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On Quantum White Noises
and Related Transformations

Nobuhiro ASAI (#HH57)*
International Institute for Advanced Studies (IIAS)
Kizu, Kyoto 619-0225, Japan

1 Introduction

Let a; and a; be respectively annihilation and creation operators at a point
t € R. In the theory of white noise operators [23][24], it is known that a, is
a continuous linear operator from I',(E¢), the (Fock) space of test functions
over a complexified nuclear space E¢, into itself, and a} is a continuous linear
operator from I',(Ec)*, the dual space of I'y,(Ec), into itself. In paticular,
a;+a; and a;+a; +aja; + I are called the quantum Gaussian white noise and
the quantum Poisson white noise, respectively (cf. [11][24]). These are known
to be elemental generalized qunatum stochastic processes. The main purpose
of this work is to examine relationships between classical and quantum white
noises from the point of the classical white noise theory of Gaussian [19][20]
and Poisson types [13]. Then it will be clarified that quantum Gaussian and
Poisson white noises are the Fock space realizations of classical Gaussian
and Poisson white noises, respectively. We shall discuss them in Section 4.
As a matter of fact, one can see that such facts can be proved not only
through J-transform given by (2.4) and the holomorphy, but also through
Sx-transform given by (3.3) depending on the exponential function ¢¥. The
function ¢X determines a unitary isomorphism between Boson Fock space
and L2(E*,px) X = G, P, where ug and up are a Gaussian measure
and a Poisson measure on E*, respectively. As is pointed out in Remark
4.3, the choice of ¢F (kernel function of Sx-transform) is the essential part
to represent the above different quantum noises acting on the same space
I'u(Ec)*. In Appendix, some connections between [6][7] and [10] will be
noted.
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2 Gel’fand Triplet in Terms of Boson Fock
Space

Consider H = L*(R,dt) with norm | - |[o. Let A be an operator in H such
that there exists an orthonormal basis {e;}32; satisfying the conditions:

1. Aej = )\jej.
2. 1< M <A< <A<
3. Yo g A72* < oo for some positive constant a.

For each p > 0, define the norm |¢|, = |AP¢|o and let

E, = {¢ € H; ||, < oo}

It can be shown that E, C E, for any p > q > 0 and the inclusion map
iprap : Epta — E, is a Hilbert-Schmidt operator for any p > 0. Let
E = projlim, ,, E, and E* be the dual space of E. Then F is a nuclear
space and we obtain a Gel’fand triplet E C H C E* with the following
continuous inclusions:

ECE,CH=EyCE; CE" | p=>0

where the norm on E; is given by |f|_p = |A7"flo. (,-) denotes the bilinear
pairing between E* and E.

In order to discuss operators such as annihilation, creation, and number
operators later in the framework of white noise theory, we need to assume
the following three conditions:

(H1) each function £ € E has a continuous version £, -

(H2) §; € E* for all t € R so that (0;,&) = £(t), where §; is the Dirac delta
function,

(H3) the mapping ¢ — J; is continuous with the strong topology for E*,
(H4) E is algebra.

Thus functions in E will be regarded to be continuous and E be simply
denoted by ¢ and (H1) ~ (H4) conditions always be assumed throghout this
paper.
Let C, 1/2 denote the collection of all positive continuous functions u on
[0, 00) satisfying )
. logu(r v
rlgrolo T 00. (2.1)

39



For u € Cj /2, the dual function u* of u is given by

\/1'_8

u*(r) = T;g@’ r € [0,00). (2.2)

For later use, we introduce the following additional conditions on u.

(G1) infryou(r) =1,

(G2) limsupw < 00,

r—00
(G3) logu(z?) is a convex function for z € [0, 00).

