result for
$P_{a}(x)$ on average is consistent with the strong form of Artin’s conjecture.) The sum of
$P_{a}(x)$ may be thought of as the number of pairs $a,p$ with $1\leq a\leq x\ln x$ , $p$ aprime with
$p\leq x$ , and $a$ is aprimitive root modulo $p$ . Thus, the sum may be reorganized as asum
over primes $p$ , and then we may use the trivial result that there are $\varphi(p-1)$ primitive roots
modulo $p$ in every interval of $p$ consecutive integers. Far less trivial is to get an average
estimate with $a$ running over an interval of the shape $[1, x^{\epsilon}]$ . The champion theorem here
is due to Stephens [14] (improving on earlier work of Goldfeld), and $\epsilon$ may be taken as
$4(\ln\ln x/\ln x)^{1/2}$ .

Artin’s conjecture for composite moduli

We saw that it makes perfectly good sense to consider primitive roots for composite
moduli, namely, $a$ is aprimitive root for $n$ if the order of $a$ in $(\mathrm{Z}/n\mathrm{Z})^{*}$ is as large as
possible. Let $N_{a}(x)$ denote the number of integers $n$ in $[1, x]$ with primitive root $a$ . In
analogy with Artin’s conjecture for primes, it is tempting to conjecture that if $a$ does not
lie in some exceptional set, yet to be determined, then there is apositive constant $B(a)$

with $N_{a}(x)\sim B(a)x$ . However, the experience above with the normal value of $R(n)$ , the
number of primitive roots modulo $n$ , shows that we might be wary of such aconjecture.

To gain some further insight, we might begin by first considering the kind of result
on average that was relatively easy in the case of primes. Namely, what can be said about
$\frac{1}{x}\sum_{1\leq a\leq x}N_{a}(x)$?Now the problem is not as easy as before, but the same sort of trick
works, namely reorganizing the sum, so that now we are summing over integers $n\leq x$ , and
for each $n$ we would like to know how many primitive roots it has in $[1, x]$ . This estimate
was worked out by the first author in [10], and sure enough, there is an oscillation. It is
shown that

$\lim_{xarrow}\inf_{\infty}\frac{1}{x^{2}}\sum_{1\leq a\leq x}N_{a}(x)=0$ , $\lim_{xarrow}\sup_{\infty}\frac{1}{\prime x^{2}}\sum_{1\leq a\leq x}N_{a}(x)>0$.

(The reason for the extra factor of $1/x$ is that it is natural to begin with the assumption
that each term $Na(x)$ is of order of magnitude $x.$ )

83



Thus, while this result is not inconsistent with the assertion that $N_{a}(x)\sim B(a)x$ , it
certainly causes some serious doubt. In addition, the first author of this survey believes
he may be able to generalze the Goldfeld-Stephens argument and achieve results like the
ones above, but with the average taken over an interval of $a$-values of the form $[1, x^{\epsilon}]$ .

Before proceeding, we note that there are certain numbers $a$ for which we always have
$N_{a}(x)=o(x)$ . Namely if $a$ is anontrivial power, or if $a$ is asquare $\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}-1$ or asquare
times $\pm 2$ , then $N_{a}(x)=\mathrm{o}(\mathrm{x})$ . To get the idea of this, consider for example the case of
$a=2$ , which is not exceptional at all when one considers prime moduli, but is exceptional
for composite moduli. For all odd numbers $n$ but for aset of density 0, the highest power
of 2which divides an order of an element in $(\mathrm{Z}/n\mathrm{Z})^{*}$ , as before call it $2^{\lambda_{2}}$ , has $\lambda 2\geq 3$ .
(That is, almost aU numbers are divisible by aprime that is 1 $(\mathrm{m}\mathrm{o}\mathrm{d} 8)$ . ) If $p|n$ where
$p\equiv 1$ $(\mathrm{m}\mathrm{o}\mathrm{d} 2^{\lambda_{2}})$ (at least one such prime must divide $n$), then necessarily, since $p\equiv 1$

$(\mathrm{m}\mathrm{o}\mathrm{d} 8)$ , we have that 2is aquadratic residue modulo $p$ . Thus, $2^{\lambda_{2}}$ cannot divide the order
of 2in $(\mathrm{Z}/n\mathrm{Z})^{*}$ and so 2cannot be aprimitive root modulo $n$ . The number of exceptional
numbers $n\leq x$ where this argument is not valid is $\ll x/(\ln x)^{1/4}$ , which is $o(x)$ as claimed.

