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1. INTRODUCTION

Let {I'(t)};>0 be a smooth hyper surface embedded into R**! and V (¢,z) denote the
normal velocity of the surface I'(t) at z. We consider the mean curvature evolution
equation;

1.1
( ) F(O) = 600, in Rn,

where v = v(z) is the outward unit normal to the interface and k = k(z) is the mean
curvature at r, respectively. We denote a region that is enclosed by the interface at t
as C(t). The equation (1.1) has been widely studied by many authors. Among others,
Evans-Spruck [9] and Chen-Giga-Goto [5] considered a weak solution for (1.1) by a notion
of the viscosity solutions. It is now standard to introduce a level set function to describe
the equation (1.1). For some smooth (continuous) function u : [0, 00) x R® — R such that

L(t) = {(t 2)lu(t,z) = 0},

{V = Ky, in (0,00) x R®,

it follows from (1.1) that
| Vu® Vu
Ou — Au+ ————V3u =0,
(1.2) ¢ |Vul|?
u(0, ) = up(z), 0Cy = {z;uo(z) = 0}.
In this note, we are particularly concerned with an algorithm of numerical computation
to (1.1): a scheme introduced by Bence-Merriman-Osher [3] which compute the motion
by mean curvature by a simple procedure using a linear heat equation.
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Let I'(t) be a smooth surface given by the 0 - level set of a level set function u as
I'(t) = {z;u(t,z) = 0}. We also suppose that I'(¢) is given by the boundary of an inner
region; C(t). We set xc(z) as a characteristic function of C', i

1, ze€C,
xe(w) = 0, z¢C

For the initial data uo(z) = xc(x) — Xc<(), we solve the initial boundary value problem
of the heat equation:

Swu(t, z) — Au(t,z) =0, in (0,400) x R™,
1 zelC
1. = =77 ’ R"™
(1.3) u(0, ) = ug(x) 1 sece in R™,
u(t,z) = —1, (|z] = o0)

up to ¢t = h, where h > 0 is the width of the time discretization. By the solutlon of (1.3)
at t.= h, i.e., up(h, x), we define a new set;

= {z € R"*|ug(h, z) > 0}.

Again we solve the heat equation (1.3) with initial data u; instead of uy. Repeating these
procedure, we construct a sequence of sets {Ci }x=o0,1,. and a solution ux(t; ) of

| Qru(t, ) — Aug(t,z) =0, in (kh, (k + 1)h] x R™,
(1.4) uk(0,7) = xc, (T) — xce(T), in R,
u(t) IE) — -1 (!.’ZI| - 00)7

where :
Cr+1 = {z € R*|ug((k + 1)h,z) > 0}.
Then setting

[Cw(t) = 0C, kh<t<(k+1h k= 012

and keeping T' = kh > 0 as a constant and we let the time step A \, 0: Then we see the
approximation interface I'x(t) converges to the real interface I'(t) which is governed by

(1.1):
" Th(t) — () (0<t<T).

Mathematical proof of the convergence of this approximation scheme has been done by
several authors. See L.C. Evans [7], G. Barles-G. Georglin [2], H. Ishii [12], H. Ishii-G.E.
Pires-P.E. Souganidis [14], L. Vivier [22] and F. Leoni [17] (Japanese surveys can be found
in S. Goto [10] and K. Ishii [15]).

In this note, we briefly explain our proof in GotdIshii—OgaWa [11} of the convergence
of the Bence-Merriman-Osher (hereafter we abbreviate it either by B-M-O or BMO)
algorithm by a different way that is inspired by a result due to H.M.Soner [21] where
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he derived an interface equation from the Allen-Cahn equations. In view for showing
the convergence, the most of previous results were proven by the level set approach and
therefore the convergence of the B-M-O scheme is more or less in-direct way. Our aim
is to show the convergence of the B-M-O scheme in more directly. To this end, we
employed the method of the signed distance function. A function d(t,z) to a set C(t) =
{(t, z); surrounded by I'(¢)} is defined as

[d=z,T@) zecCw),
d(t,z) = {-—d(:c,[‘(t)) z € C(t)°.

