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UNIFORM CONVEXITY PROPERTIES
FOR HYPERGEOMETRIC FUNCTIONS

NAK EuN CHO, SOON YOUNG W00 AND SHIGEYOSHI OWA

ABSTRACT. The purpose of the present paper is to give a sufficient condition for a
(Gaussian) hypergeometric function to be uniformly convex of order a which is also
necessary condition under additional restrictions. Similar results for the corresponding
subclasses of starlike functions are also obtained.. Furthermore, we examine an integral -
operator related to the hypergeometric function.

1. Introduction

Let A be the class conéisting of functions of the form

f(2)=z+ Z‘anz” | | (1.1)

n=2

that arc analytic in the open unit disk U = {2 : |z| < 1}. Let S, 8*(a) and K(a)
denote the subclasses of A consisting of univalent, starlike and convex functions of
order a, respectively. For convenience, we write $*(0) = S* and K(0) = K (see, e.g.,
Srivastava and Owa [11]).

Motivated by geometric considerations, Goodman [3,4] introduced the classes UCV
and UST of uniformly convex and starlike functions. Ronning [7](also, see [5]) gave
a more applicable one variable analytic characterization for UCV. That is, a function
f of the form (1.1) is in CV if and only if

L0 |21
Re {1 + 2

f'(z) f'(2)
We note [3] that the classical Alexander’s result, f € K & zf’ € §*, does not hold

between the classes UCV and UST. On later, Ronning [8] introduced the class S,
consisting of functions such that f € UCV & zf' € Sp. And also in [7], Ronning

(z €l).
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generalized the classes 1/CV and S, by introducing a parameter « in the following
way.

Definition. A function f of the form (1.1) is in S,() if it satisfies the analytic
characterization

zf'(2) } zf'(2)
Re{ —~ -a} > -1
{ O R P
and f € UCY(a), the class of uniformly convex functions of order e, if and only if
2f' € Sp(a).

For the class Sy(a), we get a domain whose boundary is a parabola with vertex
w = (1+a)/2. Also, we note that Sp(a) C S* forall -1 < a < 1, S,(a) ¢ S for
a < -1 and UCV(a) C K for a > -1.

We denote by 7 the subclass of S consisting of functions of the form

(ceR;z €U).

f(@)=2=) aaz" (an > 0) (1.2)
n=2
and let UCT (o) =UCV(a) NT and S,T(a) = Sp(a) N 'T.
Let F(a,b;c; z) be the (Gaussian) hypergeometric function defined by
o0
(@)n(b)n
F(a,bjc;z) = ey i
( [ i | ) . ,‘2-0 (c)ﬂ(l)n )

where ¢ # 0, -1, —2; +++ and (A), is the Pochhammer symbol defined by
1, ifn=0
(A)n = { .
AA+1) - (A+n-1), fneN={1,2,---}.

We note that F'(a, ; c; 1) converges for Re(c—a —b) > 0 and is related to the Gamma
functions by

oy D (c=-a-1b)
Fla,bici1) = 52— a)(c—0b)

Merkes and Scott (6] and Ruscheweyh and Singh [9] used continued fractions to
find sufficient conditions for zF(a,b;c;z) to be in S*(a) (0 € @ < 1) for various
choices of the parameters a, b and c¢. Carlson and Shaffer [2] showed how some
convolution results about $*() may be expressed in terms of a linear operator acting

on hypergeometric functions. Recently, Silverman [10] gave necessary and sufficient
conditions for zF'(a, b;c; z) to be in §*(a) and K(a).

(1.3)
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In the present paper, we determine sufficient conditions for z2F'(a, b;c; z) to be in
Sp(a) and UCV(a) and also give necessary and sufficient conditions for zF'(a, b; c; z) to
be in S, 7T (a) and UCT («) with appropriate restrictions on a, b and ¢. Furthermore,
we consider an integral operator related to the hypergeometric function.

2. Conditions for uniform convexity

To establish our main results, we need the following lemmas due to Bharati et
al.[1]. '

Lemma 2.1. A sufficient condition for f of the form (1.1) to be in Sp(a) (-1 <
a < 1) is that : |

i(2n—1—a)|an| <1l-g, (2.1)

n=2

and a necessary and sufficient condition for f of the form (1.2) to be in ST () s
that the condition (2.1) is satisfied.

Lemma 2.2. A sufficient condition for f of the form (1.1) to be inUCV(a) (-1 <
a < 1) is that

i n(2n—-1-a)la,| <1-a, (2.2)

n=2
and a necessary and sufficient condition for f of the form (1.2) to be in L{CT(a) 18
that the condition (2.2) is satisfied.
By using Lemma 2.1 and Lemma 2.2, we now derive

Theorem 2.1. Ifa,b > 0 and ¢ > a+ b+ 1, then a sufficient condztzon for
2F(a,b;c;z) to be in S (a) (-1 <a<1) is that

I'{l(c—a-b) 2ab
(C‘G)P(C“ )(1+(1—-a)(c—a-b-—1)>32' (2.3)

Condition (2.8) is necessary and sufficient for Fy defined by Fy(a,b;c;2) = 2(2 —
F(a,b;c; 2)) to be in S,T(a).

