Integral means of holomorphic mappings in C^n

Kazuyuki Tsurumi (東京電機大工 鶴見和之)

Tadayuki Sekine (日本大学薬 関根忠行)

Let f(z) and g(z) be holomorphic functions in the unit disk U with f(0) = g(0) = 0.

The function g(z) is said to be subordinate to the function f(z) if there exists a function $\psi(z)$ holomorphic in U such that $\left|\psi(z)\right| \leq \left|z\right|$ for $z \in U$ and $g(z) = f(\psi(z))$. Let g(z) be a holomorphic function in U. For $0 and <math>0 \leq r < 1$, let us put

$$M_p(r,\varphi) := \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| \varphi(xe^{i\theta}) \right|^p d\theta \right\}^{\frac{1}{p}}.$$

Then we have the theorem

Theorem A (The subordination theorem of Littlewood [2], p.191)

Suppose that f and g are holomorphic in U and f(0) = g(0) = 0 and that g is subordinate to f, then we have

$$M_p(r,g) \le M_p(r,f) \qquad \qquad (\ 0$$

The purpose of this note is to extend this theorem to the case of C^n .

§ 1. Preliminaries

Let us denote a point z of the sace C^n by the column vector

$$\mathbf{z} := \left(\begin{array}{c} z_1 \\ \vdots \\ z_2 \end{array}\right)$$

and z^* denotes the conjugate transposed vector of z. The norm of z is denoted by

 $||z|| := \sqrt{z^*z}$. Denoted by $B_n(r,z_0)$ the ball in C^n with radius r and center z_0 , i.e,

$$B_n(r,z_0) := \{ z \in C^n \mid |z-z_0| < r \},$$

and let $B:=B_n(1,0)$, $S(r):=\partial B_n(r,0)$ (the boundary of $B_n(r,0)$) and S:=S(r) .

For $z \in \mathbb{C}^n$, we will use the following differential forms and operators for the proof of our theorem;

$$dz = \begin{pmatrix} dz_1 \\ \vdots \\ dz_n \end{pmatrix}, \quad dz = \begin{pmatrix} d\overline{z_1} \\ \vdots \\ d\overline{z_n} \end{pmatrix}.$$

$$\omega(z) := dz_1 \wedge \cdots \wedge dz_n$$
 (n-times)

$$\eta(z) := \sum_{j=1}^{n} (-1)^{j+1} z_j dz_1 \wedge \cdots \wedge dz_{j-1} \wedge dz_{j+1} \wedge \cdots \wedge dz_n \quad \text{(Leray form)}$$

$$d \circ (z) := \frac{1}{(2i)^n} \{ \eta(z) \wedge \omega(z) + (-1)^{q(n)} \omega(z) \wedge \eta(z) \}. \ (q(n) = \frac{n(n-1)}{2})$$

Let $z = r\zeta$, r := |z| and $|\zeta| = 1$. Then we have

$$\overline{\zeta_1}d\zeta_1 + \cdots + \overline{\zeta_n}d\zeta_n + \zeta_1d\overline{\zeta_1} + \cdots + \zeta_nd\overline{\zeta_n} = 0.$$

Thus $d \sigma(z) = r^{2n-1} d \sigma(\zeta)$, and the form $d S(\zeta) := \frac{1}{v(S)} d\sigma(\zeta)$ is the normalized

rotation invariant surface measure on S, where

$$\nu(S) = \frac{2\pi^n}{(n-1)!}$$
 (the area of S).

 $d v(z) := \frac{1}{(2i)^n} \omega(z) \wedge \omega(z)$ (the volume element of C^n).

Then we get

$$d v(z) := \frac{1}{(2i)^n} \{ \eta(\xi) \wedge \omega(\xi) + (-1)^{q(n)} \omega(\xi) \wedge \eta(\xi) \} \wedge r^{2n-1} dr$$

$$= d \sigma(\zeta) \wedge r^{2n-1} dr$$

Let us set

$$\frac{\partial}{\partial z} := \left(\frac{\partial}{\partial z_1}, \dots, \frac{\partial}{\partial z_n} \right), \qquad \frac{\partial}{\partial z^*} := \begin{pmatrix} \frac{\partial}{\partial \overline{z_1}} \\ \vdots \\ \frac{\partial}{\partial \overline{z_n}} \end{pmatrix}$$

$$\Delta := 4 \frac{\partial^2}{\partial z^* \partial z} = 4 \sum_{j=1}^n \frac{\partial^2}{\partial z_j \partial \overline{z_j}}$$

$$H := \frac{\partial^{2}}{\partial z^{*} \partial z} = \begin{pmatrix} \frac{\partial^{2}}{\partial \overline{z_{1}} \partial z_{1}} & \cdots & \frac{\partial^{2}}{\partial \overline{z_{1}} \partial z_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial^{2}}{\partial \overline{z_{n}} \partial z_{1}} & \cdots & \frac{\partial^{2}}{\partial \overline{z_{n}} \partial z_{n}} \end{pmatrix}$$

Let u(z) be a real function in a domain D in \mathbb{C}^n . The function u(z) is said to be subharmonic in D if the following three conditions hold:

- (1) $-\infty \le u(z) < \infty$
- (2) u(z) is upper semicontinuous in D
- (3) For any point $z_0 \in D$, we can take an r > 0 such that

$$B(r,z_0) \subset D$$
 and

$$u(z_0) \leq \frac{1}{\nu(S)} \int_{S(\mathbf{r},z_0)} u(\zeta) d\sigma(\zeta)$$

Suppose that u(z) is a function of the class C^2 in D. Then

$$u(z)$$
 is $\{\begin{array}{c} \text{subharmonic} \\ \text{plurisubharmonic} \end{array}\}$

$$\begin{cases} \Delta u = 4 \frac{\partial^2 u}{\partial z^* \partial z} \ge 0 \\ H(u) = \frac{\partial^2 u}{\partial z^* \partial z} \text{ (complex hessian) is positive definite.} \end{cases}$$

Thus the plurisubharmonic function is subharmonic.

