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1 Introduction.

David Hilbert proposed the 23 famous problems in his address at the 1900 In-
ternational Congress of Mathematics in Paris. The following is the 17th prolem
of them.

Hilbert’s 17th Problem. Is every nonnegative polynomial function on R™ a
sum of squares of rational functions?

Let A be a commutative ring. Remember that an ideal I of A is a real ideal
if, for every sequence ay,...,a, of elements of A with a% 4+ 4 af, € I, we have
ai,...,ap € I. On the other hand, we set

Zooly(I) := {a € R™; f(a) = 0(Vf € I)} and
Ipoly(Z) = {f € R[xl’ - )mn];f(a) = O(VG' € Z)}

for every ideal I of R[zy,...,z,] and for any subset Z of R™.

Real Nullstellensatz. Let I be an ideal of R[z1, ..., Z5]. Then Zyoy (Zpory (1)) :
I if and only if I is a real ideal.

Hilbert’s 17th Problem was solved by Emil Artin in 1927 [A] and it is known
that above Real Nullstellensatz also holds true. Hilbert 17th Problem and Real
Nullstellensatz are problems on polynomial functions. Real algebraic geometers
solved the problems on Nash functions similiar to Hilbert’s 17th Problem and
Real Nullstellensats.

Hilbert’s 17th Problem for Nash functions. Let R be a real closed field
and M C R™ be a semialgebraically connected Nash submanifold. Then
every nonnegative Nash function on M is a sum of squares in the ﬁeld of
fractions of the ring A (M) of Nash functions on M.

Real Nullstellensatz for Nash functions. Let R be a real closed field and
M C R™ be a Nash submanifold. We set

Znash(I) == {a € M; f(a) =0(Vf € I)} and
Inash(Z2) == {f € N(M); f(a) = 0(Va € Z)}



for every ideal I of N (M) and for any subset Z of M. Then an ideal T of
N (M) is a real ideal if and only if Znash(ZNash(I)) = 1

An o-minimal expansion R of the real field is a collection of subsets of Eu-
clidean spaces R!, R?, ... satisfying a few simple axioms which is satisfied for the
collection of all semialgebraic subsets. In other word, the notion of o-minimal
structures is a simple model-theoritical generalization of Real algebraic geome-
try. Therefore, it is natural to propose the problems whether the ring C4;(M)
of definable analytic functions on M satisifies the following Hilbert’s 17th Prob-
lem and Real Nullstellensatz for definable analytic functions for each o-minimal
expansion R of the real field. Here M denotes a definable analytic submanifold
of some Euclidean space.

Hilbert’s 17th Problem for definable analyic functions. Assume that M
is connected. Then every nonnegative definable analytic function on M is
a sum of squares in the field of fractions of the ring C4(M).

Real Nullstellensatz for definable analytic functions. We set

Z(I) = Zg¢(I) := {a € M; f(a) = O(Vf € )} and
I(Z) = Zat(Z) := {f € Cg%(M); f(a) = 0(Va € Z)}

for every ideal I of C5;(M) and for any subset Z of M. Then an ideal [
of C§;(M) is a real ideal if and only if Zy¢(Z4¢(1)) = I.

We solve these problems in the low dimensional cases in the present paper.
Precisely,

Theorem 1.1. Consider an o-minimal ezpansion R of the real field and a
definable analytic submanifold M of some FEuclidean space. Assume further
that one of the following conditions s satisfied. '

1. dim(M) <1

2. All compact analytic subsets of Euclidean spaces are definable in R and
dim(M) = 2 :

8. The o-minimal structure R is the structure such that all compact analytic
subsets of Euclidean spaces are definable, it admits an analytic cylindrical
definable cell decomposition and the rings Cg{N) are Noetherian for all
definable analytic submanifold N of Fuclidean spaces of dimension= 3.
Assume further dim(M) = 3.

Then the followzng statements hold true.

Hilbert’s 17th Problem. Any nonnegative deﬁnable analytic function on M

s a sum of squares in the field of fmctzons of the ring Cy{M) when M is
connected.

Real Nullstellensatz. An ideal I of Ci(M) is a real ideal if and only if
Taf(Zaf(I)) = I.



2 Review: Real Algebra.

We review the notions concerning a real spectrum.

Definition 2.1 (prime cone). Let A be a unitary commutative ring. The
subset a of A is a prime cone of A if a satisfies the following conditions.

l.a+aCa
a-aCa

a? € o for every a in A

L T

-1¢a
5. fabe afora,be A, thena € aor b€ a.

Notation 2.2. The set supp(a) = a N —a is a real prime ideal of A. Let
k(supp(a)) denote the field of fractions of A/ supp(a). The prime cone a induces
an ordering <, of the field k(supp(a)). The ordering is defined as follows.

0Ly aca,

for every a € A, where @ denotes the class of a in k(supp(a)). We simply denote
a(a) > 0if a >, 0. We also define a(a) =0, a(a) < 0 and a(a) > 0 in the same
way.

Definition 2.3 (Spec, A). The real spectrum of A, denoted Spec, A, is the
topological space whose points are the prime cones of A, and whose topology is
given by the basis of open subsets

U(ay,...,a,) = {a € Spec, A;a:1(a) >0,...,a,(a) > 0},

where {a1,...,a,} is any finite family of elements of A. This topology is called
the spectral topology.

Let a, 8 be two points of Spec,. A. If the condition a C (3 is satisfied, we say
that 3 is a specialization of «, or that « is generalization of 3. We abbreviate
this condition to a — £.

The following theorems are direct consequences of Real Algebra.

Theorem 2.4 (Hilbert’s 17th Problem for a commutative field). Let K
be a commutative field. Define 3 K? as the set of all finite sums of squares of
elemets of K. Then 3 K? = \yespec. k @

Proof. [BCR, Corollary 1.1.11] ®

Theorem 2.5 (Real Going-down for Regular Homomorphisms). Let
¢ : A — B be a homomorphism between commutative rings. Let 3 — «a in
Spec,.(A), and let o’ € Spec,(B) be such that '

#*(a’) := {a € A;¢(a) € o'} = .



