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MAJORIZATION OF SUBORDINATE HARMONIC FUNCTIONS

MAMORU NUNOKAWA, HITOSHI SAITOH,
SHIGEYOSHI OWA, AND NORIHIRO TAKAHASHI

ABSTRACT. It is well known that if f(z) and F(z) with f(0) = F(0) are analytic in
|z| <1 and if f(z) is subordinate to F(z), thenfor 0 <pand 0 <7 <1,

2T 2n
/ |F(re'®)iPd6 < / |F(rei®)[Pdo.
0 0

In this papér, we research the relationship of large and small of the

2r 27 .
/ |Ref(re*)|Pdd and / |ReF(re')[Pdf.
0 0

Suppose that a function f(2) is analytic in the unit disc E = {2z : |z| < 1} and that a
function F(2) is analytic and univalent in E. Suppose that f(0) = F(0). If the image of
the disc E under the mapping w = f(z) is contained in the image of that disc under the
mapping w = F(z), we say that the function f(2) is subordinate to F(z) in the disc E
and that the function F(z) is a univalent majorant of f(z). We denote this by writting
f(z) < F(z). This is equivalent to regularity of the function F~'(f(z)) = ¢(2) in E,
where ¢(0) =0 and |p(z)| <1in E.

It follows that the set of all functions f(z) that are subordinate in the disc |2] <7 to a
given univalent majorant F'(z) is defined by the formula

f(z) = F(e(2)),
where ¢(z) is an arbitrary function satisfying the conditions of the Schwarz lemma, that
is, it is analytic in E, ¢(0) = 0, |¢(z)| < 1 in E. Then, Rogosinski [3] proved the following
theorem. o

Theorem A. If f(z) and F(2) with f(0) = F(0) are analyﬁc in E and if f(z) < F(2),
then for0<pand0<r <1, |

2 A 2 C
/ |f(re®)|Pdf < f |F(re®)[Pdd.
0 0

On the other hand, Avhadiev and Aksent’ev [1] obtained the following result.
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Theorem B. If f(z) and F(2) satisfy the conditions of Theorem A, then it follows that

2n 2n
/ [Ref(re®)|df < [ [ReF(re®)|dd
0 0

for0<r<1.

After the Theorem B was obtained, Nunokawa, Fukui and Saitoh [2] proved the follow-
ing theorem.

Theorem C. If f(z) and F(z) satisfy the conditions of Theorem A, then we have

2n 2n
/ |Ref(re)|*dd < / |ReF(re')|?dd
0 0

for0<r<1.

It is the purpose of the present paper to generalize Theorem B.
In this paper, we need Hoélder’s theorem.

Lemma 1. (Holder) Let f(z) and g(z) are continuous ona < z < b, f(z) > 0 and
g(z) 20 ona <z <b. Then we have

1 / ’ Fe)ole) da < ( / " f(z)”dw)% ( / " g‘(z)ﬁdz)%

where 1/p+1/g=1, 1 < p and 0 < ¢ and we have

2 [ ren@az ([ f(z)"dw)% (f g(x)«dx)%

where 1/p+1/q = 1,'0<p< 1and g <0.
Proof. (1) is very popular and applying the same method as the proof of (1), we can
obtain (2). O

Theorem 1. If f(z) and F(z) with f(0) = F(0) are.analytic in E and if f(z) < F(2),
then we have for 0 < r < 1 and for the case 1 < p,

3) /; " Ref(re®)Pd8 < fo " |ReF(re®)Pdb.

and (3) does not hold for the case 0 < p < 1 or (3) is not always true for the case
O<p<l1.

Proof. For the case 1 < p, from the hypothesis of Theorem 1, we have
f(2) = F(p(2))
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where ¢(z) is analytic in E, ¢(0) =0 and |¢(2)| < 1 in E. Applying the same reason as
the proof of Theorem B [1, p.934] and by using Lemma 1, we have for 0 <7 < p < 1,

2n
/ |Ref(re)|P df
0
2n 1 27 (1] i0
< / (— / IReF(pe™)| Re "e. + ¢(re )du> df
0 2 Jo

— p(re®)

(1 [P : pe” + o(re®) L\
= — ReF(pe*” dv | dé

/ (mr/o [RaF(oe™)] (Re o)

2n 1 2n ) pei”+<p(rew) % 1 2n peiu_i_(p(,reia) P
< — ReF'(pe*)|? - - — [ Re— —=d dé
_/o {(27r [ReF(pe™)] Rep’”—w(re"’) dV) (27"/0 ® pe — p(re?) V)

27 p27 iv i0
e 22 HolrE)
/ |ReF(pe)| Re = <p(re“9)d v df

pe“’ + o(re®)
— ¢(re)

dé dv

21r 2n
/ [ReF (pe")P" Re 2

21r
— wy|p
27'_/0 |ReF(pe™)|P dv.

Putting r — p, we obtain (3).
For the case 0 < p < 1, let us take a function F(z) whose real part is positive in E,
then we have (e.g. [4, p.227))

Ref(re) = [Ref(re)| = ReF(p(re”))

1 2 . pe‘iu + go(re‘la)
= ReF(pe*” _
ar J, ReFlee) Re e re®)

pe” + p(re?)
pe — p(re¥)

dv

1

2n
4 — v
(4) —27rf0 |ReF(pe™)| Re

Applying the same method as the proof of (3), Lemma 1 and equation (4), we have

2n 2T
/ |Ref(re)[Pdo > / |ReF(re®)|Pdg
0 0

where ReF(z) > 0 in E and so Ref(z) > 0 in E. This completes the proof of Theorem
1. (]

Remark.
pe” + p(re)

0 <Re peiv — p(re®)

for0<r<p<l.
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