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1. Introduction

The purpose of this paper is to show the existence of aone parameter family $(W[\alpha])_{\alpha\in A}$

of complete infinitely sheeted planes $W[\alpha]$ such that $W[\alpha]\in O_{G}$ for small $\alpha\in A$ and
$W[\alpha]\not\in O_{G}$ for large $\alpha\not\in A$ .

Recall that acovering (Riemann) surface $X$ , or more preciely, $(X, \mathrm{Y}, f)$ of $\mathrm{Y}$ is atriple
of two Riemann surfaces $X$ and.Y and an analytic mapping $f$ of $X$ to Y. It is said to
be complete (cf. [2]) if every $a\in \mathrm{Y}$ has aclosed parametric disc $K$ about $a$ such that
each component of $f^{-1}(K)$ is compact. When $(X, \mathrm{Y}, f)$ is smooth, i.e. there is no branch
point in $X$ , the completeness of $(X, \mathrm{Y}, f)$ is equivalent to the regurarity of $(X, \mathrm{Y}, f)$ , where
$(X, \mathrm{Y}, f)$ is regular if, for any arc $\gamma$ on $\mathrm{Y}$ and any point $\tilde{a}\in X$ lying over the initial point
$a$ of $\gamma$ , there always exists acontinuation $\tilde{\gamma}$ on $X$ along $\gamma$ starting from $\tilde{a}$ , i.e. there is an
arc $\tilde{\gamma}$ on $X$ with its initial point $\tilde{a}$ such that $f(\tilde{\gamma})=\gamma$ (cf. [2]).

Let $P$ be the plane, or more precisely, $P$ be the finite complex plane $\mathrm{C}:|z|<\infty$ or the
infinite (i.e. extended) complex plane $\hat{\mathrm{C}}$ : $|z|\leq+\infty$ (i.e. $\hat{\mathrm{C}}=\mathrm{C}\cup\{\infty\}$ , the Riemann
sphere). If the covering surface $(X, P, \pi)$ of $P$ satisfies the following two conditions, then
$X$ , or $(X, P, \pi)$ , is referred to as amultisheeted plane: the cardinal number card $\pi^{-1}(a)$ is
aconstant $\mu_{X}\in \mathrm{N}\cup\{\aleph_{0}\}$ for every $a\in P$ , where $\mathrm{N}$ is the set of positive integers and
$\aleph_{0}=\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}$ $N$;for any cover continuation (Xx, $P,$ $\pi’$ ) of $(X, P, \pi)$ , the closed set $X’\backslash X$

is of logarithmic capacity zero measured on $X’$ , where acover continuation $(X’, P, \pi’)$ of
$(X, P, \pi)$ is acovering surface of $P$ such that $X$ is asubsurface of $X’$ such that $\pi’|X=\pi$ . If
the number, which we call the sheet number of $X$ , $\mu_{X}\in \mathrm{N}$ ( $\mu_{X}=\aleph_{0}$ , resp.), then $(X, P, \pi)$

is said to be afinitely (infinitely, resp.) sheeted plane.
What we call our type problem is to judge whether $X\in O_{G}$ or not for agiven multisheeted

plane $(X, P, \pi)$ (cf. [7], [11]), where $O_{G}$ is the class of parabolic (i.e. not hyperbolic)