Proof. Since

ne— b n-=1 _n
2F(a,b;c;2) = 2 4+ Z —__Z))n—;((lgn-i 2",

according to Lemma 2.1, we need only to show that

nn2
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S on 1 -y Dectlact , _

n=2 ( )"‘l(l)ﬂ—l -
Now
Yo -1-age-ay Sl ra-0 ) (it 6o
n=2 n-1 n- n=1 n n oy n

Noting that (A\)n = A(A + 1)n-1 and then applying (1.3), we may express (2.4) as

2ab = (@ + 1)n-1(b+ 1)nas (a),,(b),.
1-
¢ '; (e4+1)p-1(1)pn-1 +( nzl
_2abT(c+1)Il(c—a-b-1) _ ( (c)I‘(c—-a—b)_
= T Te-ote=y TN\ T ares 5 "1
_Tol(c-a-1b) 2ab _ :
" T(c-a)l(c=1b) c-a—b-—1+1 a)-(1-a)
But this last expression is bounded above by 1 — « if and only if (2.3) holds. Since

= a T4 = b = n
Fy(a,b;c;2) = z - Z %—;((I;—Iz ,
n=2 ne— n-—

the necessity of (2.3) for F; to be in S,7 () follows from Lemma 2.1.

Theorem 2.2. Ifa,b> -1, ab < 0 and ¢ > 0, then a necessary and sufficient
condition for 2F(a,b;c; z) to be in $,T(a) (-1 € @ < 1) is that

c>a+b+1- 23"0 (2.5)
Proof. Since |
zF(a,b;c;z) = z} ab nz-; (a(‘:i);)-:-(:(';)i)_nl-? n . 6)
- 'abl Z a(:i f)-,.z_:(;r),l,)rz " |
according to Lcmmq 2.1, we must show that
;(271 ~1-0) (a(ji){‘)'n 2_(:(‘1*)1)_"1'2 <|=la-a (27)
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Now

f:@(n +2)-1-aq) (@+Da(b+1)n

oy (c4+ Dn(1)n+i
e a+l n b+1)'ﬂ a)n b)l
Z__% er.m. T4- ; CRON
_STc+ ) (c=a-b-1) ¢ (T(e)T(c—a-1D)
= G- atey +‘1“")‘B(r(c—a)< %) 1)'

Hence (2.7) is equivalent to

I'(c+1)I(c—a-b-1) c—a-b-1
I'(c-a)l(c~b) (2+ (1-a) ab )

<(l=-a) <T§a+£g)=0.

Thus (2.8) is valid if and only if 2+ (1 — @)(c = a — b—1)/(ab) < 0 or, equivalently,
c2a+b+1-2ab/(1-a).

(2.8)

Our next two theorems will parallel Theorem 2.1 and Theorem 2.2 for the uni-
formly convex case.

Theorem 2.3. Ifa,b > 0 and ¢ > a + b+ 2, then a sufficient condition for
2F(a,bc; 2) to be in UCV(a) (=1 € @ < 1) is that

R (et (23 (etim) )52

Condition (2.9) is necessary and sufficient for Fy(a,b;c; z) = 2(2 F(a,b;c; 2)) to be
inUCT (a).

Proof. 1In view of Lemma 2.2, we need only to show that

in(2n—1-a)(—@-ﬂ@3:l<l—a. ,

= (On-1(1)n-1 =

Now
S n n 1= oy (@nt1(B)ns1
D GGy

@B o @ Ban
_2;( +2)2 O - 1+ ),.Z-o +2)() NE

(2.10)
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Writing n + 2 = (n + 1) + 1, we have

(@)n+1(D)ns1 )at1(Bnt1 | = (@)nt1(B)nst1
;(n ) O s @nerDair Z DD ,;o (n+1(1)n+1 (211)
and
- 2 (@)n+1(8)n41
2 s |
o 4 1) @41 ()1 (a) n+1(b)n+1 (@)n+1(0)nt1
B nzzo( ) e (©)n+1(1)n * 2;_.‘, (©)n+1(1)n nz—o (©)n+1(D) 1 (2.12)
_ = (9)nt1(B)ns1 a)n+1(b)n+1 (@)n(b)n
- nEﬂ ()n+1(1)n-1. * Snz,go (€)ns1(1)n nz_l (©)n(D)n’
Substituting (2.11) and (2.12) into the right side of (2.9), we obtain
(a)n+2(b n+2 (@) n41(B)ns1 (b)n+1 (@)nt1(B)ntr
2;) g nz-% o +(1-a) ; BTG (2.13)

Since (a)n4+k = (a)k(a + k)n, we write (2.13) as

2(a)e(B)2 T(c+2)I(c—a-b-2) ab(c+ DI ce—a-b-1)
(02)2 - Tle—al(c=b) T (=a)7 T(c - a)I'(c - b)

I(c)'(c—a-1b)
t-e) (I‘(c— AT(c—1) ~ 1) ‘

By a simplification, we see that the last expression is bounded above by 1 — o if

and only if (2.9) holds. That (2.9) is necessary for F; to be in UCT (a) follows from
Lemma 2.2.