It is well-known that the distance function is the Lipschitz continuous and satisfies the
Eikonal equation in the sense of viscosity solution. Moreover once we know that the
distance function satisfies the heat equation, then the corresponding motion of the in-
terface is governed by (1.1) (c.f. [20]). From the B-M-O scheme, we introduce an ap-
proximation signed distance function; z,(t,z) (defined in (3.14) blow) and we show that
zn(t, ) — d(t, z) for any (t,z) as h — 0. In fact, this approximation distance 2, satisfies
the following type of the semi-linear heat equation:

Byzn — Azp + -;ti(wz,,ﬁ —1)=0, t>0,z€R"t,=t—kh,
k
Zh(kh,l‘) = dk(ib‘), t =kh,z € R",

(1.5)

where di(z) is the signed distance function to the approximation interface 8Ck. Then it
is proved that the limit distance function d(t,z) solves a heat equation in the sense of
viscosity solution;

atd —Ad= 0,
(1.6)

—|VdPr+1=0.

This shows the approximation scheme converges to the original motion by mean curvature.
Furthermore, under a slightly stronger assumption, we prove that the derived surface is
in fact continuous in space and time variable.

Hereafter, we use the following notations. UC(S?) is the set of uniformly continuous
functions. || f(z)|lc = ess.sup, |f(z)|.- For a function f(t,z), the lower and upper semi-
continuous envelop are defined by f.(¢,z) = liminf ) f(s,9), f'(t,z) = limsup f(s,y),

(ayy)_'(t'z (a,y)—)(t,z)
respectively. For a set valued function C(t,z) on Ry x R™, C(t) denotes its t-section

ct, ).

2. THE SIGNED-DISTANCE FUNCTIONS AND THE VISCOSITY SOLUTIONS

First, we introduce the “signed-distance function” to describe the motion of the inter-
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Definition. Assume that I'(¢) is a hypersurface in R* and the boundary of a fixed open and
bounded subset C(t) C R™ . Then we define the signed-distance function to 0C(t)(= I'(t));
d(t,);[0,00) x R — R as next

_ ) dist(z,0C(t)), z € C(t),
dt,) = {—dist(m,aC(t)), z ¢ C(t).

REMARK. The distance function to C(t) is the Lipschitz continuous only in z and
satisfies ||Vd||e = 1.

Definition. Let d*(t,z) and d.(t,z) be the upper and lower semi-continuous envelope of
d(t, z). '

Next, we recall the notion of the “viscosity solution” , which is a weak solutions in a
point-wise sense. We consider the level set formulation of (1.1).

Vu® Vu

Ou — Au+ —————V3u =0, in [0,00) x R”,

27) { U u Vul? u in [0, 00)
’U.(O,fl)) = XC’o.(x) - XC’S(:E)) in R™

Definition. (Definition of the viscosity solution of Mean curvature evolution equation)

(i) A bounded and continuous function u € C([0, 00) x R*)NL>([0, oo) x R™) is a viscosity

sub (super)-solution of (2.7), if it holds

Vo Vo _,
(2.8) {thb - (A¢ - V|2 \Y ¢) < ()0, Vo(to,z0) #0,
O — (Ad —nim;) ¢ < (2)0,  V(to, zo) = 0 and |n| # 1.

whenever the test function ¢ € C(R"*!) such that u— ¢ attains its maximum (minimum)
at a point (tg, zo) € ([0, 00) x R").

(ii). We say u € C([0,00) x R™) N L*=([0, 00) x R™) is a viscosity solution of (2.7) if u is
both a viscosity sub- and a viscosity super-solution.

We refer to Crandall-Ishii-Lions [6] for the details of the theory of the viscosity solution,

3. APPROXIMATED DISTANCE FUNCTION

We describe our main idea to show the convergence of the approximated motion by
B-M-O scheme. Let us(t,z); RY x R® — R be the solution of B-M-O scheme that satisfies
for h > 0 and k € N,

Baun— Aup =0,  te [kh,(k+1)h) x R,
(39) uh(khvx) = XCk(m) - ch(.’L'),

Cy = {(t, x);t_l,iﬁl_ up(t,z) > 0} .
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Note that by the maximal principle, u, satisfies ||ux(t,)||eo <1, t# kh.