Riemann surfaces characterized by the nonexistence of Green function on them (cf. e.g.
$[8],[9])$ . If $(X, P, \pi)$ is finitely sheeted plane, then we can easily see that $X\in O_{G}$ along
with the parabolicity or the ellipticity of $P$ . In view of this, we will consider only infinitely
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sheeted planes in our type problem. We have afeeling that complete infinitely sheeted
planes are apt to become parabolic. In fact, we have shown the existence of afamily $\mathcal{W}$ of
infinitely sheeted planes $(X, \mathrm{C}, \pi)$ which is an equivalence class of infinitely sheeted planes
with respect to the similarity, where $(X_{1}, \mathrm{C}, \pi_{1})$ and $(X_{2}, \mathrm{C}, \pi_{2})$ are similar to each other if
there is atopological mapping $T$ of $X_{1}$ onto $X_{2}$ with the property that $p\in X_{1}$ is abranch
point of multiplicity $m$ if and only if $T(p)\in X_{2}$ is abranch point of multiplicity $m$ and in
this case $\pi_{1}(p)=\pi_{2}(T(p))$ , such that $X\in O_{G}$ for a $(X, \mathrm{C}, \pi)\in \mathcal{W}$ if and only if $(X, \mathrm{C}, \pi)$ is
complete (cf. [5] and [6]). Nevertheless, the main purpose of this paper is to maintain that
the parabolicity and the completenes of infinitely sheeted planes have absolutely nothing
to do with each other. This will be shown by constructing aone sequential parameter
family $(W[\alpha])_{\alpha\in A}$ of complete infinitely sheeted planes $(W[\alpha],\hat{\mathrm{C}}, \pi)(\alpha\in A)$ such that
$W[\alpha]\in O_{G}$ if $\alpha$ is “small” and $W[\alpha]\not\in O_{G}$ if ais “large”, where $A$ is the family of sequences
$\alpha=(a_{n})_{n\in \mathrm{N}}$ with $0<a_{n}\leq 1/2$ . The one sequential parameterfamily $(W[\alpha]\backslash \pi^{-1}(\infty))_{\alpha\in A}$

of $(W[\alpha]\backslash \pi^{-1}(\infty), \mathrm{C}, \pi)(\alpha\in A)$ plays the same role as that of $(W[\alpha])_{\alpha\in A}$ .

2. Construction of aone parameter family

Consider the class $A$ of sequences $\alpha=(a_{n})_{n\in \mathrm{N}}$ of real numbers $a_{n}$ with $0<a_{n}\leq 1/2(n\in$

$\mathrm{N})$ . We view $A=\{\alpha\}$ the sequential parameters family. We will construct acomplete
infinitely sheeted plane $(W[\alpha],\hat{\mathrm{C}}, \pi)$ for each $\alpha\in A$ so that we obtain aone sequential
parameter family $(W[\alpha])_{\alpha\in A}$ of complete infinitely sheeted planes $W[\alpha]$ .

Let $J=[0, 1]$ be the slit in C. We denote by $S$ the surface obtained from two copies of
$\hat{\mathrm{C}}\backslash J$ by pasting $\hat{\mathrm{C}}\backslash J$ and $\hat{\mathrm{C}}\backslash J$ crosswise along $J$ . The closure of one of $\hat{\mathrm{C}}\backslash J$ in $S$ will
be called the upper sheet of $S$ and denoted by $S^{+}$ . The other closure of $\hat{\mathrm{C}}\backslash J$ left in $S$ is
then referred to as the lower sheet of $S$ and denoted by $S^{-}$ The surface $S$ is conformally
the sphere $\hat{\mathrm{C}}$ but presently represented as atw0-sheeted plane.

In addition to $A$ and $S$ we use the index set $\Lambda=\{-2, -1,1, 2\}$ as another ingredient
in our construction of $W[\alpha](\alpha\in A)$ . An admissible $n$ -tuple $i_{1}i_{2}\cdots$ $i_{n}$ of elements in $\Lambda$

is an ordered $n$-tuple of $i_{1}$ , i2, $\cdots$ , $i_{n}$ in Asuch that $i_{k}\neq-i_{k-1}$ $(k=2, \cdots, n)$ . There are
$4=4\cdot 3^{1-1}$ admissible 1-tuples $i_{1}$ in $\Lambda$ , 4 $\cdot$ $3=4\cdot 3^{2-1}$ admissible 2-tuples $i_{1}i_{2},4\cdot 3^{2}=4\cdot 3^{3-1}$

admissible 3-tuples $i_{1}i_{2}i_{3}$ , and so on, $\cdots$ , and in general 4. $3^{n-1}$ admissible $n$-tuples $i_{1}\cdots i_{n}$ .
First consider 4slits $I_{0i}=[|i|, |i|+1/2](i\in\Lambda)$ in $S$ by the following rule: $I_{0i}\subset S^{+}$ for