Let $\mathcal{E}$ denote the set of integers $a$ such that either $a$ is anontrivial power, or $a$ is
asquare times -1 or asquare times $\pm 2$ . Thus, if $a\in \mathcal{E}$ , then $N_{a}(x)=o(x)$ . The set
$\mathcal{E}$ should then stand as acandidate for the exceptional set in ageneralization of Artin’s
conjecture for composite moduli.

But beyond this exceptional set, the first author in [9] was able to show that for any
integer $a$ , we have

$\lim\inf N_{a}(x)=0\underline{1}$ . (1)
$xarrow\infty x$

Moreover, this result was obtained on aset of real numbers $x$ that is independent of the
choice of $a$ , in some sense. That is, there is an unbounded set $S$ of positive reals such that
for every integer $a$ ,

Jim $\underline{1}_{N_{a}(x)=0}$.
$xarrow\infty,x\in SX$

So, we definitely do not have $Na(x)\sim B(a)x$ for apositive number $B(a)$ , not for any
integer $a$ .

With these thoughts in place, the first author in [7] made the conjecture that if $a$ is a
fixed integer not in $\mathcal{E}$ , then there is apositive number $B(a)$ with

lm $\sup$
$\underline{1}N_{a}(x)=B(a)$ .

$xarrow\infty x$

Recently, see [11], we have been able to prove this conjecture, under assumption of the
GRH. In fact, we have been able to show that there is an unbounded set $S’$ of positive
reals and apositive constant $c$ such that for each integer $a\not\in \mathcal{E}$ ,

$\lim_{xarrow\infty},\sup_{x\in S’}\frac{1}{x}N_{a}(x)\geq c\frac{\varphi(|a|)}{|a|}$ . (2)

One might ask about the weak Artin conjecture for composite moduli. Actually on
this question, it is indeed possible to unconditionaly prove that there are infinitely many
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$n$ with primitive root $a$ for many values of $a$ . For example, take $a=2$ . We have that 2
is aprimitive root for all of the numbers $3^{j}$ . I $\mathrm{n}$ general, if $a$ is aprimitive root for $p^{2}$ ,
where $p$ is an odd prime, then $a$ is aprimitive root for $p^{j}$ for every $j$ . Other examples:
Any number $a\equiv\pm 3$ $(\mathrm{m}\mathrm{o}\mathrm{d} 8)$ is aprimitive root for all of the numbers $2^{j}$ . What is still
unsolved, and may be tractable without the GRH: Given an integer $a$ that is not asquare
$\mathrm{n}\mathrm{o}\mathrm{r}-1$ , are there infinitely many squarefree integers $n$ with primitive root $a$?

Local densities and astronger conjecture
Let us first consider an easier question. Given afixed prime $q$ and afixed integer

$a\not\in \mathcal{E}$ , what is the distribution of the set of natural numbers $n$ coprime to $a$ such that the
power of $q$ in the order of $a$ in the group $(\mathrm{Z}/n\mathrm{Z})^{*}$ is as large as possible over all elements
in the group? Say the number of such integers $n\leq x$ is N%{x). This problem, see [11], can
be analyzed unconditionally, giving

$N_{a}^{q}(x)=(1+o(1)) \frac{\varphi(}{1}\frac{1}{a}\frac{a|)}{1}x(1-F_{q}(x))$ ,

where

$F_{q}(x)= \sum_{j=0}^{\infty}(\exp(-(\frac{1}{\varphi(q^{j})}-\frac{1}{q^{j+1}})\ln\ln x)-\exp(-\frac{1}{\varphi(q^{j})}\ln\ln x))$ .