Suppose that the local domain Apa = Asupp(a)/ supp(B) is excellent and the
induced homomorphism Ago, — B ® Ago 1s reqular. Then there exists 3 €

Spec,.(B) such that ' — o, hi(supp(8’)) = ht(supp(B3)) and ¢*(8') = 3.
Proof. [ABR, Theorem 7.1] B

Proposition 2.6 (Artin-Lang Property for convergent power series).
Let R{z,,...,z,} denote the ring of convergent power series. Let a be a prme
cone of R{z1,...,zn} and f1,..., fp, g be a sequence of elements of R{z1,...,z,}
such that fi(a) > 0,..., fp(a) > 0,9(a) = 0. We may regard f,..., fp, g as real
analytic functions on an open neighborhood U at the origin in the n-dimensional
Euclidean space. Then the germ of the set {x € U; fi(z) > 0,..., fp(z) >
0,9(z) = 0} at the origin is not empty.

Proof. [R, Proposition 3.4] B

3 One-dimensional Case.

We prove Theorem 1.1 when dim(M) = 1 in this section. We may assume that
M C R" is connected without loss of generality.

Let p be a prime ideal of C§(M) with Z(p) # M. Fix ¢ € Z(p). For
all @ € R™, S, ; denote the polynomial functions on R™ defined by S, ,(y) =
dist(a, y)? — dist(a, z)2. Here dist(a,z) denotes the distance between a and z.
Choose a, b, c and d € R™ suitably. Then we may assume the following.

e The zero set of S, ; intersects with M transversally and so does the zero
set of Sp .

e 5;10)NM = {z,2'} and S,,_’;(O) NM={z,z"}
* So2 (0N S (0)NM = {z}
o S;L(0)NM ={z'} and S;1.(0) N M = {z"}

From now on, S, . also denotes the restiction of S, , to M. This abuse of
notation will not confuse the readers.

We first show that p = m; := {f € C4(M); f(z) = 0} and p is finitely
generated. We have only to show that p is generated only by S, , and Sp ;.
However, for any f € p, S . f is divisible by S, ; and Sq .~ f is also divisible by
Sb,z- Especially S(a,z), S(b,z) € p because p is prime. Remark that +S. ./ +
S4,z» is an unit in C§(M) if we choose the signs properly. Therefore, f €
(Sa,z, Sb,x)-

Proof of Real Nullstellesatz. It is obvious when I is a prime ideal because
all prime ideals are of the form m; or (0). It is also trivial that I is real if
I(Z)) =1

Next consider the case when I is a real ideal. Remark that a real ideal is a
radical ideal. Consider the irreducible primary decomposition I = p; N---Npy,.
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Since I is radical, we may assume that all p; are prime. We show that all p;
are real. Let fy,..., fr be definable analytic functions with f2+-+ f2ep;.
Choose h € (), ; pi \ p;- Then (hfi)2+---+ (hfr)? € I. Since [ is real, all hfy
are in 1. Particularly, hfx is in p;. Therefore, fi € p; because h ¢ p;. We have
shown that all p; are real. Since p; = I4(Z(p;)) for all j, it is obvious that
I =14(Z(I)). m

Proof of Hlbert’s 17th Problem. Any nonnegative definable analytic function
f is obviously divisible by SZ_ + SZ_ if f(z) = 0. Hence f = u[e (52 .. +

a;,Tq
S',i,zl_)m", where u is a positive function on M. We have finished the proof. B

Remark 3.1. For any ring A and elements a,b,c,d € A, the equation (a? +
b%)(c? + d?) = (ad — bc)? + (ac + bd)? holds true. Hence the above proof of
Hilbert’s 17th Problem claims the stronger fact that any nonnegative definable

analytic function on M is a sum of two definable analytic functions on M if
dim(M) = 1.

4 Basic lemmas

We first fix an arbitrary o-minimal expansion R of the real field and a definable
submanifold M of an Euclidean space.

Lemma 4.1. Any mazimal ideal m of C3{M) is of the form
m, =myl = {f € C:f(M);f(x) =0},
where x € M.

Proof. Any real analytic set is locally homeomorphic to an union of finite
cones at any point by [S, Theorem II, p.96]. Remark that, if a real analytic set
is locally homeomorphic to some Euclidean space at some point, the germ of
this analytic set at the given point is analytically irreducible as a germ of real
analytic set. Since an o-minimal structure admits finite definable cell decompo-
sitions, any definable real analytic set particularly has only finite analytically
irreducible components. Whence, for any family ¥ of definable analytic func-
tions on M, there exists finite definable analytic functions f,..., fr € ¥ with
Nsew f710) = ﬂle F7H0).

There particularly exist finite elements f, ..., fix € msuch that ﬂ fem Z(f) =
Nici<k £(fi). If the zero set of Zle f? is empty, Zle f2 is invertible. Contra-

diction. Choose a point z of the zero set of the function Zle f2. It is obvious
that m C mM because m is maximal. B

Lemma 4.2. Let o € Spec,(C4{(M)) be a prime cone. Then the set
{z € M; fi(z) >0,..., fm(z) >0}

s not empty for any finite family f1,..., fm € a.
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Proof. We show it by the reduction to absurdity. As was shown in the
proof of Lemma 4.1, there exist finite elements hy,...,hx € supp(a) such that
ﬂhESUpp a) 1(0 ﬂl<1.<k % (0) We set fm+1 Zi’c:l h‘i'

Set F; = {z € M; fj(z) > 0} and G; = {z € M; fi(z) > f;j(z) for any 1 =
1,...m+ 1} forall j =1,...m+ 1. The intersection Fj ()G, is empty because
({z € M; fi(z) < 0})i=1,..m+1 is an open covering of M by the definition.
Define the definable continuous function ¢ : M — R as follows.

| max;—1,....m+1 fi(z)]
| min;—1,....m41 fi(z)]

$(z) = (m+2) x

We will construct positive definable analytic functions P, ..., Pnh4; on M sat-
isfying the following conditions for any j.

