OPERATORS

日本工業大学·工学部 大野 修一 (Shûichi Ohno)

Nippon Institute of Technology

1. INTRODUCTION

Throughout this article, we let \mathbb{D} be the open unit disk and $\partial \mathbb{D}$ its boundary. Let dm denote the normalized Lebesgue measure on $\partial \mathbb{D}$. We denote the classical Hardy space by H^p for $0 . Let <math>\mathcal{S}(\mathbb{D})$ be the set of all analytic self-maps of \mathbb{D} . Every $\varphi \in \mathcal{S}(\mathbb{D})$ induces through composition a linear composition operator C_{φ} . Thus C_{φ} is defined by

$$C_{\varphi}f = f \circ \varphi$$

for analytic function f on \mathbb{D} . By the Littlewood's subordination theorem, C_{φ} is a bounded operator on H^2 .

Many authors have investigated some properties of composition operators and tried to characterize such properties of the operators C_{φ} using functional analytic properties of its symbol φ . Here we will give a report on the problem when the difference of two composition operators would be compact on H^2 . For a general information on composition operators, see [4],[15] and [17: Chaper 10].

2. THE DEVELOPMENT

The work originates from the following result of E. Berkson([1]).

[E. Berkson(1981)] Let $\varphi \in \mathcal{S}(\mathbb{D})$ such that $m(E(\varphi)) > 0$, where $E(\varphi) = \{|\varphi| = 1\}$. If $||C_{\varphi} - C_{\psi}||^2 < m(E(\varphi))/2$ for $\psi \in \mathcal{S}(\mathbb{D})$, then $\varphi = \psi$.

This result makes a topological statement about the space $\mathcal{C}(H^2)$ of composition operators on H^2 , endowed with the operator norm metric. Indeed this says that the identity operator is isolated in $\mathcal{C}(H^2)$.

A. Siskakis (1986) asked if every non-compact composition operator had to be isolated in the space $\mathcal{C}(H^2)$. Then it was begun to explore the ground that lies between the compactness and the isolation in $\mathcal{C}(H^2)$, and the question above had a negative answer later ([16]).

B.D. MacCluer ([9]) gave a sufficient condition on φ for the component containing the composition operator C_{φ} to be the singleton $\{C_{\varphi}\}$.

An analytic map $\varphi \in \mathcal{S}(\mathbb{D})$ is said to have an angular derivative at a point $\zeta \in \partial \mathbb{D}$ if there exists $w \in \partial \mathbb{D}$ so that the non-tangential limit

$$\lim_{z \to \zeta} \frac{\varphi(z) - w}{z - \zeta}$$

[B.D. MacCluer (1989)] If φ has a finite angular derivative on a set of positive measure, then C_{φ} is isolated in $\mathcal{C}(H^2)$.

J.H. Shapiro and C. Sundberg ([16]) explored these territory and gave a number of conjectures:

- 1. Characterize the components of $C(H^2)$.
- 2. Which composition operators are isolated in $C(H^2)$?
- 3. Which composition differences are compact on H^2 ?

They supposed that two composition operators may belong to the same component of $\mathcal{C}(H^2)$ if and only if they differ by a compact. They offered some sort of joint Nevanlinna counting functions figuring into the problem.

They gave the following result to the isolation problem.

[J.H. Shapiro and C. Sundberg (1990)] If $\varphi \in \mathcal{S}(\mathbb{D})$ satisfies

$$\int \log(1-|arphi|) dm > -\infty$$

then C_{φ} is not isolated in $\mathcal{C}(H^2)$.

It is well known that the condition above characterizes the non- extreme point of the unit ball of H^{∞} ([5]). So by Berkson's result and this we can reduce that if φ is an exposed point of the unit ball of H^{∞} , then C_{φ} is isolated in $\mathcal{C}(H^2)$ and that if C_{φ} is isolated in $\mathcal{C}(H^2)$, φ is an extreme point of the unit ball of H^{∞} .

Moreover this hinges a following sufficient condition for the difference to be compact.