Our main idea to show the convergence of the BMO algorithm is to consider the ap-
proximation distance function z(t, z) defined from the BMO scheme (3.9). To introduce
this function, we call the result of the singular limit process to the Allen-Cahn equations
(cf. [4], [21]). It is well understood that that the motion of the normal direction of
interface is much smaller than the tangential direction. Therefore the motion of approx-
imated interface is described by the one dimensional heat equation: Let the solution of
heat equation;

u(t,r,n) = u(t,r).
And we initialize the process by setting

u(0,z) = Xco(T) — Xcpe(z) in R™

Then we denote u(t,z) is the solution of the one dimensional heat equation , and the
solution u(t,r) would be given by:

Ir —y?

utrr) == [ e(-"2 ) e 0) - xes)hay

=_\/% ( _: exp(—z—z)dz> .

Hence we introduce an auxiliary function
(3.10) Uo(() = —= / ‘e
. 0 = \/7_r A 7).

We should remark that Uy is a strictly increasing function and satisfies

Us (€) +2¢U5(¢) = 0,
UQ(+OO) = +l, U()(—OO) = —1, U()(O) =1.

(3.11)

Definition (Approximated distance function).
Let u,(t, z) be the solution of (3.9). Then for k € NU{0}, we define z,(¢,z); R x R* » R
by

(312) uh(t, .’17) = Uo (2f;t(+.—$k)h) in (kh, (k + l)h] X Rn,
where
— i ¢ —n?
(3.13) Uh(0) = = /0 e dn.
Therefore z), is defined by
(3.14) z(t, ) = 2Vt — kh x Uy  (un(t, 7)) (¢ # kh).

REMARK. It should be mentioned that Leoni [17] considered the B-M-O scheme de-
duced from a semi-linear heat equation. Her method is based on the Perron-Ishii argument
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of the viscosity solution. She used some upper and lower barrier that is closely related to
the above function we defined.

We now introduce the approximation surface and limiting regions N and P which are
separated by the limiting surface, where each of them represents the out-side and inside
of the surface, respectively. ’ '

Definition. Let functions z* and z, defined by

Z*(t,r) = limsup zn(s,y)
h—0 (8,y)—(t,x)

L(t,z) = liminf  2z,(s,y).

wba)= ] () (52 n(:9) |

Definition. (Limiting interface and separated regions)

N ={(t,z)|z*(t,z) < 0} (outside of interface),
(3.15) P = {(t,z)|z.(t,z) > 0} (inside of interface),
I'=(NUP)* (interface).

;From above definition , clearly N and P are open set. Therefore I is closed set.

4. MAIN RESULT

By the motion by mean curvature, the interface occasionally shrink into one: point.
Namely the interface may disappear within a finite time. Therefore we show the conver-
gence of the algorithm while the interface survives. To be specific, we define the extinction
time of the interface and shall only handle the interface until the extinction time.

Definition (the extension time of interface).
T.e = sup {T € [0, +00) | |2*(t,z)|, |2.(t,Z)| < +o00, for all(t,z) € [0,T] x R"}.

In previous subsection we define z, as a function that denote the distance from the
interface ( that denote the motion of the interface ). To show the convergence of the
BMO scheme, we claim that

an(t,7) — d(t,z)  (h—0)

where d(t, z) is signed-distance function to I'(t) , and d(t, =) satisfies the mean curvature
evolution equation. ' '

In general, there is a case that interface at some time has interior point, although the
first interface do not have any. This phenomenon is called as “fattening of the interface”
and large part of this cases still remains open. If I'(¢) has an interior point, the approxi-
mation from the inside is not equivalent to one from the outside. Here we only consider
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the case when the fattening do not occur. In order to assure this case, we assume that
for all t > 0,
int I'(t) = 0.

Theorem 4.1. (Main Theorem)[11] We let I' = R*\(P U N) and intTy = 0 . Then
fort € [0,T..), the approzimation distance function zy(t,z) by the B-M-O scheme (3.9)
through (3.14) converges to the limiting distance function d(t,z) = dist((t, z),T;) to '(¢t).
Namely

(4.16) zy(t,z) = d(t,z) (¢,z) € [0,T.x) x R™.