Pj>q‘>onGj
Pj<10nFj

Fix the number j. Arranging (f;) in a suitable order, we may assume that
j=m+ 1. First set

N =R™t1\ {(z1,...,Zm,y) € R™ Ly > 0,z; > 0 for all i},
F={(z1,-..,Zm,y) € N;y > 0} and
G={(z1,-.-,ZTm,y) € N;z; > 0 for all i}.

Let dr and dg denote the distance function from F and G, respectively. We
next define two kinds of semialgebraic functions @ and 1, on N, where r is a
positive number.

Q1) Tm¥) = VP2 + (@1 +Y)2+ - + (Tm + ¥)2 X (M +2)

Y1y ) = ol YO

T l‘a--'a ms Y _dF+dG 2(dF+dG)

It is easy to see that 1, > 0 on N and ¥, > %, on N if v’ > r. There exists
a Nash function P’ on N with |'¢% — P <9y 3 by Efroymson’s Approximation
Theorem. Obviously, P’ > 0 on N, P’ < |yl on G and P’ > @ on F. Hence,
Q/P' > (m+2) x [ max{z1 + 9, &m * YU} 1 and Q/P < 10n F. The

'min{xl + Yy s Tm +y7y}|
function P,,+; on M defined by

QUf1(z) = fm+1(®), - -+, fm () = fnt1(2), Fm+1(2))
P’(fl(x) - fm+1(x)a s ’fm(m) - fm+l(m)’ fm+1(x))

satlsﬁes the requlred condition.

Any positive definable analytic function g on M is contained in o because
g = (v/9)? and /g is a definable analytic function. Particularly, P; € a. Hence
the definable analytic function Zm+1 P;f; is contained in «; nevertheless, it
is negative on M because |P;f;| > (m + 2)|max f;| when f; reaches to the
minimum value among (f;)i=1,...,m+1. Therefore it is not contained in a. Con-
tradiction. B

Pm;i-l (.’L‘) =
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We next consider an o-minimal expansion R of the ristricted analytic field
Ran. Remember that the o-minimal structure R,, is by definition the smallest
o-minimal expansion of the real field such that all compact analytic subsets of
Euclidean spaces are definable. Hence all compact analytic subsets of Euclidean
spaces are definable in any o-miniaml expansion R of R,y.

Proposition 4.3. Consider an o-minimal ezpansion R of R,,. Let M be a

definable analytic submanifold of R™ and N be a definable open subset of M.

Assume that Cy(M) and Cj{N) are both noetherian. Then the localization
ot (M )p s an excellent and regular local ring for any prime ideal p. Further—

more the natural ring homomorphisms Cg(M) — Cg{(N) and C3{M) —

are regular homomorphisms, where T is a poznt of M

Proof. 1t is obvious that the Krull dimension of C§(M),, is more than or
equal to dim(M) for z € M. We first show that Cg(M),,m is a regular ring
whose Krull dimension dim(M) and that mL C4(V )mp is generated by mM

Fix a point z € M. We may assume without loss of generality that = =
(0,...,0,1) and that M is contained in the unit sphere S*~1. Choose a linear
function f; on R™ such that z € f{(0), f;1(0) is transversal to M at z and the
connected component of f;'(0) N M containing z is compact. Let C“(M) be
the ring of germs of analytic functions on M. Since any connected component
of an analytic set is also an analytic set, there exists an analytic function on
h € C*(M) with h(z) # 0 such that hf is divisible by f; for any analytic
function f on M vanishing on X.

Let mx be the ideal of analytic functions on X vanishing at z. Since X
is a coherent analytic set, one can easily show that myx is generated by the
coordinate functions z,...,z, by Cartan’s Theorem B [Cartan, Théoréme 3|.
It is obvious that dim(M) — 1 of them, say, 1, ..., ZTdim(m)—1 is nonsingular at
z on X and the other coordinate functions are generated by xi,. .., Zgim(rm)-1
as elements of C¥(X),,. Particularly, C¥(X)m, is a regular local ring and
there exist f3,..., fimrn € C¥(X) which generates the maximal ideal mx in
C¥(X)mx - By Cartan’s Theorem B, there exist analytic functions fa, .. ., fdim(M)
on 5™~! such that the restriction of f; to a neighborhood of X coincides with
fi for any j = 2,...,dim(M).

We show that mM 4(M)mm is generated by fi,...faima)- Fix a de-
finable analytic functlon f on' M vanishing at z. There exist analytic func-
tions g3,...,9gim(n) and k' on X such that h'f = Z?fg(M) gifi on X and
h'(z) # 0. Choose an analytic extension gz, . .., gdim(m) and h of g5, . . ., gdim(M)
and A’ on S™7!, respectively. It is possible by Cartan’s Theorem B. By the
way of construction, hf — Zd’m(M) gifi is an analytic function on M vanish-
1ng on X. Therefore there exists an analytic function g; on M with ¢ f; =
hhf — 5050 haifi, that is, hhf = g1 fr + T3 M Rgifi. All fi, gj, hoand h
are definable for i = 1,...,dim(M) and for j = 2,...,dim(M) because they are
analytic on S™~1 or on M . It is obvious that g, is deﬁnable. We have shown that
Cgr(M)mm is a regular local ring whose Krull dimension is dim(M). The ring
C4i(M) is regular and its Krull dimension equals dim(M) by Lemma 4.1 and by
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[M1, Theorem 19.3]. We can show in the same way that Cgi(M),m is excellent
using [M2, Theorem 102]. We omit the details. Remark that fi,..., faim(am)
also generate the ideal C(N v -

We next show that the natural ring homomorphisms C§;(M) — C§(NV) and
C3(M) — Oy are regular homomorphisms. The proof of that C5(M) — O, is
regular is similar to that of the regularity of the homomorphism C§{(M) —

C4(N). Therefore we only show the regularity of the homomorphism ¢ :

C§(M) — C§(N). Fix z € N. Consider the following diagram.

