ON SOME PROPERTIES OF ANALYTIC FUNCTIONS

MAMORU NUNOKAWA [布川護] (群馬大学)

ABSTRACT. Let p(z) be analytic in |z| < 1, p(0) = 1, $p(z) \neq 0$ in |z| < 1 and suppose that |p(z)| takes its maximum and minimum value at points $z = z_0$ and $z = z_1$ respectively on the closed disc $|z| = |z_0| = |z_1| \leq r$ (0 < r < 1). Then we have

$$\frac{z_0p'(z_0)}{p(z_0)}=m\geq 0$$

and

$$\frac{z_1p'(z_1)}{p(z_1)}=n\leq 0.$$

1. Introduction.

In [2], Jack proved the following theorem.

Theorem A. Let w(z) be analytic in $\mathbb{E} = \{z : |z| < 1\}$ and suppose that w(0) = 0. If |w(z)| takes its maximum value on the circle |z| = r < 1 at a point $z = z_0$, then we have

$$\frac{z_0w'(z_0)}{w(z_0)}=k$$

where k is real number and $k \geq 1$.

Fukui and Sakaguchi [1] generalized Theorem A and gave a simple and geometrical proof.

Furthermore, Miller and Mocanu [3] generalized Theorem A and obtained the following theorem.

Theorem B. Let $w(z) = \sum_{k=n}^{\infty} a_k z^k$ be analytic in \mathbb{E} , $n \in \mathbb{N}$, $w(z) \not\equiv 0$. If $z_0 = r_0 e^{i\theta_0}$ $(0 < r_0 < 1)$ and

$$|w(z_0)|=\max_{|z_0|\leq r_0}|w(z)|$$

then

$$\frac{z_0w'(z_0)}{w(z_0)}=m$$

and

$$1 + \operatorname{Re} \frac{z_0 w''(z_0)}{w'(z_0)} \ge m$$

where $1 \leq n \leq m$.

2000 Mathematics Subject Classification: Primary 30C45.

MAMORU NUNOKAWA

It is a purpose of the present paper to obtain some similar but a little different results from Theorem A and B.

2. MAIN RESULT.

Theorem. Let p(z) be analytic in \mathbb{E} , p(0) = 1, $p(z) \neq 0$ in \mathbb{E} and suppose that

$$\max_{|z| \le r} |p(z)| = |p(z_0)|$$

and

$$\min_{|z| \le r} |p(z)| = |p(z_1)|$$

where 0 < r < 1 and $|z_0| = |z_1| = r$. Then we have

$$\frac{z_0p'(z_0)}{p(z_0)}=m\geq 0,$$

$$\frac{z_1p'(z_1)}{p(z_1)}=n\leq 0,$$

$$1 + \operatorname{Re} \frac{z_0 p''(z_0)}{p'(z_0)} \ge m$$

and

$$1 + \operatorname{Re} \frac{z_1 p''(z_1)}{p'(z_1)} \ge n$$

where m and n are real, $0 \le m$ and $n \le 0$.

Proof. Let us put

$$g(z) = \left(\frac{R+1}{R-1}\right)\left(\frac{R-p(z)}{R+p(z)}\right) = A\left(\frac{R-p(z)}{R+p(z)}\right), \quad g(0) = 1$$

where $R = |p(z_0)|$ and A = (R+1)/(R-1). Then we have

$$p(z) = R\left(\frac{A - g(z)}{A + g(z)}\right).$$

When |p(z)| takes its maximum value at a point $z=z_0$, then we have $\operatorname{Re} g(z)>0$ for $|z|<|z_0|$ and $\operatorname{Re} g(z_0)=0$. Putting $|z|=|z_0|$, $z=|z_0|e^{i\theta}$ and $0\leq\theta\leq 2\pi$, we have

$$\frac{zp'(z)}{p(z)} = \frac{d \arg p(z)}{d\theta} - i \frac{d \log |p(z)|}{d\theta}$$

$$= -\frac{zg'(z)}{A - g(z)} - \frac{zg'(z)}{A + g(z)}$$

$$= -\frac{2zg'(z)}{A^2 - g(z)^2}.$$
(1)

Therefore we have

$$\begin{split} \frac{z_0 p'(z_0)}{p(z_0)} &= -\frac{2z_0 g'(z_0)}{A^2 - g(z_0)^2} \\ &= \left(\frac{d \arg p(z)}{d\theta}\right)_{z=z_0} - i\left(\frac{1}{|p(z)|}\right) \left(\frac{d|p(z)|}{d\theta}\right)_{z=z_0} \\ &= \left(\frac{d \arg p(z)}{d\theta}\right)_{z=z_0} = m \ge 0 \end{split}$$

where m is a real and $0 \le m$. By logarithmic differentiation of (1), we have

$$1 + \frac{zp''(z)}{p'(z)} = \frac{zp'(z)}{p(z)} + 1 + \frac{zg''(z)}{g'(z)} - \frac{2zg'(z)g(z)}{A^2 - g(z)^2}.$$