We denote the complexification of H by H¢. It is well-known that the
Boson Fock space over H¢, denoted by I"(HC), is a Hilbert space consist-

ing of sequences (fn)2y, Where f, € HE" and ) > n!|fald < oo. For
(fa) € T'(Hc), p > 0 and a given function u € C, 1/, satisfying the condi-
tions (G1)(G2)(G3), define

1) leusy ) = (Z ﬁn) | mz)f

where £, is the Legendre transform of u given by

_ . u(r)
Ku(t) = r>07’ te [0, (X)) (23)
Technical details of Equations (2.2)(2.3) and (G1)(G2)(G3) can be found in
[6]. See also Appendix A.2. Let

Tu(Epc) = {(fa)io € T(Hc) 5 |(fa)llru(s, o) < 00},

and I'y( Ec) be the (Fock) space of test functions, which is the projective limit
of the family {T',(E,c) ; p > 0}. Hence it is easy to see that I'y(E¢c) C I'(Hc)
and I'y(Ec) is a nuclear space. The dual space I',(E¢)* is called the space of
generalized functions. By identifying I'( H¢) with its dual we get the following
continuous inclusions:

P“(Ec) —> Fu(Ep’C) —> F(Hc) —> Pu(Ep,C)* —> Pu(Ec)*

and I'y(Ec) C T'(Hc) C T'u(Ec)* is a Gel’fand triplet. Note that the we have
used condition (G2) in order to have the continuous inclusion I'y(E,c) <>
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[',(Hc). The canonical bilinear form on I'y(Ec)* x T'y(Ec) is denoted by
((-,-))r. For each & € I',(Ec)*, there exists a unique F, € (EE")},mm, With

1

IE ey = (Zm!m(n)w,,lz,,)’ < oo

for some p > 0 such that

((Fa), (fa)))r = Y nl(Fa, fu)-

n=0

We define

a(fa)mo= (0. ®1 fo)7ys af2=0, fo€EE"

where ®; is the contraction of tensor product and € is the Fock vacuum.
It is easy to show that a; is a continuous linear operator from I',(E¢) into
itself. The adjoint operator a; of a;, given by

@} (Fa)o o = (58Fn) g Fo € (BE)oymm

is a continous linear operator from I',(E¢)* into itself. Therefore, a; is called
an annihilation operator, the dual operator a; is called a creation operator,
and ala; is called a number operator denoted by N;. These operators satisfy
the following canonical commutation relations:

[asa at] =0, [a:1 a':] =0, [am a’:] = 684(t)I'

In quantum stochastic calculus (cf. [11][24]), a; + af is called the quantum
Gaussian white noise and a; + af + N; + I is called the quantum Poisson
white noise acting on the same generalized functions space I',(Ec)*.

Since u € Cy. 1/, satisfies (G3), (53—,") € T'y(Ec) for all £ € E¢. So let us
introduce the J-transform for the characterization of I'y(E¢) and I'y(E¢)*.

Definition 2.1 (J-transform). For (F,,)2, € I'y(Ec)*, J-transform is de-
fined to be the function

GENO = {(E.EDY), teBe @4

The next Theorem 2.2 claims that I',(E¢)* can be characterized in terms
of analyticity and growth order of J-transforms.
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Theorem 2.2. Suppose u € C. 1/, satisfies conditions (G1)(G2)(G3). Then
a C-valued function F on Ec is the J-transform of a generalized function in
T'u(Ec)* if and only if it satisfies the conditions:

(a) For any &,m € Ec, the function F(z§ + n) is an entire holomorphic
function of z € C.

(b) There exist constants K,a,p > 0 such that

|F(&)| < Ku*(al¢|2)"/?, VE € Ec.

Since Theorems 2.2 can be obtained with the same technique given in [7], we
omit the proof. The characterization of I'y(E¢c) will be stated in Theorem
A.1. The well-known examples will be given later in Example 3.4, Remarks
3.3 and A.3.

One could notice that the prior knowledge of the measure theory may not
be required to understand the introduced materials in this section.