Cé’f(M)my - Cﬁ’f(M)my

! !

Cit(N)my —— CG(N)my

The second vertical arrow is an isomorphism because ¢(mM) = mlY. Since both
C§(M)mm and Cgi(N),n are both excellent rings, the first honzontal arrows
are regular and faithfully flat. The first vertical arrow is therefore a regular
homomorphism by [M1, Theorem 32.1]. Summing up, the homomorphism ¢ is
regular by Lemma 4.1. B

Corollary 4.4. Let R and M be the same as in Proposition 4.8. If the first
cohomology class H'(M,Zs) is zero, then Cy(M) 1is an unigque factorization
domain.

Proof. The proof is exactly the same as [BE, Theorem 4.1]. Hence we omit
the proof. B

5 Two-dimensional Case.

We fix an o-minimal expansion R of R,, in this section.
Fix a prime cone a of C§;(M). We set 'y, as the family of all closed deﬁnable
subsets of the form

S={ye M;fi(y) >0,..., fm(y) >0},

where f1,..., fm is a finite family of elements in a. Remark that any element
of I'y is not empty by Lemma 4.2.

Lemma 5.1. Fiz a prime cone a of Cg{(M). Assume that the intersection

MNser, S is not an empty set. Then the set (\gcp_ S consists of only one point -

z and the prime cone has the specialization .z, where oz = {f € C4(M); f(z) >

0}.
Proof. Obvious. B

Theorem 5.2. Consider an o-minimal ezpansion R of Ry and a 2-dimensional
definable analytic submanifold M of some Euclidean space. Then C4 {M) is a
Noetherian ring.
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Proof. Let M be contained and bounded in R™ and we can also assume that
M is connected. Let M€ and M denote a complexification of M and its germ
at M, respectively. (A complexification is always considered in C™ and of class
C¥. ) Here note that MC is unique but MC is not so. We set O = O @i C
and define OF to be the sheaf of holomorphic functions on MC.

For a subset p of C¥(M), let Z(p) denote the common zero set of p and be
called a global analytic set. We next define Z€(p) the germ at M of a complex
analytic set of some MC as follows. The sheaf p® of O-ideals generated by p is
coherent. It is easy to choose MFE€ where pOF is extendable as a coherent sheaf

of OC-ideals. Let pOC denote such an extension. We define Z€(p) to be the

germ at M of supp(O€/pOC). We regard Z€(p) ¢ M€ and M c MC. Remark
Z(p) = supp(O/pO) and Z(p) = Z%(p) N M. The notation dimc Z(p) denotes
the complex dimension of Z€(p). We call a germ of the form Z%(p) a complex
analytic set germ (at M). It is known that a complex analytic set admits a
unique decomposition into irreducible ones..

We first show that a prime ideal p of C4;(M) is finitely generated if Z(p)
is compact. Remark that pC*(M) is finitely generated. Hence there exists
a finite family fi,..., fmm of elements of p which generates pC¥(M). Chaging
fryooos frm with f1 + K72, f2), s fr + K(Q2T2, f7) for some large K, we
may assume that fi_l(O) are compact for all 7. Fix an arbitrary element f of p.
Remark that (fi,..., fm)C¥(M) = H(M, (f1,.--, fm)©O) by Cartan’s Theorem
B. Since Z(p) is compact, f! € (fi,..., fm)C¥(M) by Hilbert Nullstellensatz.
Let 7 mean the trivial extension of a sheaf T of O ps-ideals with compact support
to one of Ogn-ideals defined by Z, = O, for x € R® \ M. By Cartan’s theorem
B, the sequences '

0 — HO(M, 10) — H(M,I(A)) & H°(M,Z(A)/f,0) =0
HO(R™, (f2, .-, fi)0) &= HO(R™,Z(A)/ /10)

are exact, and we can identify HO(M,T(A)/f10O) with HO(R™, Ig~(A)/f10).
Hence there is hy € HO(R™, (fa, . .., fi)©O) such that gr~(h1) = q(f), and, there-
fore, f — hy|p € HY(M, £,0). Let g; € C¥(M) be such that f — hy|p = 91f1-
Then hi|p and, hence, g; are definable. In the same way, we can construct
hy € H°(R™,(f3,..., fx)O) and g, € C§(M) such that hi|p — haolm = g2fa.
Repeating these arguments, we can construct gs, ..., gk satisfying the required
property.

We next show that a prime ideal p of C4;(M) is finitely generated if Z(p)
is not compact. We want to show that Z€(p) has no analytically irreducible
cmponents C such that C N M is compact. Assume the contrary.

If dimc(C) = 1, there exists a definable analytic function h on M such
that Z€(h) = C and any analytic function vanishing on C is divisible by h in
C¥(M) as shown before. Remark that h ¢ p by the definition of C. Fix an
arbitrary element f of p. Then f/h* € p vanishes on all analytically irreducible
components of Z€(p) except C for some k € N. Contradiction to the definition
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If dimc(C) = 0, we can easily construct a definable analytic function f € p
such that any analytically irreducible component Y of ZC(f) containing C satis-
fies the condition dim(Y N M) = 0. Therefore, as in the case when dim¢(C) =1,
we can construct a definable analytic function g € p such that Z€(g) has no an-
alytically irreducible components containing C except {Y;}, where {Y;} denote
the analytically irreeducible components of Z(p) containing C'. Contradiction
to the definition of C. We have shown that Z€(p) has no analytically irreducible
cmponents C such that C N M is compact.

Let {X;} be the irreducible components of Z€(p). Set X = |J, X;. We
want to see p = Iqs(X). Clearly p C I35(X). Assume the contrary. Remark
that I4¢(X)@, is principal for each x € M. Obviously I4¢(X)? is also principal
by [Cain]. Let f be its generator and choose 0 # g € p. Then g2?/f™ for
some m € N is an element of p, but does not vanish on some X;. This is a
contradiction.