As with the coin-flip problem, the density $1-F_{q}(x)$ does not tend to alimit as $xarrow\infty$ .
It is possible to show that

$\lim_{xarrow}\inf_{\infty}F_{q}(x)\sim\frac{1\mathrm{n}q}{q^{2}}$ , $\lim_{xarrow\infty}\mathrm{s}\iota 1\mathrm{p}\Gamma_{q}\sqrt(x)\sim\frac{1}{eq}$ ,

as $qarrow\infty$ . By choosing asequence of $x$ values where $F_{q}(x)\gg 1/q$ occurs for many small
primes $q$ , it is possible to prove (1). It is also possible to choose asequence of x-values
where $F_{q}(x)\ll 1/q\ln q$ for most small primes $q$ , but this is not sufficient for (2), since
larger primes $q$ can spoil the result. To show that larger primes usually do not pose too
great an influence, the GRH comes into play.

Let

$F_{q}= \lim_{xarrow}\inf_{\infty}F_{q}(x)=t>0\inf_{j}\sum_{=-\infty}^{-}\frac{\exp(t/q^{j+1})-1}{\exp(t/(q^{j}-q^{j-1}))}\infty$ . (3.)

(Notice that the function of $t$ is invariant under $t\vdash+tq.$ ) It seems reasonable to conjecture
that the upper density $B(a)$ may be taken as $\alpha\varphi(|a|)/|a|$ , where

$\alpha:=\prod_{q}(1-4)$
$\acute{\tilde{\prime}}$. 0.326,

aconjecture made in [11]. That is, it is conjectured that for every integer $a$ not in $\mathcal{E}$ ,

$\lim_{xarrow}\sup_{\infty}\frac{1}{x}N_{a}(x)=\alpha\frac{\varphi(|a|)}{|a|}$ , (4)
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and that this $\lim\sup$ is attained on aset of positive reals independent of the choice of $a$ .
Note that for the number $c$ in (2), we do have $c\leq\alpha$;in fact this is unconditional. That
is, for every integer $a\neq 0$ ,

$\lim_{xarrow}\sup_{\infty}\frac{1}{x}N_{a}(x)\leq\alpha\frac{\varphi(|a|)}{|a|}$ .

Let $t_{q}$ be avalue of $t$ in $[1, q)$ where the infimum in (3) occurs. Then $t_{q}=\ln q+$

$\ln$ $\ln$ $q+o(1)$ as $qarrow\infty$ . If $xarrow\infty$ in such away that the ffactional part of $\mathrm{h}\ln\ln x/\ln q$

tends to the fractional part of In $t_{q}/\ln q$ , then $F_{q}(x)arrow F_{q}$ . Part of the problem in showing
the conjecture (4) is to show that there is an unbounded sequence of values of $x$ such that
simultaneously, for all small primes $q$ , the fractional part of In In $\mathrm{h}$ $x/\ln q$ approaches the
ffactional part of in $t_{q}/\mathrm{h}q$ . That such asequence of $x$-values exists follows from Schanuel’s
conjecture in transcendental number theory. Indeed, from this conjecture, it follows that if
$q_{1}$ , $\ldots$ , $q_{k}$ are distinct primes, then the real numbers $\ln q_{1}$ , $\ldots$ , $\ln q_{k}$ are algebraicaly inde-
pendent. It would follow that the real numbers $1/\ln q_{1}$ , $\ldots$ , $1/\ln q_{k}$ are linearly indepen-
dent over the rationals, allowing simultaneous diophantine approximation of the quantities
In In In $x/\ln q_{1}$ , $\ldots$ , In In In $x/\ln q_{k}$ modulo 1. However, even with Schanuel’s conjecture and
the GRH, there still seems to be some difficulties with the stronger conjecture.

Perhaps somewhat more tractable may be the conjecture ffom [9] that for afixed
integer $a_{0}$ not in $\mathcal{E}$ , the individual count $N_{a_{\mathrm{O}}}(x)$ is asymptotically equal to the average
count over all integers $a$ in $[1, x]$ . That is, as $xarrow\infty$ ,

$N_{a_{0}}(x)=(1+o(1)) \frac{1}{x}\sum_{1\leq a\leq x}N_{a}(x)$ .

We close with another conjecture that is perhaps tractable:

$\lim_{xarrow}\sup_{\infty}\frac{1}{x^{2}}\sum N_{a}(x)=\frac{6\alpha}{\pi^{2}}$ .
l\leq a\leq エ
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