3 Gel’fand Triplets in Terms of Multiple Wiener-

It6 Integrals Associated with Gaussian and
Poisson Measures

In this section, in order to make a bridge between a tangent vector &, given
later in Section 4 and white noises, we shall construct the Gel’fand triplet in
terms of multiple Wiener-Ito integrals associated with Gaussian and Poisson
measures on E*. Then one can see the correspondences between the tangent
vecor &, classical and quantum white noises of Gaussian and Poisson types
in Section 4.

In the following, we quickly summarize the essence of Gaussian white
noise theory from [19][20][23] and Poisson white noise theory from [13].

Let pg be the standard Gaussian measure on E* given by

[ explite, lduc(o) = exp[ 5 [ leOPae], € ek

and pp be the Poisson measure on E* by

- expli(z, E)]dyp(aj') = exp[ /R (e*® — l)dt], ¢ cE.
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Let us denote the complex Hilbert space L2(E*, ux) by (L?)x, X = G, P,
and the multiple Wiener-1t6 integrals with respect to a measure pix by IX(f)
for f, € HE". Then each ¢ € (L?)x is uniquely decomposed as

o(@) =Y IX(fa), fa€ HE

n=0

It is important to notice that there exist unitary isomorphisms Ux between
(L?)x, X = G, P, and I'(Hc¢) determined uniquely by the ezponential func-
tions (vectors)

K@ =emlwe-gld] — (57) =e0. ccre @

*/ n=0

when X = G and
# (@) = exp[(alop(1 +€)) — [ €Ot] > e©), EcBe  (32)

when X = P, respectively. We remark that the Poisson case is not addressed
in [3][4][5][7][9][10][18]. It is known that {¢ ;& € Ec} spans a dense subspace
of [Elux and {e(£);& € Ec} does the same for I'y(Ec). In those cases, it
holds that the (L?)x-norm of ¢ is given by

llells = / () Pdpx () = in!lfnlﬁ = | (Fa)IEatc)-
E* n=0

The Sx-transform of ¢ € (L%)x, given by

5x0)© = [ p@# @hux(e), €€ e,

is an isomorphism from (L?)x onto the Hilbert space K of holomorphic func-
tions F on E¢ with a reproducing kernel exp[(¢,7)], &, € E.

Let [Eplux = {9 € (B2)x ; el == Yoo 7im fI2 < oo} and [Elux
be the space of test functions, which is the projective limit of the family
{[Eplux ; P> 0}. Hence it can be shown easily that [E],x C (L*)x by the
condition (G2), and [E],, x is a nuclear space. The dual space [E]; y is called
the space of generalized functions. Then we obtain the following continuous
inclusions:

[Elux = [Eplux = (L)x = [Bpli — [Elu x,

and [Elux C (L?)x C [E]; x is a Gel’fand triplet.
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Let ;¢ be the Gateaux derivative in the direction of 4;, so-called Hida
derivative, and O, p be the difference operator A;p = p(z + &) — ¢(z). Let
0;c and J; p be the adjoint operators of 0, and 0, p, respectively.

Since u € C, 1/, satisfies (G3), the exponential function ¢ (z) € [Elu,x
for any ¢ € Ec. Hence the Sx-transform can be extended to a continuous
linear functional on [E]; x as follows.

Definition 3.1 (Sx-transform). For & € [E]; x, Sx-transform is defined
by
(Sx®)(€) = ((8,¢%)), &€ Ec, (3.3)

where ((-,)) is the bilinear pairing of [E]} y and [E], x.

Now we come to the characterization of [E]; x associated with px, X =
G, P, in a single statement. The proof is almost the same as that in [7], but
it is under (G1)(G2)*(G3) only with ug. The condition (G2)* is given in
Appendix A.2.

Theorem 3.2. Let a measure px on E* be given. Suppose u € C, 1/2 sat-
isfies conditions (G1)(G2)(G3). Then a C-valued function F on E¢ is the
Sx -transform of a generalized function in [E];, x if and only if it satisfies the
conditions:

(a) For any £,n € Ec, the function F(z€ + 7) is an entire holomorphic
function of z € C.