We show that p is finitely generated. Choose an analytically irreducible
component X;. Remark that I3(X;) = p. There exists a f € I4(X) whose
multiplicity on X7 is just 1. It is easy to construct g € psuch that (g©)~1(0) = X
and g > 0 on M. Let {Y;} be analytically irreducible components of (f€)~1(0)
each one of which is different from all X;. Choose one point y; € M NY;. Then
we can choose ¢; € R such that g;(y;) # 0 and the multiplicity of g; on X,
is 1, where g; = f + ¢jg. Let {Zi} be analytically irreducible components of
(f€)71(0) N N;(g5)~*(0). Choosing points and real numbers, we can construct
a finite family of definable analytic functions whose complex common zero set is
strictly smaller than UZj and which have the multiplicity 1 on X;. Continuing
in this way, we can find fi,...,fi € Ig(X;) with multiplicity 1 on X; and
Ni_,(f€)~1(0) coincides with X .

Fix an arbitrary h € Iq;(X;). Remark that I4(Y)? is principal for all an-
alytically irreducible component Y of MC of complex dimension= 1. Hence,
we can construct definable analytic functions h; such that hh; is divisible by f;

2
and ﬂizl(hf)‘l(O) = (. Therefore h = Zi:l _hih/f fi. We have shown that

S b
I4£(X1) is generated by f;. B

Theorem 5.3. Consider an o-minimal expansion R of Ryp,. Let M be a 2-

dimensional definable analytic manifold, and let o be a prime cone of Cy(M)

with supp(a) = (0). Assume that fi(a) > 0,..., fs(a) > O for given f1,..., fs,g €
“{(M). Then fi(y) >0,..., fs(y) >0 for somey € M.

Proof. Remark that C4;(N) is noetherian for any open set N of M. We first
consider the case when (g S is not empty. The prime cone a is a generaliza-
tion of o := {f € C5(M); f(z) > 0} by Lemma 5.1. Let ¢ : C§(M) — O, bea
canonical homomorphism. Remark that ¢*(@ana,z) = 0z, Where aana o denotes
a prime cone {f € O; f(z) > 0}. Therefore, there exists a prime cone 3 of O,
such that ¢*(8) = o by Theorem 2.5. Hence f;(83) > 0,..., fp(8) > 0,9(8) = 0.

Theset {x € M; fi(z) > 0,..., fp(z) > 0,g(z) = 0} is not empty by Proposition
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We next consider the other case. Set d(a) = min{dim(S);S € I'n}. If
d(a) = 2, this theorem is trivial. It is also trivial in the case when g is not a
zero function because the set

{y € M; f1(y) > 0,..., fs(y) > 0,9(y) = 0}

is not enpty by Lemma 4.2. Therefore we only consider the case when [ ser, O =
0,d(a) =1and g=0on M.
We lead the contradiction with the assumption that the set

{y € M; fi(y) >0,..., fs(y) > 0}

is empty. We first prove a claim which is necessary for the proof of this theorem.
We denote m = multy (f) for any definable analytic function f on M if and only
if fepland f & p?“, where Y is a 1-dimensional analytically irreducible
subset of M and py is the ideal of germs of analytic functions on M at a
nonsingular point y € Y which vanish on Y. It is well known that multy (f) is
independent of the choice out of the nonsingular point y. Remark that there
exists a natural extension mult : C§;(M),, — NU {0}.

Claim. Let Y denote a 1-dimensional definable analytic subset of M such
that py = I4¢(Y) is a prime ideal. Then py C§;(M),, is a prime ideal generated
by a definable function hy with multy (hy) = 1.

Proof of Claim. The ring C§(M),, is a regular local ring. It is especially
an unique factorization Noetherian domain by [M1, Theorem 20.3]. Hence,
py is a principal ideal by [M1, Theorem 20.1]. Since the natural mapping
TR™ D {(y,v) € M x TyR"*} — TM is definable and analytic, there exists an
R-derivation D : C5;(M)py, — C4(M)py such that multy (D(f)) = multy (f)—1
for any f € C§;(M)p, with multy(f) > 0. In fact, we have only to take the
derivation induced by the image of Y }_, ax=——, where a; are real numbers,

8xk

such that it is not zero in T, M at some nonsingular point y € X. Therefore the
generator hy of py C§;(M),, has multiplicity multy (hy) = 1. Claim is proved.

The analytic closure of the set Z(F) = {y € M;¢:(y) > 0,...,9,(y) > 0}
in M is a 1-dimensional analytic set for any finite family F = {g1,...,9p} C @
with dim Z(F) # 2. This analytic closure has only finite analytically irreducible
components as was shown in the proof of Lemma 4.1. At least one analytically
irreducible analytic set Y is an analytically irreducible component of the analytic
closure of Z(F) for all finite families F C o« with dim Z(F) # 2 because any
element of I', has dimension > 1 by the assumption.

Fix a family F = {g1,...,9p} with dimZ(F) = 1. Assume that there
exists S € I', such that, for any y € SN Z(F) NY, the relations g;|ly = 0
and g;ly, < 0 hold true for some i = 1,...,p, where Uy is a sufficiently small
open neighborhood of y in M. There exist w;,z; € C§(M) \ Ias(Y') such that

wig; = z,—h?"lt"(g") by Claim. We may assume that w;, z;, hy € a without loss
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of generality. Obviously, w; - z; is not positive on U, because multy (g;) is even.
Furthermore, Y ¢ w; 1(0) U 27*(0) by the definition of w; and 2;. Therefore the
analytic closure of Z(F’) € I'y does not have Y as an analytically irreducible
component, where F’ = FU{w;-z;t =1,...,p}. Contradiction to the definition
of Y.