Moreover d is a weak solution of the mean curvature flow (2.7) in the sense of the viscosity
solution. Namely for d,;its upper semi-continuous envelop, d*, d' = (min d((¢,z),0))*,
d* = (max d((¢,z),0))*. Then &' and, d* satisfies that

0,d, — Ad, + %Dz d, < 0 (viscosity sub-solution),
(4.17) e o T
8 d" — Ad* + %%DZJ‘ > 0 (viscosity super-solution).

In particular , the motion of the limiting interface I'(t) governed by the mean curvature
flow in the weak sense.

REMARK. The saturated distance function which represents the limiting function of
zn(t, ) satisfies equation (2.7) only on I'(¢). In this sense, the evolution is understood in
a weak sense. The theory of the viscosity solution is necessary for this formulation.

Under the slightly stringent condition on the interfaces, it is possible to show the
limiting distance function to the interface is continuous respect to (t,z) ([11]).

Theorem 4.2 ([11)). If the interface satisfies
I'(t) = 0P(t) = ON(t),
then
(1)L'(t) is continuous in the sense of Housdorff distance .
i.e.,
lim dgr(T(£), D(s)) = 0
(2) Distance function d(t,z) is continuous with respect to (t,x).

(3)In addition, for (t,z) € [0,+o00) x R™, the approzimated distance function z, converges
to the distance function d locally and uniformly as h — 0.

REMARK. Note that the condition
I'(t) = OP(t) = ON(t)
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implies int T'(¢) = @, while the reverse is not necessarily true.

5. EQUATION OF THE APPROXIMATION DISTANCE

In this section, we derive several nature of the approximation distance function z(t, z).
Naturally from the definition, z;, solves some semi-linear heat equation:

Proposition 5.1. Let z;, be the approzimation distance function defined in (3.12). Then
there holds

Zh 2
- ot _ B —-1)= k+1)h R®
(5.18) Opzp — Az + 20t — kh)(|VZh| 1) =0, te(kh,(k+1)h],zeR",

zh(O,x) = do(fl?), rz e R".
Moreover, zy is subject to the a priori estimate,

IVzr(t, Moo <1 fort € [0,Tes)-

Proof of Proposition 5.1. Since u,(t,z) = Uy (;}gﬁ%) satisfies (3.9),

0 =(t — kh) 30y (-) x ((t —k0n(E) _ 2t m))
Vzp(t) Azy(t)

2

J— 2(t —_— kh)_lU()”(') X '—'2— - (t - kh)—1/2U0,(') X ("_2“—) .

From Uy”(¢) + 2¢Uy’(¢) = 0 in (3.11), we have
Zh

2(t — kh)

By differentiating the both sides of (5.18) by z;,

Vizn(|Vzn|2 — 1) 2h
-VV,z,) = 0.
ot kh) T iomR vV Vi)
Multiply the both sides of above equation by V;z, , and make a summation over 7 =

1,2,...N. Then letting w = |Vz4|?,

(?tzh - AZh + (IVzhl2 - 1) = 0.

6t(V,-zh) - AVizh +

w 2z, 2. 12
- — . =—|V <
(5.19) Ow — Aw + t—kh(w 1)+ t—kh(vzh Vw) |V*z4]° <0,
w(0,z) = 1.
Since w(t,z) = 1 satisfies
_ _ w _ 22), N
(5.20) Gtw—Aw—i—t_kh(w—l)—I—t—_—ﬁ(Vzh Vo) =0,
w(0,z) =1,
applying the comparison principle, we conclude w(t, z) < 1. Hence 2, satisfies || V24 (:, ") loo <
1. a

One may obtain that the limiting functions z* and z, are subject to the Eikonal equation
in the sense of the viscosity solution.
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Proposition 5.2. 2* is viscosity sub-solution of the Eikonal equation —|Vz|> +1 =0 on
N. ie., 2* satisfies

(5.21) —|VZ* 2 +1<0 inN = {(t,z)|2*(t,z) < 0}

in the viscosity sense.
z. 15 viscosity super-solution of —|Vz|2+1=0 on P. i.e., z, satisfies

(5.22) IVal2—1>0 inP={(t )zt z) > 0}

in the viscosity sense.