[J.H. Shapiro and C. Sundberg (1990)] If, for $\varphi, \psi \in \mathcal{S}(\mathbb{D})$,

$$\int \frac{|\varphi - \psi|}{(\min\{1 - |\varphi|, 1 - |\psi|\})^3} dm < \infty,$$

then $C_{\varphi} - C_{\psi}$ is compact on H^2 .

H. Hunziker, H. Jarchow and V. Mascioni([7]) defined the following metric in $\mathcal{C}(H^2)$ and called the topology induced by this the Hilbert-Schmidt topology: for $\varphi, \psi \in \mathcal{S}(\mathbb{D})$,

$$d(\varphi,\psi) = \left(\frac{1}{2\pi} \int_0^{2\pi} \left|\frac{\varphi-\psi}{1-\overline{\varphi}\psi}\right|^2 \frac{1-|\varphi|^2|\psi|^2}{(1-|\varphi|^2)(1-|\psi|^2)} d\theta\right)^{1/2}$$

And they gave the result.

[H. Hunziker, H. Jarchow and V. Mascioni(1990)] For $\varphi \in \mathcal{S}(\mathbb{D})$, the following are equivalent:

- (i) φ is an extreme point of the unit ball of H^{∞} ;
- (ii) φ is isolated in $(\mathcal{S}(\mathbb{D}), d)$;
- (iii) C_{φ} is isolated in $\mathcal{S}(\mathbb{D})$.

3. NEW RESULTS

Recently some authors have attacked these problems using new tools. In this section we summarize them.

In 1997, J.A. Cima and A.L. Matheson ([3]) characterized the essential norm $\| \|_e$ of composition operators using the notion of Aleksandrov measures.

For $\varphi \in \mathcal{S}(\mathbb{D})$ and $\lambda \in \mathbb{D}$, there exists a positive measure μ_{λ} on $\partial \mathbb{D}$ such that

$$\operatorname{Re} \frac{\lambda + \varphi(z)}{\lambda - \varphi(z)} = \frac{1 - |\varphi(z)|^2}{|\lambda - \varphi(z)|^2}$$
$$= \int P(\zeta, z) d\mu_{\lambda}(\zeta),$$

where $P(\cdot, z)$ is the Poisson kernel for z,

$$P(\zeta, z) = rac{1 - |z|^2}{|\zeta - z|^2}.$$

Then μ_{λ} is called the Aleksandrov measure with the function φ . Denote the absolutely continuous part and the sigular part of μ_{λ} by $\mu_{\lambda}^{a,c}$ and μ_{λ}^{s} respectively.

[J.A. Cima and A.L. Matheson(1997)]

$$\|C_{\varphi}\|_{e}^{2} = \sup\{\|\mu_{\lambda}^{s}\| : \lambda \in \partial \mathbb{D}\}.$$

This result has the immediate corollary: C_{φ} is compact on H^2 if and only if for all $\lambda \in \partial \mathbb{D} \ \mu_{\lambda}$ is absolutely continous with respect to the Lebesgue measure dm.

Then J.E. Shapiro ([12]) considered the compact difference using this notion.

[J.E. Shapiro(1998)] If $C_{\varphi} - C_{\psi}$ is compact on H^2 for $\varphi, \psi \in \mathcal{S}(\mathbb{D}), \mu_{\lambda}^s = \nu_{\lambda}^s$ for all $\lambda \in \partial \mathbb{D}$.

He conjectured whether its converse would be true.

But it does not seem to be easy to calculate Aleksandrov measure with respect to any self-map of \mathbb{D} .

[Example 1] Let $\varphi(z) = sz + (1 - s)z$ for 0 < s < 1. Let μ_{λ} be the Aleksandrov measure with the function φ .

