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Abstract

In this paper we intriduce two novel subclasses Vj(p; 1) and Ws(p; u) of an-
alytic and p-valent functions which is defined by using the fractional calculus
(fractional derivatives). We obtain a sufficient condition for a function to belong
to each of these subclasses and investigate the charactristics of functions in these
subclasses. Geometric properties of multivalent functions (p-valently close-to-

convex, p-valently starlike and p-valently convex functions) are also considered.
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1. Introduction and Definitions

Let pe N ={1,2,3,..} and T(p) denote the class of functions f(z) of the form

f(z) =2 + i axz*, (1.1)

k=p+1

being analytic and p-valent in the open unit disk
U={z:2z€C and |z| < 1}.

A function f(z) € T(p) is said to be p-valently starlike in U, if it satisfies the

inequality:
Re {zf'(z)} >0 (zel). (1.2)

f(2)
A function f(2) € T(p) is said to be p-valently conver in U, if it satisfies the
inequality:

zf”(Z)}
Re<l1+—=—+=7>0 z€U). 1.3
{1+ (z eu) 13
Further, a function f(z) € 7(p) is said to p-valently close-to-convezin U, if it satisfies
the inequality:

!
éRe{f (z)} S0 (zel). (1.4)
(See, for details, [3], [5], and [13] for the above definitions.)

The following definitions of fractional calculus will be required in our present inves-
t1gat10n

Definition 1. (cf., [10] and [12]; see also [2]) Let a function f(z) be analytic in
a simply-connected region of the z-plane containing the origin. The fractional integral
of order u (u > 0) is defined by

DS} = s [ 1€ - 9, (15)

and the fractional derivative of order u (0 < p < 1) is defined by

DS = ez o 1€ - 74, (16)
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where the multiplicity of (z — €)*~! involved in (1.5) and that of (z —&)™* in (1.6)
are removed by requiring log(z — &) to be real when z — ¢ > 0.

Definition 2. (cf., [10] and [12]; see also [2]) Under the hypotheses of Definition 1,
the fractional derivative of order m + u (m € Ny = N U {0};0 < p < 1) is defined by

DI*{1(2)} = - DS ()} (17)

Now, by making use of the fractional derivative operator DJ**#, we define two im-

portant families Vs(p; 1) and Ws(p; u) in T(p), where 6 € R\ {0}, p € N and
0<u<l. '

Definition 3. Let § € R\{0},p € N and 0 < u < 1. Then a function f(z) € T(p)
is said to belong to Vs(p; u), if it satisfies the inequality:

DFFRN\'
( Dwu)) o=

where the value of (2D1*#f(z)/D¥f(2))’ is taken its principal value.

<(p-u (zeu), (1.8)

Definition 4. Let § € R\ {0}, p € M and 0 < u < 1. Then a function f(z) € T(p)
is said to belong to Ws(p; u), if

wep oo () rp+1) \° F(p+1) ‘ 2
(#esta)' - (s 1))‘<(F(P—u+1)> et {19

by taking the principal value for (z#=?D¥ f(z))°.

Note that functions in V;(p;0) are p-valently starlike in U (e.g. [9]). See, for
examples, the papers involving the fractional calculus and/or certain inequalities, [1],
[4], (6], (7], and [11]. In [6, 7], Irmak and Cetin studied starlikeness and convexity
for multivalent functions involving inequalities. In this paper we investigate various
interesting properties for Vj(p;u) and Wjs(p; u) associated with fractional calculus
and also extend the results of Irmak and Cetin ([6, 7]).

2. Main Results

Now, we mention the following result which is used in the sequal.



Lemma (cf., Jack [8]; see also Miller and Mocanu [9]). Let w(z) be an analytic
function in the unit disk U with w(0) = 0 and let 0 < r < 1. If |w(z)| attains at 2o its
mazimum value on the circle |z| = r, then

2w (20) = cw(z) (¢ 2> 1). (2.1)

Making use of this lemma, we first give the following theorem:

Theorem 1. Let § € R\ {0}, p€ N and 0 < u < 1. If a funtion f(2) € T(p)
satisfies the inequality:

Di* f(z)  D;*f(2) < 1/(26) whend >0
Re{1+z( Hf(z)  Dif(2) )}{ > 1/(26) whend <0
then f(z) € Vs(p; u).