$i>0$ and $I_{0i}\subset S^{-}$ for $i<0$ so that $I_{01}$ and $I_{02}$ are in $S^{+}$ and lower and $\mathrm{J}\mathrm{o}_{-},2$ are in $S^{-}$

Then we consider the 4-slitted $S$ :

(1)
$F_{0}:=S\backslash \cup I_{0i}i\in\Lambda^{\cdot}$

We now fix an $\alpha=(a_{n})_{n\in \mathrm{N}}\in A$ so that $0<a_{n}\leq 1/2(n\in \mathrm{N})$ . Let $I_{ni}:=\mathrm{t}\mathrm{t}\mathrm{i}$ ) $|i|+a_{n}$ ]
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(2) $F_{i_{1}\cdot i_{n}}:=S\backslash (I_{n-1,i_{n}}\cup(_{i\in\Lambda\backslash i_{n}}\cup I_{ni}))$

for each $i_{1}\cdots i_{n}$ of 4 $\cdot 3^{n-1}$ admissible $n$-tuples in $\Lambda(n\in \mathrm{N})$ . We then form an infinitely
sheeted planes $W[\alpha]$ , which we express symbolically as follows:

(3)
$W[ \alpha]:=F_{0}+\sum_{i_{1}}F_{i_{1}}+\sum_{i_{1}i_{2}}F_{i_{1}i_{2}}+\cdots+\sum_{i_{1}\cdots i_{n}}F_{i_{1}\cdots i_{n}}+\cdots$

,

where $i_{1}\cdots$ $i_{n}$ are admissible $n$-tuples $(n\in \mathrm{N})$ . Here we add afew words to mention the
exact procedure in the construction in (3). As the first step, we perform the following: each
$F_{i_{1}}$ of the four $F_{i_{1}}(i_{1}\in\Lambda)$ is pasted to $F_{0}$ crosswise along $I_{0,-i_{1}}$ in $F_{0}$ and $I_{0i_{1}}$ in $F_{i_{1}}$ . Prom
the second step on, and in general as the $n^{th}step$ , we perform the following: each $F_{i_{1}\cdots i_{n-1}i_{n}}$

of three $F_{i_{1}\cdots i_{n-1}i_{n}}(i_{n}\in\Lambda\backslash \{-i_{n-1}\})$ is pasted to each $F_{i_{1}\cdots i_{n-1}}$ of 4 $\cdot 3^{n-2}F_{i_{1}\cdots i_{n-1}}$ for every
admissible $(n-1)$-tuple $i_{1}\cdots i_{n-1}$ in $\Lambda$ crosswise along $I_{n-1,-i_{n}}$ in $F_{i_{1}\cdots i_{n-1}}$ and $I_{n-1,i_{n}}$ in
$F_{i_{1}\cdots i_{n-1}i_{n}}$ .

From the construction it is clear that each $p\in W[\alpha]$ lies above apoint in $\hat{\mathrm{C}}$ , which we
denote by $\pi(p)$ . Then $p\mapsto\pi(p)$ is an analytic mapping of $W[\alpha]$ to C. Now it is easy to see
that $W[\alpha]$ , or more precisely $(W[\alpha],\hat{\mathrm{C}}, \pi)$ , is acomplete infinitely sheeted plane. Moreover
$W[\alpha]$ is planar. Concerning the one parameter family $(W[\alpha])_{\alpha\in A}$ constructed $\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{v}\mathrm{e},\mathrm{w}\mathrm{e}$

have the following result.