Then we have

$$\begin{split} \|\mu_{\lambda}^{s}\| &= \|\mu_{\lambda}\| - \|\mu_{\lambda}^{a,c}\| \\ &= \frac{1 - |\varphi(0)|^{2}}{|\lambda - \varphi(0)|^{2}} - \int \frac{1 - |\varphi(\zeta)|^{2}}{|\lambda - \varphi(\zeta)|^{2}} dm(\zeta). \end{split}$$

Putting $\lambda = 1$, we have the first term of the right side is (2 - s)/s and the second term is (1 - s)/s. So $\|\mu_1^s\| = 1/s > 0$. Consequently C_{φ} is not compact on H^2 . These measures have played an interesting role in the study of the de Branges-Rovnyak space. J.E. Shapiro has provided the study of relative angular derivatives ([13], [14]).

T.E Goeber, Jr. ([6]) connected this problem with the compactness of composition operators between different Hardy spaces.

Let $0 < q < p < \infty$. Then C_{φ} is always bounded from H^p to H^q for $\varphi \in \mathcal{S}(\mathbb{D})$. He characterized the essential norm of differences of two composition operators from H^p to H^q .

[**T.E Goeber**, Jr.(2001)] For $0 < q < p < \infty$, $||C_{\varphi} - C_{\psi}||_e = 0$ if and only if C_{φ} and C_{ψ} are compact from H^p to H^q .

And he offered the following conjecture : Let $0 < q < p < \infty$. Is it true that C_{φ}, C_{ψ} are in the same component of the space of composition operators from H^p to H^q if and only if C_{φ}, C_{ψ} are compact from H^p to H^q ?

Indeed this result inspires us to consider one question:

[Question] What is the space X of analytic functions on \mathbb{D} satisfying that $C_{\varphi} - C_{\psi} : X \to H^2$ is compact if and only if $C_{\varphi} - C_{\psi} : H^2 \to H^2$ is compact?

When B.D. MacCluer, S. Ohno and R. Zhao ([11]) reduce the problem of compact difference to the H^{∞} case, they obtain the result: $C_{\varphi} - C_{\psi}$: $H^{\infty} \to H^{\infty}$ is compact if and only if $C_{\varphi} - C_{\psi} : \mathcal{B} \to H^{\infty}$ is compact, where \mathcal{B} is the Bloch space.

So we can suppose the Bloch space as a candidate of the answer to the problem above. But we can find out the interesting result due to E.G. Kwon ([8]):

[E.G. Kwon (1996)] For $\varphi \in \mathcal{S}(\mathbb{D})$, $C_{\varphi} : \mathcal{B} \to H^2$ is compact if and only if φ is not an extreme point of the unit ball of H^{∞} , that is,

$$\int \log(1-|arphi|)dm>-\infty.$$

We here see again the condition of the non-extreme point of the unit ball of H^{∞} , which appears in the problem of the hypercyclicity of composition operators ([2]). This condition seems to be interesting and mysterious.

We have the following equivalence.

[Proposition] For $\varphi, \psi \in \mathcal{S}(\mathbb{D})$, the following are equivalent:

- (i) $C_{\varphi} C_{\psi} : \mathcal{B} \to H^2$ is bounded;
- (ii) $C_{\varphi} C_{\psi} : \mathcal{B} \to H^2$ is compact;
- (iii) $C_{\varphi} C_{\psi} : \mathcal{B}_o \to H^2$ is bounded;
- (iv) $C_{\varphi} C_{\psi} : \mathcal{B}_o \to H^2$ is compact,

where \mathcal{B}_o is the little Bloch space.

About the compact difference, we can find out two examples in [4]: Example 9.1 at p.336 says that for $\varphi(z) = (z+1)/2$ and $\psi(z) = \varphi(z)+t(z-1)^3$, $C_{\varphi} - C_{\psi}$ is compact on H^2 . On the other hand, Exercises 9.3.3 at p.344 gives that for $\varphi(z) = (z+1)/2$ and $\psi(z) = \varphi(z) + t(z-1)^2$, $C_{\varphi} - C_{\psi}$ is not compact on H^2 . What exists between these two examples? We have calculated but not completed.

Recently it is reported by B.D. MacCluer ([10]) that J. Moorhouse answers this as follows.