- Consider the case when F' = {fi,..., fs}. By Claim, v;f; = uihﬁu“‘/(m for
some v;, u; € a N (CY(M)\ Ige(Y)). Set F' = {fi,us,vi;i =1,...,s}. As was
shown in the last paragraph, there exists a point y € YNZ(F’) such that, for any
open neighborhood U of y in M, UN¢~1((0,00)) # 0 and y is not contained in
any 1-dimensional analytically irreducible component of ¢~1(0) except Y for any
¢ € F'. Fix such a small neighborhood U of y. The equation f,|ly = frly =0
holds true and fj - fr is negative on U \ Y for some q and r. We may assume
that multy (f;) > multy(f,) without loss of generality. Remark that ug, u,,

vq and v, are positive on U. These facts, however, contradicts to the equation

UrUq fq = UqUr frh;r,mlw(f")_mum’(f v) because the number multy ( fq) —multy (f,)

is an even number. B

Proof of Theorem 1.1 when dim(M) = 2. We first show Hilbert’s 17th
Problem. Let K be the quotient field of C§(M). Assume that f ¢ a for
some positive cone of K. Since —f(a) > 0, —f(z) > O for some x € M by
Theorem 5.3. Contradiction. Therefore, f € ﬂaespecr( K) O Theorem is proved
by Theorem 2.4.

We next show Real Nullstellensatz. We have only to show as in the case when
dim(M) = 1 that Z(Z(p)) = p if p is a real prime ideal. Real Nullstellensatz
is obvious when dim(Z(p)) = 1 because dim(C§(M)) = 2. If dim(Z(p)) =
0, choose a point z € Z(p). Consider the homomorphism C§(M) — O;.
Remark that there exists a prime cone with support p if p is a real prime ideal.
Hence, there exists a prime cone a’ of O, such that ht(supp(a’)) = 1 and
dim(Z(supp(a))) = 0 by Theorem 2.5. Contradiction to Proposition 2.6. B

6 Three-dimensional Case.

In this section, R denotes an o-minimal expansion of R, such that it admits
an analytic cylindrical definable cell decompositon and the rings C4;(N) are
Noetherian rings for all 3-dimensional definable analytic submanifold N of Eu-
clidean spaces. Remark that C§;(IN) are Noetherian rings for all 3-dimensional
definable analytic submanifold N of Euclidean spaces when R = R., ([FS]).
The purpose of this section is to finish the proof of Theorem 1.1.

Lemma 6.1. Let M be a bounded definable analytic submanifold of R™. Let
be a prime cone of Cy(M) such that C € Iy for some 1-dimensional definable
set C. Then one of the following prime cones is a specialization of a.

Points of C a, = {f € C4{M); f(z) > 0}, where z € C.

Curve germ The prime cone acz defined as follows, where x is a point in
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C\ C. The function f is an element of ac . if and only if the closure of
the set CN{y € M; f(y) > 0} in R™ contains the point x.

Proof. When the intersection [ Ser. S contains a point z, the prime cone «
obviously has a specialization a,. We consider the case when this intersection
is empty. Since the closure M of M is compact, the set T = Mser. S is not
empty and contained in '\ C. The set T consists of only one point z because
any two points are separated by some definable analytic function. It is easy to
see by using Lemma 4.2 that the closure of C N {y € M; f(y) > 0} contains the
point z for any f € . B

Lemma 6.2. Let o € Spec.(Cy{R)). Suppose that fi(a)
0,9(a) = 0 for some f1,...,fs,9 € C§{R). Then fi(x)
0,9(z) =0 for some z € R.

0,...,fs(a) >
0,..., fs(x) >

vV Vv

Proof. Remark that supp(a) is a maximal ideal or (0). When supp(a) is
a maximal ideal, @ = a, for some z € R. Therefore, fi(z) > O,..., fs(z) >
0,g(z) = 0.

We consider the case when supp(a) = (0) next. Remark that g = 0 in this
case. One can easily show that any definable analytic function f is factorized
as follows.

f= UH?:1(t - a;),

where all a; are real numbers and u is an unit. We may therefore assume that
the analytic functions f; are of the form f; = t — a;. If there exist no points
z € R such that fi(z) > 0,..., fs(z) > 0, there exists a € R such that both
t —a and a — t are in a by Lemma 4.2. Contradiction to the assumption that
supp(a) = (0). ®

Let f; and f> be (not necessarily analytic) definable functions on (0, c0). We
denote f1 ~ fa if fil(0,r) = f2l(o,r) for some r > 0. The relation ~ is then an
equivalence relation. We set K (IR) as the set of equivalence classes with respect
to this relation.

Lemma 6.3. The set K(R) is a real closed field and the prime cone ag,00),0
of C§{(0,00)) defined in Lemma 6.1 lies over the prime cone K (R)? under the

natural injection C{((0,00)) — K(R).

0 for some r}, where [f] represents the equivalence class of a definable func-
tion f. Clearly, K(R)2 is a positive cone. See [ABR] for the definition of a
positive cone.

Fix a polynomial P(t, X) € K(R)[X] of odd degree. There exists a positive
number r such that P(t, X) = >_p_, fx(t)X*, where fi(t) is a definable function
on (0,7) with f,(t) # O for any ¢t € (0,r). Since R is a real closed field, there
exists a root of P(t,X) in R for any ¢ € (0,7). Hence there exists a definable
function g : (0,7') — R with P(t,g(¢t)) = 0. Namely, P(t,X) has a root in

Proof. It is obvious that K(R) is a field and K(R)? = {lf1; fleo.y =
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K (R). Therefore, K (R) is a real closed field by [BCR, Theorem 1.2.2]. The last
part of this lemma is obvious by the definition. B

Theorem 6.4. Let M be a 3-dimensional definable analytic submanifold of R™
and let a be a prime cone of C’;’f(M) with support (0). Assume that fi(a) >

0,...,fs(a) >0 for given fi,...,fs € Cg(M). Then fi(y) >0,..., fs(y) >0
for some y € M.