6. OUTLINE OF THE PROOF OF MAIN THEOREM

Proposition 6.1. (1) u,(t,z) = +1(h = 0) locally uniformly on P.
(2) un(t,z) = —1(h — 0) locally uniformly on N.

Proof of Proposition 6.1. We shall only show (1), since (2) is similar. For any
compact set K CC P, let (ty,70) € K and define z,(tp,z5) = v > 0 . Then for any
|t — to| <9, z € Bs(zy) , there exists § > 0 such that

1 1
z:(t,z) 2 s2.(to, To) = 57 > 0.
» 2 2
Therefore suppose that there are hy > 0,y > 0 satisfying
1
Zh(t, :1}) > §Z,(to,$o) >0, 0<h< ho, |t - t0| < (50, T e Bs(:l,'()).

Since Uy(r) < 1 and U is a monotone function ,

w60 5 (L)
2Vt —kh/) — 4t —kh)
When kh <t < (k+1)h (0 <t — kh < h), by passing h — 0, we deduce

1 Z uh(t,:c) = Uo (

.. il
iminf Uy | ——=) > 1,
A0 (4\/—t—kh> =
which shows
’llintl)uh(t, z)=1 onB;(zo) x {|t — to| < 4}
uniformly. Since K is arbitrary compact set, u, converges 1 locally uniformly on P.
O
Proposition 6.2. Assume that int I'(t) = @ and
disi(z,T'(t)), =z € P(t),
d(t,z) = { — dist(z,['(t)), z € N(t),
0, z € T'(¢).
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Then for any (t,z) € {[0,Tz) x R™}, we have

(6.23) z(t,z) = di(t, z) = d(t, z), (t,z) € P,
(6.24) 2*(t,z) = d* (¢, z) = d(¢, z), (t,z) € N,
(6.25) d*(t,z) = d(t,z) =0, (t,z) € T N{(t, z)|z*(t,z) = 0},
(6.26) d.(t,z) =d(t,z) =0, (t,z) € TN {(t, )|z (t,z) =0},

where d* and d, are the upper and lower semi-continuous envelope of d, respectively.

REMARK. Since I' is not necessarily equal to 8N (or 0P), d(t,z) is not necessary the
signed distance function to the interface I'(t).

We invoke the following lemma due to Barles-Soner-Souganidis [2]. This assures that the
signed-distance function satisfies the mean curvature evolution equation.

Lemma 6.3. (2] If z, is viscosity sub- (super-)solution of O;z, — Az, = 0 and viscosity
solution of |Vz,| = 1, z. is viscosity sub-(super-)solution of the Mean curvature evolution

V2. ®Vzi o
8tz* - <AZ* - Wv Z*> = 0

equation ;

We are now ready to show Theorem 4.1(Main Theorem).

Proof of Theorem 4.1 (Main Theorem). The convergence of the approximated
distance function (4.16) has been shown by (6.23)-(6.26) in Proposition 6.2.
We recall that from Proposition 5.1, 2, satisfies

. .
ach - Azh + i_(—t—h—k)h)GVZhP - 1) = 01 (t,.’L’) € [01 Te:c) x R™.

We show that z* is the sub-solution of (2.7). The other case is quite similar.
If (to,z0) € P, zn(to,zo) > 0 . Additionally by Proposition 5.1, IVzh|loo < 1 implies

Buzn — Azp >0 for all h € (0,1)

on P. Let ¢ € C*® be a smooth function and (¢, zo) be a strict local minimizer of z, - o,
Hence z,(t, z) is finite and and there exist a subsequence h,,, and local minimizers (tm, Zm)
of the difference z, — ¢ converging to (t,z) as k — oo. Hence on (¢, Zm)

8tzhm - Azhm 2 0.
In other hands, since 2 (tm, Tm) — @(tm, Tm) attains the minimum (note that 25 is smooth),
Bsd(tm, Tm) = Oszn,, (tmy Tm), Az, (tm, Tm) = Ad(tm, Tm).