(b) There ezist constants K,a,p > 0 such that

|F(§)| < Ku*(al¢|2)"/?, V¢ € Ec.

Remark 3.3. Theorem 3.2 was first proved by Potthoff-Streit [25] in case
of X = G and u(r) = €. It was extended to the case of X = G and
u(r) = exp[(1 — ﬂ)rﬁ] by Kondratiev-Streit [16][17]. Moreover, Cochran
et al. [9] proved the case when X = G and the growth condition (b) is
determined by the exponential generating function G,(r) = Y %(:!—’21'". Asai
et al. [4][6][7] minimized conditions on sequences {a(n)} of positive real
numbers in such a way that Theorem 3.2 holds.

Example 3.4. The Gel'fand triplet [E],x C (L*)x C [E]} x becomes

(1) the Hida-Kubo-Takenaka space [19][20][23] if X = G and u(r) = ¢", and
the Ito-Kubo space [13] if X = P and u(r) = ¢",

(2) the Kondratiev-Streit space [17] if X = G and u(r) = exp](1 +ﬁ)rﬁ] for
0<p<1,
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(3) the Cochran-Kuo-Sengupta (CKS) space of Bell numbers with degree k
if X = G and u*(r) = expy(r)/ expy(0), where exp,(r) is the k-th iterated
exponential function [9]. Consult papers [3][4][5][6][9] for more general con-
struction of CKS space and [2][18] for more details on Bell numbers.

Remark 3.5. We exclude the 8 = 1 space of Kondratiev-Streit [15]. It is
because the function u(r) = exp[24/r] does not satisfy Equation (2.1).

4 Main Results

In the previous two sections, we have constructed the Gel’fand triplets in
terms of Fock space and Schrodinger representations with associated trans-
formations. Notice that in the Section 2, we did not introduce any proba-
bility measure on E* as the standard white noise theory [19][20][23]. Hence,
the property of a measure on E* plays virtually no role in the definition
of J-transform. In fact, the essential tools to prove Theorems 2.2 and A.1
are the Cauchy integral formula for entire holomorphic functions of several
variables, Legendre transform, dual function, Schwartz kernel theorem, and
properties of the nuclear space. So, does it imply that the considerations
of the growth order of holomorphic funcions and associated topologies are
sufficient to examine stochastic processes by the generalized function theory
on infinite dimensional space ?. The answer is completely No even for the
study of fundamental stochastic objects such as Brownian motion and Pois-
son process. Let us emphasize the following point. It is easy to see that the
“flow” P, given by

5 — | ©log,0,--) 220
' (07—1[t,0])0,"') ift<0,

is an element of I'(Hc). Then the “tangent vector” &, is (0,4:,0,---) and
belongs to ['y(Ec)* with u(r) = e” and J&(§) = ¢ (®).
On the other hand, it is known that the Brownian motion B(t) is repre-

sented by
B(t) = If(lpy) ft20 (41)
—If (1) ift<O.

Similarly, the compensated Poisson process is given by

P : >
p(t)—t= {1 oa) HE2D (4.2)
—If(1gg) ift<O.
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Since characteristic functions 1y, and 1y are elements of H, B(t) and
P(t) — t are in (L?)g and (L?)p, respectively. Hence we obtain U Ug' =
B(t) and Up;Up" = P(t) — t. So the distributional derivative of B(t) with
respect to ¢, so-called Gaussian white noise B(t), has the form B(t) = I¢(6,)
for each ¢t € R. Similarly, the Poisson white noise P(t) has the expression
P(t) — 1 = IF(5,) for each t € R. In those cases, since &, is in E*, B(t)
and P(t) — 1 belong to [E];, ¢ and [E];, p, respectively (A function u will be
chosen in the proof of Theorem 4.2). Thus, we get the relationship between
the vector &, classical Gaussian and Poisson white noises as follows.