Proof. We may assume that M is connected and bounded in R™. The proof
of this theorem is the same as that of Theore 5.3 in the case when ﬂsera # 0.
Hence we may assume that the set (g is empty. Set d(a) = min{dim(S); S €
I',}. By the definition of d(a), d(a) # 0. This theorem is trivial in the case
when d(a) = 3. We can prove this theorem in the same way as Theorem 5.3
when d(a) = 2. Therefore we may also assume that a has a specialization ac ;.
Here C is a 1-dimensional definable analytic submanifold of M, z is a point in
the boundary of C in R™, and ac, is a prime cone of C§;(M) defined in Lemma
6.1.

Take a definable analytic tubler neighborhood N of C' in M and the definable
analytic retraction p : N — C. Let o, be the prime cone of C§;(N) such that
h € ag, if and only if the closure of the set C N {y € N;h(y) > 0} contains
the point z. Then there exists a prime cone o of C§;(/N) which is lying over a
by Lemma 6.1, Proposition 4.3 and Theorem 2.5. Take a shorter curve C and a
smaller tubler neighborhood N. Then we can easily construct a definable and
analytic diffeomorphism (N, C) ~ ((0,00) x R*~1 (0, 00) x {0}). Hence we may
assume M = (0,00) x R*~!, C = (0,00) x {0} and = = (0, ...,0). Let ¢ be the
first coordinate function and z,,...,x,_1 be the other coordinate functions.
We may further assume that all z; belong to a and that z; = f; for j =
1,...,n — 1 without loss of generality. We will construct functions h,,...,hs €
C4¢((0,00))[z1, ..., Zn—1) such that the set {y € U; fi(y) > 0,..., fs(y) > 0}
contains the set {y € U;hi(y) > 0,...,hs(y) > 0}, where U is some open
neighborhood of (0,7) x {0} € C and r is a positive real number. We first
finish the proof with the assumption that such functions h; are constructed in
advance.

Set p(t) as the maximal positive number such that U N ({t} x R*~!) con-
tains the cube {0} x (—p(t),p(t))"*"! for any 0 < t < 7. Since the func-
tion p : (0,7r) — R is definable, the restriction p|( ) is analytic. Set D =
{(t,z1,...,2n_1) € (0,7) x R*~1; —p(t) < z; < p(t) for any i.}. Then there
exists a prime cone & € Spec,.(C4;(D)) lying over o' by Theorem 2.5, Lemma 6.1
and Proposition 4.3. Consider the embedding ¢ : D’ = (0,7') x (=1,1)""! - M
given by c(t,z1,...,Zn-1) = (t,p(t)z1,...p(t)Zn-1). This embedding obvi-
ously induces a definable and analytic diffeomorphism between D’ and D. The
functions hj o ¢ on D’ are also in C§((0,7'))[z1,...,z,]. The integral domain
C4:((0,7")) is contained in the real closed field K (R) by Lemma, 6.3. The canon-
ical homomorphism C4%((0,7))[z1,-..,ZTn-1] — K(I@)[xl,...,xn_l] is regular
and faithfully flat by [M2, 33.B Lemma 1] and [M1, Theorem 7.2]. We show
that C$:((0,7"))[z1,...,Zn—1] is regular and excellent. Regularity follows from
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[M1, Theorem 19.5] because C4;((0,7’)) is regular. Excellentness follows from
[M2, Theorem 73, 77]. Therefore some prime cone apol, of K(R)[z1,...,Zn_1]
lies over & because the prime cone [y, consisting of all polynomials whose
constant terms are positive lies over ac . By Positivstellensatz, there ex-
ists a tuple (z1(t),...,Zn-1(t)) € K(R) such that hi(z1(t),...,Tn-1(t)) >
0,...,hs(z1(t),...,zn_1(t)) > 0 as elements of K(R). The definable curve
v given by y(t) = (¢t,z1(2),...,2Zn-1(t)) is well defined for any small enough
positive real number t. Particularly, the set {y € U; fi(y) > 0,..., fs(y) > 0}
is not empty.

We give some notations. Fix a definable analytic function f. Set ¢(;,. . ;) =
of L TR 0 0) € Cu((0,00)). For k =
(t150rtn—1) TLEREE SRy ax"il 61':::11 T dfii™ ) .
1,...,n — 1, define the natural number k¥ = k¥(f) satisfying that f is not
RE(f)+1

in the ideal generated by z, but in that generated by :ck‘(f ). We also
define the number x5 = nz(f) satisfying that c(f SR SLRI SR SN =0
for any | < &5 and c, k-1 ok k1 -1y # 0. Remark that, for any

definable analytic functlon g on M, there exxst definable analytic functlons
c(t),dy(t,21),dz(t, 21, 22), ..., dn_1(t, 21, .., Tn_1) on M with g = c+3 1, Vd;z;
because M = (0,00) x R. In fact, we have only to set

9(t,z1,...,z;,0,. O)——c(t)—zI 1:z:,d(t,z:l,...,:c,-)

x;
. 3
d; =

0(g—c— 1 i
(g—c Zz—l zid (t,xl, ey Zj—1,0,...,0) otherwise
Oz;

which is analytic because the numerator vanishes on {z; = 0}. Set

I(f) ;= {i= (1, ,8n-1);0 <43 < K3(F)y..-,0 <iny < k371(f)} and
J(f) = {]: (jl) ajn l).0<j1 S Ké(f)‘Fl,,O Sjn—-l S Rg—l(f)+1,
3k, Jk“’fz( f)+1}

Then there exist d(;,.j,_,) =df, . | € C4(M) with

fq — Zlel(f) clx"il . t'n l + Z:e](f) d xl P x-zlﬂ_—ll.

The prime cone a N C4((0, 00)) coincides with the prime cone ¢ (g,c0),(0) defined
in Lemma 6.1 by Lemma 6.2. Therefore for any nonzero ¢ € C§((0,0)) and
P; e Cdf(M) the value c(a) + Z _1 z;(a)Pj(a) at a is positive if and only if
c(a) is positive by Lemma 4.2. F1x a definable analytic function f on M with
f(a) > 0.