The mapping function f(z) from a domain in ${m C}^{m n}$ to ${m C}^{m n}$ is denoted by the column vector

$$f(z) = \begin{pmatrix} f_1(z) \\ \vdots \\ f_n(z) \end{pmatrix}.$$

The mapping f(z) is said to be holomorphic if each component functions f(z) $(j=1\cdots n)$ are holomorphic. Let $H_{n,m}$ be the family of holomorphic mappings from B_n to C_m and suppose that f(z) and g(z) are belonging to $H_{n,m}$ and that f(0)=g(0)=0.

The mapping g(z) is said to be subordinate to f(z) if there exists a holomorphic mapping $\Psi(z)$ from B_n to B_n such that $\|\Psi(z)\| \leq \|z\|$ ($z \in B_n$) and $g(z) = f(\Psi(z))$.

For a mapping $f(z) \in H_{n,m}$, we set

$$M_{p}(r,f) := \left\{ \frac{1}{\nu(S_{r})} \int_{S_{r}} |f(z)|^{p} d\sigma(z) \right\}^{\frac{1}{p}} \quad (0 < r < 1, 0 < p < \infty) .$$

§ 2. Theorems for subharmonic functions

For the ball $B_n(z_0, r) \subset \mathbb{C}^n$, let us put

$$K(\xi, z) := \frac{1}{\nu(S)} \frac{r^2 - |z - z_0|^2}{r |z - \xi|^{2n}}$$

Then the following theorems hold:

Theorem B ([3], p.32, Theorem 1.16)

Let $\varphi(z)$ be a continuous function on $S(r,z_0)$. Let us put

$$u(z) := \int_{S(r,z_0)} K(\xi,z) \varphi(\xi) d\sigma(\xi) \qquad (z \in B(r,z_0))$$

Then the function u(z) is the solution of the problem of Dirichlet for $B(r,z_0)$ with the boundary value $\varphi(z)$.

Theorem C ([3], p.52, Theorem 2.7)

Let $\varphi(z)$ be a subharmonic function on a domain D in C_n and u(z) is not equal to $-\infty$. Suppose that $B(z_0,r)\subset D$. Let us put

$$V(z) := \chi_{B(r,z_0)}(z) \int_{S(r,z_0)} K(\xi,z) \varphi(\xi) d\sigma(\xi) + \chi_{D-\overline{B(r,z_0)}}(z) u(z)$$

where χ_A denotes the characteristic function for A. Then V(x) is subharmonic in D and harmonic in $B(r,z_0)$, and we have $u(x) \leq V(x)$ in $B(r,z_0)$.

Main Theorem. Let $\varphi(z)$ be a subharmonic function in B and let $\psi(z)$ be a holomorphic mapping from B to B such that $\|\Psi(z)\| \leq \|z\|$. Then we have

$$\int_{S_n(r,0)} \varphi(\psi(z)) d\sigma(z) \leq \int_{S_n(r,0)} \varphi(z) d\sigma(z)$$

As the corollary of our theorem , we obtain the Subordination Theorem of Littlewood for $oldsymbol{C}^n$.

Corollary 1. Let f and g be holomorphic mappings of $H_{n,m}$ such that f(0)=g(0)=0. Suppose that g is subordinate to f, then we have

$$M_p(r,g) \le M_p(r,f)$$
 (0 \infty, 0 \le r < 1)

From Corollary 1, we get the following:

Corollary 2. Let the functions f(z) and g(z) be the same as in Corollary 1, then we have

$$\int_{B_n} \|g(z)\|^p dv(z) \le K \int_{B_n} \|f(z)\|^p dv(z)$$

where K is a constant.

References

- [1] L.A.Aizenberg and Sh.A.Dautov: Differential Forms, Orthoganal to Holomorphic Functions on Forms, and their Properties, Translations of Mathematical Monographs, vol.56 A.M.S (1983)
- [2] P.L.Duren : Univalent Functions, Grundlehren der mathematischen Wissenschaften 259. Springer(1983)
- [3] W.K.Hayman and P.B.Kennedy: Subharmonic Functions, vol.1.Acadenic Press(1976)
- [4] W.K.Hayman: Subharmonic Functions, vol.2. Academic Press(1989)
- [5] S.G.Krantz: Function Theory of Several Complex Variables, John Wiley and Sons (1982)
- [6] W.Rudin: Function Theory in the Unit Ball of C_n , G.M.W.241.Springer Verlag (1980)
- [7] P.Lelong: Plurisubharmonic functions and positive differential forms, Gordon and Breach Scientific Publishers, New York (1968)