Proof. First of all, Definition 1 readily provides us the following fractional derivative
formula for a power function :

} (zel), (2.2)

Dé{z"} = ﬁg—(%-—gi—)l—)-z"‘“ (k>-10<p<). (2.3)
Define the function w(z) by
2Dy f(2)\ _ ‘ _
(D—f(—)—) = - Wll+u)] (el (2.4

Then it follows from (2.3) that w(2) is an analytic function in U and w(0) = 0. The

logarithmically differentiation of (2.4) implies that

- Di*ef(z)  Di*rf(2)\| _ 1 _zw'(2)
G(z) = {1+z(' %) " D@ )} 5 T w(e) (2.5)

Now, suppose that there exists a point zo € U such that

max lw(z)| = lw(z) =1  (w(z0) # —1).
<lzol
Then, applying Jack’s Lemma, we can write

zow'(z9) = cw(2p) (c>1)

and w(zo) = e® (6 # 7). Thus, from (2.5) we obtain

Re(G(x)} = 3 Re (L(_))

14+ 'lU(Zo)
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_c > % whend >0 (26)
T 26 <& whend<0 |’ '
(

where § # 7 and ¢ > 1. Therefore, (2.6) contradict our condition (2.2), and we conclude
from the definition (2.4) that

D+ é
Gﬁﬁé@)—@—mf

which completes the proof of Theorem 1.

= (p — p)’lw(z)| < (p — w)°,

Theorem 2. Let § € R\ {0}, p€ N and 0< pu< 1. If a funtion f(z) € T(p)
satisfies the inequality:

Re (M) { <p-p+1/(26) whend>0

Dz f(2) >p—pu+1/(26) whend <0 } (z € ), (2.7)

then f(z) € We(p; ).

- Proof. Put ‘
_ 5 T'(p+1) )"

2#PDEf(2)) = | =———= | 1+ w(z z€U), 2.8
(021 = (o ily) v ew) 28)
then, using the same technique as in the proof of Theorem 1, we get the desired result.

Many interesting results involving analytic and multivalent functions can be ob-
tained by the use of Theorem 1 and Theorem 2 together with definitions (1.8) and
(1.9) (respectivelly) and by choosing suitable values of 6, u and p. Now, we are giving
some of the important results for the analytic and geometric function theory (cf., [13]):

Letting d =1 in Theorem 1, we have

Corollary 1. Let pe N and 0 < u < 1. If a funtion f(z) € T(p) satisfies the

inequality: \
D*f(z) _ D;*f(2) 1
%e{1+z(Di+“f(z) = DF () )} <3 (z e l), (2.9)
then f(2) € Vi(pi ).

Making use of Theorem 2 and [2, Corollary 1], we obtain



Corollary 2. Let pe N and 0 < p < 1. If a funtion f(z) € T(p) satisfies the
inequality:

2D f(2) 1
Re (W) <p—-u+§ (ZEU), (210)

then f(z) € Wi(p;u) and

Dy~ f(2) F(p+1) & 2(p— p+1)(=1)*
§Re{ ZP—h+l }>P(p—u+2) (1"'"2::1 p—u+k+1

) (zelU). (2.11)

The estimate (2.11) is sharp in general.

Proof. If we take § = 1 in Theorem 2, then the condition (2.10) implies f(z2) €
Wi (p; ). Further, from (1.9) it is easily shown that

Re {Qﬁ"ﬁz—)—} > 0.

2P~
Therefore, by virtue of [2, Corollary 1], we obtain the result.

Letting u =0 in Corollaries 1 and 2 (or, § —1 = =0 in Theorems 1 and 2), we
get already known results as indicated.

Corollary 3. (cf, [6, p. 457, Corollary 2] ; see also [7, p. 74, Eq. (2.15), 2.2.
Corollary]) Let p € N. If a funtion f(z) € T(p) satisfies the inequality:

%e{1+z(f?’:—(%—-§-'-(%)-)} <% (z e U), (2.12)

then f(z) is p-valently starlike in U.

Corollary 4. (cf., [6, p. 457, Corollary 1]) Let p € N. If a funtion f(z) € T(p)
satisfies the inequality:

@OV 1
ERe{ ) } <pt3 (z elU), (2.13)
then
?Re{fgl} >0 (z e U). | (2.14)

Letting u — 1-— in Corollaries 1 and 2 (or, 4 — 1— and § =1 in Theorems 1
and 2), we have
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Corollary 5. (cf., (6, p. 458, Corollary 4] ; see also [7, p. 75, Eq. (2.17), 2.3.
Corollary]) If a funtion f(z) € T(p) satisfies the inequality:

wefins (B SO L Geupeniay, o

then f(z) is p-valently convez in U.

Corollary 6. (cf,, [2, Corollary 1] and [6, p. 458, Corollary 3]) Letp e N. If a
funtion f(2) € T(p) satisfies the inequality:

2f'(z)| _ -1 | T
§Re{ ) }< P-3 (z e U), | (2.16)
then f(z)' i8 p-balently close-to-convex« in U and | |
?Re{f( )}>1+2 Z (z e lU). : - (2.17)
k=1 P v ; o
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