Proposition 4.1. It holds that
(1) Us®:Ug' = B(t),
(2) Upd,Us' = P(t) — 1.

It is very convenient to check the holomorphy and the growth order of
(J&:)(€) to show that the tangent vector &, of the flow &, belongs to I',(Ec)*
with the appropriate choice of a function u. However, Theorem 2.2 cannot
distinguish wheather &, is the tangent vector corresponding to Brownian
motion or (compensated) Poisson process due to the lack of isomorphism
Ux.

In the next theorem, connections between classical and quantum white
noises of Gaussian and Poisson types will be shown.

Theorem 4.2. [t holds that )

(1) Ug(as +af)Ug" = B(t), where B(t) is considered as a multiplication op-
erator.

(2) Up(a: + a} + N, + DU = P(t), where P(t) is considered as a mudtipli-
cation operator.

Proof. In the proof, the exponential functions (vectors) given by Equations
(3.1) (3.2) will play essential roles to distinguish the type of white noise.
Let us start the proof with the Gaussian case X = G, first.

(J(ax + af)e())(n) = ({(ac + ap)e(€),e(m))),., €&,m € Ec
= (&(t) + (). (4.3)

On the other hand, since the multiplication by B(t) is described by 8, ¢ +8;
(see [19]), we have

(SeBIE)m) = (Seldeg + B;l60)(m)
= «[3:,6' + 3:,(;]‘15?, ¢$>>G
— (€(8) + n(t))en. (4.4)
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Due to Equations (4.3)(4.4), we have Ug(a; + a})Ug! = B(t), where B(t) is
considered as a multiplication operator. In fact, (SgB)(&) = (&,&) = £(t)
satisfies the condition (b) with u(r) = exp(r) in Theorem 3.2. Hence we get
B(t) € (E)%. Therefore, we have finished to prove our first assertion.

Next consider the Poisson case X = P.

(J(ae +a; + aja; + De(€))(n) = (((as + a; + N + I)e(€),e(n))), &,m € Ec

= (£(8) +n(t) +n()E(t) + 1) (4.5)

Note that the function n{ above makes sense as a member of E¢c due to
(H4). On the other hand, since the multiplication by P(t) is described as
Oi,p + O, p + 0; pO;,p + I (see [13]), we have

(SpPoE)(n) = (Sp[Brp + 0 p + 0; pOrp + I]6F ) (1)
= {([Oe,p + O p + O pOu,p + 1N0E 87 )) p
= (&(t) + n(t) + n(2)E() + 1), (4.6)

By Equations (4.5)(4.6), we have Up(a;+af + N;+I)Up* = P(t), where P(t)
is considered as a multiplication operator. In fact, (SpP)(§) = (6;,&) +1 =
€(t) + 1 satisfies the condition (b) with u(r) = exp(r) in Theorem 3.2. Hence
we get P(t) € (E)%. Thus we have proved the second claim. O

Remark 4.3. The Laplace transform L is used in Gannoun et al. [10]. We
point out that they studied the Gel'fand triplets in terms of holomorphic
functions’ space and Fock space, and shows that both triplets are topologi-
cally equivalnt. There are no considerations about operator theory on their
triplets and the exponential vector associated with Poisson meaure.

We know the following relationships between £ and our S, Sp-transforms:

Sa(e) = exp(~5HE) £0e),  Se(ef —1) = exp(— [ (50— 1)at) o)

€ € Ecfor @ € [E]L((Fn) € Tu(E¢)*). In this situation [12] (see also Theorem
6.1 by Hudson-Parthasarathy [11]), Sp is an isomorphism from (L?)p onto a
reproducing kernel Hilbert space with kernel

exp(eg—l,e"—l), E,WGE-

This reproducing kernel Hilbert space is different from X. In addition, it is
easy to see that

(SpP(t))(ef — 1) = explef® — 1]. (4.7)
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So if the exponential function
o@h)

ey = = [0 - (@0 - ar)] (48)

is considered, the quantum Poisson white noise a, + a} + aja; + I acts on
TCu(Ec)* with u(r) = exple” — 1] due to (4.7), i.e., the CKS-space of Bell
numbers with degree 2. Hence the exponential function given by (4.8) is
not an appropriate choice to represent quantum Gaussian and Poisson white
noises on the common Fock space I'y(E¢)* with u(r) = €".