Theorem 2.4. Ifa,b> -1, ab < 0 andc > a + b+ 2, then a necessary and
sufficient condition for zF(a,b; ¢;z) to be in UCT () is that

2(a)2(b)2 + (5~ a)ablc—a-b-2)+(1-a)(c=a-b-1)>0 (2.14)
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Proof. Since zF has the form (2.6), we see from Lemma 2.2 that our conclusion
is equivalent to

3 ni2n-1-a (@4 )n2(btnna _ ¢
2 Cn =1 =) s < Tap

Writing (n+2)(2(n+2)-1-a) =2(n+ 1)+ (3= a)(n+1) + (1 — a), we see that

- a).

(3

= . (@t Da(db+1)n
;(n+2)(2(n+2) 1-a) SR
o ()@t DaH+ D o SR (@t Db+ D)n
=22 DS, T 8 L e,

ad (@+1)n(b+ 1),
+(-9) Y T Do

2(a+1 (b+1 E(a+2 n b+2)n+(5_ )i(a+1)7t(b+l)“

c+1 (c+2)n “ = (c+1)a(l)n
n(b)n
+(1-a) b;(c)n
_ T{c+1)D(c—a-b=-2) |
= F(c—a)l"(c—b) (26 +)+1)+ (G- a)c-a-b-2)
# o emamb-ny) - B

This last expression is bounded above by (1 - a)c/|ab] if and only if |

l1-a

e+ 1)(b+1)+(5-a)c~a-b-2)+ —

which is equivalent to (2.14).

(c—a-b~1); <0,

3. An integral operator

In this section, we obtain similar type results in connection with a particular
integral operator G(a, b; ¢; 2) a,cting on F(a,b;c; z) as follows:

G(a,bjc; 2 f F(a,b;c;t)dt. (3.1)

Theorem 3.1. (i) Ifa,b>1 andc>a+b—1, then a sufficient condition for
G(a,b;c; z) defined by (3.1) to be in Sy() is that
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I(c)(c~a-b) (2_ (1+a)(c-—a-b)) + (1+a)(c-1)

Tc - a)l(c~b) @-0p-1 ) ¥ @-ne-p <207 Y

(i) Ifa,b> -1, ab < 0 and ¢ > max{0,a + b+ 1}, then G(a,b;c; z) defined by
(3.1) is in S, T (a) if and only if

I'(c+1)I'(c—a-b-1) (_2__ (1+a)(c-—a-—b—1)2) + 1+ a)(c—1),
ab

Lc~a)l(c—b) (@ =1)2(b-1), (a—1)2(b—-1); <0

(3.3)

Proof. Since

a)n—1(b)n-1 n
G(a, b;c; 2) —z+§_:2(—)n—if()Tz,

we note that

-~ "n— _a(a)ﬂ-l(b)n—l
2(2 SN WG

b)" (a) b)n
"2;1 )n(1)n (1‘+a) (Z ©nWntr )
_T(l(c—a-1) (14+a)(c=a=b)) , (1+a)(c~1)

" T(c-a)(c-b) (2_ @-1)(-1) )+ @-De-1n 1%

which is bounded above by 1 — « if and only if (3.2) holds. This completes the proof
of (i). To prove (ii), we apply Lemma 2.1 to

v B et

It suffices to show that

o a+1)po(b+1)u-
2(27& -1- a)( -’(-cj- 1)2:_:(-1)1 2<(1

Cc
—a)m.

n=2
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3 (2n+2) - 1- o)t Va1

n=0 (C+ l)ﬂ(l)ﬂ+2
(a + 1 (b4 1), b)n
B 22 (c+ 1) Dntr <Z (©)n( 1)n+1 B )
_ I‘(c+1)P(c-—a-—b—-1) (__ _(l+a)(c—a=b- 1)2)
I'(c=a)l(c-b) ab (a=1)2(b=1)2

(14 a)(c=1), ¢
t =D, =1, —d-ag
< (1 - a)ma

which is equivalent to (3.3).

Now we observe that G(a, b; ¢; z) € UCV(a)(UCT (o)) if and only if 2F(a, b;c; 2) €

Sp(@)(SpT(a)). Thus any result of functions belonging to the class S,(c)(S,T ()
about zF leads to that of functions belonging to the class UCV(a)(UCT(a)) Hence
we obtain the following analogs to Theorem 2.1 and Theorem 2.2.

Theorem 3.2. (i) Ifa,b> 0 andc > a+ b+ 1, then a sufficient condition
for G(a, b;c; z) defined by (3.1) to be in UCV(a) (—1 < o < 1) is that the inequality
(2.8) is satisfied.

(i) Ifa,b>—1,ab< 0 andc>a+b+2, then G(a,b;c;2) defined by (3.1) is in
UCT (a) (-1 € a < 1) if and only if the enequality (2.5) is satisfied.
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