[Example 2] Let $\varphi(z) = sz + 1 - s$ and $\psi(z) = \varphi(z) + t(z-1)^b$ for fixed real numbers s and t such that 0 < s < 1 and $\psi(\mathbb{D}) \subset \mathbb{D}$. Notice that |t| is so small. For a positive number b,

- (i) In the case $0 < b \leq 2, \, C_{\varphi} C_{\psi}$ is not Hilbert-Schmidt on H^2 .
- (ii) In the case $2 < b < 5/2, \, C_\varphi C_\psi$ is compact on H^2 .
- (iii) In the case $5/2 < b, C_{\varphi} C_{\psi}$ is Hilbert-Schmidt on H^2 .

In the case of the Bergman space $L_a^2 = L_a^2(\mathbb{D}, dA)$ where dA is the normalized Area measure on \mathbb{D} , we have the following incomplete result.

[Example 3] Under the same assumption as Example 2,

- (i) If $0 < b \leq 2, \ C_{\varphi} C_{\psi}$ is not compact on L^2_a .
- (ii) If $3 < b, C_{\varphi} C_{\psi}$ is compact on L^2_a .

We will add the outline of the proof: (i) At first suppose 0 < b < 2. For any $\lambda \in \mathbb{D}$, let $k_{\lambda}(z) = (1 - |\lambda|^2)/(1 - \bar{\lambda}z)^2$. And then $k_{\lambda} \in L_a^2$, $||k_{\lambda}|| = 1$ and k_{λ} converges to 0 weakly in L_a^2 as $|\lambda| \to 1$. Then

$$(*) \| (C_{\varphi} - C_{\psi})^* k_{\lambda} \|^2$$

$$= \left(\frac{1 - |\lambda|^2}{1 - |\varphi(\lambda)|^2} \right)^2 + \left(\frac{1 - |\lambda|^2}{1 - |\psi(\lambda)|^2} \right)^2 - 2 \operatorname{Re} \left(\frac{1 - |\lambda|^2}{1 - \overline{\varphi(\lambda)}\psi(\lambda)} \right)^2$$

$$\ge \left(\frac{1 - |\lambda|^2}{1 - |\varphi(\lambda)|^2} \right)^2 - 2 \left| \frac{1 - |\lambda|^2}{1 - \overline{\varphi(\lambda)}\psi(\lambda)} \right|^2.$$

We also consider for a sequence $\{\lambda_n\}$ of points approaching 1 along the circle $|1 - \lambda_n|^2 = 1 - |\lambda_n|^2$. Then we have

$$\|(C_{\varphi} - C_{\psi})^* k_{\lambda_n}\|^2 \ge \frac{1}{(2-s)^2 s^2} - \frac{2(1-|\lambda_n|^2)^{2-b}}{|(2-s)s(1-|\lambda_n|^2)^{1-b/2} - |t\varphi(\lambda_n)||^2}$$

Consequently

$$\lim\{\|(C_{\varphi}-C_{\psi})^*k_{\lambda_n}\|_2^2:|\lambda_n|\to 1, |1-\lambda_n|^2=1-|\lambda_n|^2\}\geq \frac{1}{(2-s)^2s^2},$$

that is, $C_{\varphi} - C_{\psi}$ is not compact on L^2_a .

Secondly suppose b = 2. For a sequence of points approaching 1 along the circle $|1 - \lambda|^2 = 1 - |\lambda|^2$, we can calculate the right side of the equation (*) and show that $C_{\varphi} - C_{\psi}$ is not compact on L_a^2 . (ii) For a function $f \in L^2_a$, we have

$$\begin{aligned} &(C_{\varphi} - C_{\psi})f(z) \\ &= \int f(w) \left\{ \frac{1}{(1 - \varphi(z)\bar{w})^2} - \frac{1}{(1 - \psi(z)\bar{w})^2} \right\} dA(w) \\ &= \int f(w) \left(\frac{1}{1 - \varphi(z)\bar{w}} - \frac{1}{1 - \psi(z)\bar{w}} \right) \\ &\times \left(\frac{1}{1 - \varphi(z)\bar{w}} + \frac{1}{1 - \psi(z)\bar{w}} \right) dA(w) \end{aligned}$$