A Appendix

A.1 Characterizations of Test Functions

The characterization of I'y(Ec) is stated as follows. The proof is almost the
same as those in [6][7], which is under (G1)(G2)*(G3).

Theorem A.1. Supposeu € C, /2 satisfies conditions (G1)(G2)(G3). Then
a C-valued function F on E¢ is the J-transform of a generalized function in
Tu(Ec) if and only if it satisfies the conditions:

(a) For any &,m € Ec, the function F(2€ + 1) is an entire holomorphic
function of z € C.

(b)’ For any constants a,p > 0, there exists a constant K > 0 such that
F(E)| < Ku(al¢2,)'?, V¢ € Ec.

The characterization of [E], x associated with pux, X = G, P, is stated
below in a single statement. The proof is almost the same as that in [7],
which is under (G1)(G2)*(G3) only with ug .

Theorem A.2. Let a measure ux on E* be given. Suppose u € C, /2
satisfies conditions (G1)(G2)(G3). Then a C-valued function F on Ec is the
Sx -transform of a generalized function in [E)y x if and only if it satisfies the
conditions:

(a) For any &,m € Ec, the function F(2§ + n) is an entire holomorphic
function of z € C.

b)’ For any constants a,p > 0, there exists a constant K > 0 such that
(
|F(€)| < Ku(alé2,)"/?, V€ Ec.
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Remark A.3. Theorem A.2 was proved by Kuo et al. [21] in case of X = G
and u(r) = e". It was extended to the case of X = G and u(r) = exp[(1 +

ﬂ)rﬁF] by Kondratiev-Streit [17]. Moreover, Asai et al. [3] proved the case
when X = G and the growth condition (b)’ is determined by the exponential
generating function Gy/e(r) = > Wr". Asai et al. [4][6][7] minimized
conditions on sequences {a(n)} of positive real numbers in such a way that
Theorem A.2 holds.

A.2 Relationships with the Work by Gannoun et al.
[10]

In the rest of this paper, we shall point out some of similarities and differ-

ences between series of our papers [6][7] and Gannoun et al. [10]. We refer

the readers to consult the papers [4][6][7][8] for more technical and delicate

differences, which will not be mentioned in this paper.
First, the basic equalities are

u(r) = eV yr(r) = ¥ VD |

where 6*(s) = sup,,o{st — 0(t)} is adopted in GHOR. In the following table
we give the correspondence between our G-conditions and their 6-conditions.

u 0
. logu(r) . 0(r)

C+’1/2 1'1—1-}120 \/F =0 r—)rgo T =
(G1) iI)l% u(r) =1
(G1)* | u is increasing and u(0) = 1 | 8 is increasing and 6(0) =0
(G2) lim sup log:z(r) < 0o

r—00
(G2)* lim log u(r) < o0 lim &—)— < 00

r—00 T r—co T
(G3) u is (log, z?)-convex 6 is convex

Actually, (G2)* is slightly stronger than (G2). However, (G2) is strong
enough to guarantee that the nuclear spaces I',(E¢) and [E], x are the sub-
spaces of I'(Hc) and (L?)x, respectively. Moreover, although (G1) is weaker
than (G1)*, by Lemma 3.1 in [7] we can construct an equivalent function
satisfying (G1)* even if we begin with (G1). #-conditions corresponding to
(G1)(G2) conditions are not considered in [10].
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