Then we have

$$1 + \operatorname{Re} \frac{z_0 p''(z_0)}{p'(z_0)} = \operatorname{Re} \frac{z_0 p'(z_0)}{p(z_0)} + 1 + \operatorname{Re} \frac{z_0 g''(z_0)}{g'(z_0)} - \operatorname{Re} \frac{2z_0 g'(z_0) g(z_0)}{A^2 - g(z_0)^2}$$
$$= m + 1 + \operatorname{Re} \frac{z_0 g''(z_0)}{g'(z_0)} - m \operatorname{Re} g(z_0)$$
$$= m + 1 + \operatorname{Re} \frac{z_0 g''(z_0)}{g'(z_0)}.$$

From the hypothesis, we have

$$\operatorname{Re} g(z) > 0 \quad \text{for } |z| < |z_0|$$

and

$$\operatorname{Re} g(z_0) = 0,$$

then from the geometrical property of g(z), we have

$$1 + \operatorname{Re} \frac{z_0 g''(z_0)}{g'(z_0)} \ge 0.$$

This shows that

$$1 + \operatorname{Re} \frac{z_0 p''(z_0)}{p'(z_0)} \ge m.$$

On the other hand, let us put

$$h(z) = \left(\frac{p(z) - l}{p(z) + l}\right) \left(\frac{1 + l}{1 - l}\right), \quad h(0) = 1$$

where $0 < l = \min_{|z| \le |z_1|} |p(z)| < 1$, then we have

$$p(z) = l\left(\frac{B + h(z)}{B - h(z)}\right) \tag{2}$$

where B = (1 + l)/(1 - l). From the hypothesis of the theorem, we have

$$\operatorname{Re} h(z) > 0 \quad \text{for } |z| < |z_1|$$

and

$$\operatorname{Re} h(z_1) = 0.$$

From (2), we have

$$\frac{zp'(z)}{p(z)} = \frac{2zh'(z)}{B^2 - h(z)^2}. (3)$$

By the same reason as the above, we have on the circle $|z|=|z_1|e^{i\theta}$ and $0\leq\theta\leq 2\pi$

$$\left(\frac{d|p(z)|}{d\theta}\right)_{z=z_1}=0$$

and from the geometrical property, we have

$$\left(\frac{d\arg p(z)}{d\theta}\right)_{z=z_1}\leq 0.$$

This shows that

$$\frac{z_1 p'(z_1)}{p(z_1)} = \operatorname{Re} \frac{z_1 p'(z_1)}{p(z_1)} = n \le 0.$$

where n is a real number. From (3), we have

$$1 + \frac{zp''(z)}{p'(z)} = \frac{zp'(z)}{p(z)} + 1 + \frac{zh''(z)}{h'(z)} + \frac{2zh'(z)h(z)}{B^2 - h(z)^2}$$

and therefore we have

$$1 + \operatorname{Re} \frac{z_1 p''(z_1)}{p'(z_1)} = n + 1 + \operatorname{Re} \frac{z_1 h''(z_1)}{h'(z_1)} - \operatorname{Re} \frac{2z_1 h'(z_1)h(z_1)}{B^2 - h(z_1)^2}$$
$$= n + 1 + \operatorname{Re} \frac{z_1 h''(z_1)}{h'(z_1)} - n\operatorname{Re} h(z_1)$$
$$= n + 1 + \operatorname{Re} \frac{z_1 h''(z_1)}{h'(z_1)}.$$

Applying the same reason as the above, we have

$$1 + \operatorname{Re} \frac{z_1 h''(z_1)}{h'(z_1)} \ge 0$$

and this shows that

$$1 + \operatorname{Re} \frac{z_1 p''(z_1)}{p'(z_1)} \ge n$$

where n is a real number and $n \leq 0$. This completes the proof.

REFERENCES

- S. Fukui and K. Sakaguchi, An extention of a theorem Ruschwey, Bull. Fac. Edu. Wakayama Univ. Nat. Sci., 29 (1980), 1-2.
- [2] I.S. Jack, Functions starlike and convex of order α, Jour. London Math. Soc., 3 (1971), 469-474.
- [3] S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 289-305 (1978).

Department of Mathematics, University of Gunma, Aramaki Maebashi Gunma 371-8510, Japan

E-mail: nunokawa@edu.gunma-u.ac.jp