Therefore
Oip— Ap >0  at (tm,Tm)-
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By passing m — oo in above inequality, we see that z, satisfies
Oze — Nz, >0

in the sense of the viscosity solution.
Proposition 6.2 and Lemma 6.3 implies conclusion of theorem. a

REFERENCES

[1] Barles,G., Georgelin, C., A simple proof for the convergence of a n approximation scheme for com-
puting mean curvature motions, SIAM J. Num. Anal., 32 (1995), 484-500.

[2] Barles,G., Soner, G. M., Souganidis, P.E., Front propagation and phase field theory, SIAM J. Control
Optim., 31 (1993), 439-469.

(3] Bence, J., Merriman, B., Osher, S., Diffusion generated motion by mean curvature , in ”Compu-
tational Crystal Growers Workshop” J.E. Tayler ed. Selected Lectures in Math. Amer. Math. Soc.
Providence 1992.

[4] Chen,X., Generation and propagation of the interface for reaction-diffusion equations, J.Differential
Equation, 96 (1992), 116-141.

[5] Chen,Y.G.,Giga,Y.,Goto,S., Uniqueness and existence of viscosity solutions of generalize Mean Cur-
vature flow equations, J.Differential Geometry, 33 (1991), 749-786.

[6] Crandall,M.G.,Ishii,H.,Lions,P.-L., User’s guide to viscosity solutions of second partial differential
equations, Bull. Amer.Math.Soc., 27 no.1 (1992), 1-67.

(7] Evans, L.C., Convergence of an algorithm for mean curvature motion , Indiana Univ. Math. J., 42
no.2 (1993), 533-557.

(8] Evans,L.C., Soner,H.M.,Souganidis,P.E., Phase transitions and generalized motion by mean curva-
ture, Comm.Pure Appl. Math., XLV (1992), 1097-1123.

[9] Evans,L.C.,Spruck, J., Motion of level sets by mean curvature 1, J. Differential Geom., 33 (1991),
635—681.

(10] Goto, S., SE¥gEhERFT AR DO IIEMRNT- BMO Algorithm- BIRRIFFAMZTER 1045 (1998), 53-56.

[11] Goto, Y., Ishii, K., Ogawa, T., Convergence of the approximation scheme of the motion of the mean
curvature in the Bence-Merriman-Osher argolithm, preprint, Kyushu Univ.

(12] Ishii,H., A generalization of the Bench, Merriman and Osher algorithm for motion by mean curvature,
Gakuto Int. Ser. Math. Sci. Appl., 5 (1995), 111-127.

(13] Ishii,H.,Ishii,K., An approximation scheme for motion by mean curvature with right-angle boundary
condition, SIAM J.Math.Anal., 33 no.2 (2001), 369-389.

[14] Ishii,H.,Pires,G.E.,Souganidis,P.E., Threshold Dynamics type approximation schemes for propaga-
tion fronts, J.Math. Soc. Japan, 51 no.2 (1999), 267-308.

(15] Ishii,K., SRR T 5 2 DOIELREIC DWW T, BERRFTIFAMIe 1123 (2000), 20-29.

(16] Ishii,K.,Soner,H.M. Regularity and convergence of crystalline motion, SIAM J. Math. Anal., 30 no.1
(1998), 19-37.

[17] Leoni,F., Convergence of an approximation scheme for curvature-dependent motions of sets,preprint.

(18] Mascarenhas,P., Diffusion generated motion by mean curvature, Campas report, Math
Dept.,University of California, Los Angeles.

[19] de Mottoni,P., Schatzman,M., Development of interface in R, Proc. Roy. Sci. Edinburgh, Ser A
116 (1990), 207-220.

(20] Soner,H.M., Motion of a set by the curvature of its boundary, J.Differential Equations, 101 (1993),
313-372.

(21] Soner, H.M., Ginzburg-Landau equation and motion by mean curvature, I; convergence, J. Geometric
Anal., 7 no. 3 (1997), 437-475.

[22] Viver,L., Convergence of an approximation of an approximation scheme for computing motions with
curvature dependent velocities, J.Diff. Integral Equations, Vol.13 (10-12) (2000), 1263-1288.