Claim. P(a)zi(a)*2N*! is smaller than f(a) for any P € C${(M) and for
any k.

Proof of Claim. Assume that P(a)z1(a)"2N+1 is larger than f(a) for some
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P € C4(M). Consider the case when xi(f) # s3(f). We construct a de-

finable analytic function satisfying x3(g) = ki(f), kl(g) > ki(f) and that

P(()z):l:l(a)"é(g)+1 is larger than g(a) for some P € C§(M). Set Q = f if
1

e (a) < 0 and set Q = P$'f2(f)+1 — f otherwise. By the

K3(F)sR3 () or T T H(S)
definition, @(a) > 0. Furthermore, there exist definable analytic functions

Po(t,.’Bz, e ,IL'n...l), ceey Prcl(f)-—l(t1 T2y ,.Tn_.l), R(t,.’l)l, ey 17"_1) ‘

on M such that Q@ = Z%(f) lle + x“2(f)R and R(a) < 0. Then g =

Q- :1:12(f )R satisfies the required property. Therefore we have only to prove
this claim in the case when x!(f) = ski(f). When sl(f) = k1(f), the equation
k¥(f) = kE(f ) holds for any & by the definition. ‘

Set Q= fifcf, . , i, (@) < 0 and set Pz _
"‘"1(f)»"1(f),---,'€1 (@3]
the definition, @(a) > 0. The function @, however, is of the form

Q=T afi(c(t) + S0t a; P,

where c(t) is a definable analytic function on (0,00) with c¢(a) < 0 and P; are
definable analytic functions on M. Particularly, Q(a) < 0. Contradiction. We
have shown the claim.

We construct hy,...hs from fi,..., f;. Choose an arbitrary f;. When 1 <
qg<n-—1,set hy = f, = z,. We construct hy for ¢ > n. Any d{;’1 .... i
the form CJla $Jn 1) + Z"‘ 1 l’l (.717 7Jn 1) i) Where C

(le an— )
analytic function on (0, c0) and P(‘IJ1 ,,,,, FRRYR k! definable analytic function on
M. Set

f otherwise. By

)is of

is a deﬁnable

T . =-1-Y7" Pl

(1,-.dn-1) (F1,-sdn—1)%"

Then ‘Tél,...,jn-l)(o‘) < 0. Set

Jq = {(jl, o :j’n 1)0 < jl < K’%(fq) + 17 .o aO S jn—l S ng_l(fq) + 17
3k, jx = K5(fg) + 1},

=t X Tyl and
(jly--‘,j‘n—l)e']

v=() () fweMT . @ <O}

‘ q=n (jla“-yjﬂ-—l)e‘]

Then -, by 1((0,00))NU C Ny fy 1((0 00))NU by the way of construction.

Since T("J jn_y) 18 megative on C, U is an open neighborhood of C. As was

shown before 0 < —Z(jl’_“’jn_l)ejT(qjly’”’jﬂ_l)(a)xl(a)jl...xn_l(a)jn—l <
fq(la) for n < g < s. Hence the constructed h, and U satisfy the required
properties. B



Proof of Theorem 1.1 in the case when dim(M) = 3. The proof of Hilbert’s
17th Problem is the same as in the case when dim(M) = 2. Hence we omit the
proof of Hilbert’s 17th Problem.

We will show Real Nullstellensatz. As shown in the proof of Real Nullstel-
lensatz in lower dimensional case, we have only to prove that Zys(Z4¢(p)) = p
when p is a real prime ideal. We can prove Real Nullstellensatz in the same
way as in the lower dimensional case if Zy¢(p) is compact or height of p is 2.
Hence we have only to show that p is not a real ideal when dim Z4(p) = 1 and
ht(p) = 1.

Assume the contrary. There exists a prime cone a of C;(M) whose support
coincides with p. If the intersection ﬂSeI‘a S is not empty, a has a specializa-
tion a; by Lemma 5.1. There exists a prime cone 3 of O, lying over a with
ht(supp(3)) = 1 by Proposition 4.3 and Theorem 2.5. Since the germ of zeros of
supp(0) is of dimension < 1, it contradicts to Proposition 2.6. We next consider
the case when [\gcp S = 0. The prime cone o has a specialization ac . such
that C is a definable analytic submanifold of M contained in Z(p) by Lemma
6.1. Choose a sufficiently short curve C, then we may assume that there exists
a tubler neighborhood N of C such that the pair (IV, C) is definably and analyt-
ically diffeomorphic to the pair ((0,00) x R?,(0,00) x {0}). As was mentioned
some times in the present paper, there exists a prime cone 3 of C§;(N) lying over
a with ht(supp(8)) = ht(p) = 1 by Proposition 4.3 and Theorem 2.5. It is obvi-
ous that Z(supp(0)) is of dimension = 1. Set q¢ = supp(f3), then q is generated
by one definable analytic function f on N by Corollary 4.4 and [M1, Theorem
20.1]. We show that f and —f are not a sum of finite squares of elements of
the quotient field of C3;(N). Assume the contrary, then there exist definable
analytic functions Pi, ..., Py, @ # 0on N with Q*>f = P2 +.--+ P2. Since g is
real, all P; are in . Hence, Q2 = (P/®+...+ P'.?)f for some definable analytic
functions Py,...,, P}, because C4(N) is a domain. There therefore exists a
definable analytic function @’ on N with Q = fQ’ and Q"*f = P{2 +- P,’n2.
Continuing in this way, we obtain that Q € (,cy¢"- The function Q van-
ishes on N by Krull intersection theorem [M1, Theorem 8.10]. Contradiction.
Whence, f changes the sign on some open set which intersects with f~1(0) by
Hilbert’s 17th Problem. However, the zero set f~1(0) is of codimension > 1.
They contradicts each other. We have shown Real Nullstellensatz in the case
when [ is a prime ideal. B
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