So

$$\begin{split} |(C_{\varphi} - C_{\psi})f(z)|^{2} \\ &\leq \int |f(w)|^{2} \left| \frac{1}{1 - \varphi(z)\bar{w}} - \frac{1}{1 - \psi(z)\bar{w}} \right|^{2} dA(w) \\ &\qquad \times \int \left| \frac{1}{1 - \varphi(z)\bar{w}} + \frac{1}{1 - \psi(z)\bar{w}} \right|^{2} dA(w) \\ &\leq \int |f(w)|^{2} \left| \frac{\varphi(z) - \psi(z)}{(1 - \varphi(z)\bar{w})(1 - \psi(z)\bar{w})} \right|^{2} dA(w) \\ &\qquad \times 2 \left\{ \int \left| \frac{1}{1 - \varphi(z)\bar{w}} \right|^{2} dA(w) + \int \left| \frac{1}{1 - \psi(z)\bar{w}} \right|^{2} dA(w) \right\} \\ &\leq C \int |f(w)|^{2} dA(w)|t||z - 1|^{2(b-4)} dA(w) \\ &\qquad \times \left(\log \frac{1}{1 - |\varphi(z)|^{2}} + \log \frac{1}{1 - |\varphi(z)|^{2}} \right) \end{split}$$

where C is a constant.

Using the facts that $\log 1/(1-|z|^2) \in L^p$ for 0 < p and $1/(z-1) \in L^p_a$ for $0 , we can show <math>C_{\varphi} - C_{\psi}$ is compact on L^2_a for 3 < b.

References

- E. Berkson, Composition operators isolated in the uniform operator topology, Proc. Amer. Math. Soc. 81 (1981), 230-232.
- [2] P.S. Bourdon and J.H. Shapiro, Hypercyclic operators that commute with the Bergman backward shift, *Tran. Amer. Math. Soc.* 352 (2000), 5293-5316.
- [3] J. Cima and A. Matheson, Essential norms of composition operators and Aleksandrov measures, *Pacific J. Math.* 179 (1997), 59-64.
- [4] C.C. Cowen and B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton 1995.
- [5] K. deLeeuw and W. Rudin, Extreme points and extremum problems in H₁, Pacific J. Math. 8 (1958), 467–485.
- [6] T. E. Goebeler, Jr, Composition operators acting between Hardy spaces, *Integral Equation Operator Theory* 41 (2001), 389–395.
- [7] H. Hunziker, H. Jarchow and V. Mascioni, Some topologies of the space of analytic self-maps of the unit disk, Geometry of Banach Spaces (Strobl, 1989), Cambridge Univ. Press, Cambridge, 1990, 133–148.

- [8] E. G. Kwon, Composition of Blochs with bounded analytic functions, *Proc. Amer. Math. Soc.* 124 (1996), 1473–1480.
- [9] B.D. MacCluer, Components in the space of composition operators, *Integral Equations Operator Theory* 12 (1989), 725–738.
- [10] B.D. MacCluer, Composition operators on Hardy spaces: Component structure and compact differences, Plenary talks, Trends in Banach Spaces and Operator Theory, The University of Memphis, 2001.
- [11] B.D. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators, *Integral Equations Operator Theory* 40 (2001), 481-494.
- [12] J.E. Shapiro, Aleksandrov measures used in essential norm inequalities for composition operators, J. Operator Theory 40 (1998), 133–146.
- [13] J.E. Shapiro, Relative angular derivatives, to appear in J. Operator Theory.
- [14] J.E. Shapiro, More relative angular derivatives, in preprint.
- [15] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.

- [16] J.H. Shapiro and C. Sundberg, Isolation amongst the composition operators, Pasific J. Math. 145 (1990), 117–152.
- [17] K. Zhu, Operator Theory on Function Spaces, Marcel Dekker, New York, 1990.