THEOREM. The complete infinitely sheeted plane $W[\alpha]$ deter mined by the sequence $\alpha=$

$(a_{n})_{n\in \mathrm{N}}$ with $0<a_{n}\leq 1/2(n\in \mathrm{N})$ is hyperbolic, $i.e$ . $W[\alpha]\not\in O_{G}$ , if $\alpha$ is large in the
sense $e.g$ . that

(4) $\inf_{n\in \mathrm{N}}a_{n}>0$ ;

and $W[\alpha]$ is parabolic, $i.e$ . $W[\alpha]\in O_{G}$ , if $\alpha$ is small in the sense $e.g$ . that

(5) $\sum_{n\in \mathrm{N}}\frac{1}{3^{n}}\log\frac{1}{a_{n}}=+\infty$ .

The proof of the second part of our thorem above will be givn in the next \S 3 and the
first part in \S 4. The proof of the second part is easy and very short. Since the proof given
in \S 4 is considerably long, the section is divided into 3subsections \S \S 4.1-4.3.

3. Proof of Theorem: parabolicity

We now start the proof of our theorem stated in \S 2. In this present short \S 3 we prove that
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if $\alpha=(a_{n})_{n\in \mathrm{N}}\in A$ is so small as to satisfy (5), then $W[\alpha]\in O_{G}$ . For simplicity we set
$W:=W[\alpha]$ . Let $W_{n}$ (n $\geq 0)$ be regular subregions of W given by

(6) $W_{0}:=F_{0}$ ,
$W_{n}:=F_{0}+ \sum_{i_{1}}F_{i_{1}}+\sum_{i_{1}i_{2}}F_{i_{1}i_{2}}+\cdots+\sum_{i_{1}i_{n}}F_{i_{1}}$

. $i_{n}(n\in \mathrm{N})$ ,

where $i_{1}\cdots i_{k}(1\leq k\leq n)$ are admissible $k$-tuples $(1 \leq k\leq n)$ . Then $(W_{n})_{n\geq 0}$ forms
aregular exhaustion of $W$ , which is called the standard exhaustion of $W$ in this present
paper. For each $n\in \mathrm{N}$ let $w_{n}$ be the continuous function on $\overline{W_{n}}\backslash W_{n-1}$ such that $w_{n}$

is harmonic on $W_{n}\backslash \overline{W_{n-1}}$ with boundary values $w_{n}|\partial W_{n}=1$ and $w_{n}|\partial W_{n-1}=0$ . The
function $w_{n}$ is referred to as the harmonic measure of $\partial W_{n}$ on $W_{n}\backslash \overline{W_{n-1}}$. The Dirichlet
integral $D_{W_{n}\backslash \overline{W_{n-1}}}(w_{n})$ of $w_{n}$ over $W_{n}\backslash \overline{W_{n-1}}$ is, by definition,

$D_{W_{n}\backslash \overline{W_{n-1}}}(w_{n}):= \int_{W_{n}\backslash \overline{W_{n-1}}}|\nabla w_{n}(z)|^{2}dxdy(z=x+\sqrt{-1}y)$ .

Then the modulus $\mu_{n}$ of the configulation $W_{n}\backslash \overline{W_{n-1}}$ is given by

$\mu_{n}:=2\pi/D_{W_{n}\backslash \overline{W_{n-1}}}(w_{n})$ .

By virtue of (5) we will derive

(7)
$\sum_{n\in \mathrm{N}}\mu_{n}=+\infty$

.

Before proceeding to the proof of the above (7), we pause here to make the following
simple observation. We denote by $A_{a}$ for $0<a<1/4$ the annulus bounded by the ellipse
centered at the origin 0with major axis 1and minor axis $\sqrt{1-4a^{2}}$ and the segment $[-a, a]$ ,
by $B_{a}$ the annulus bounded by the ellipse centered at 0with major axis $1/a$ and minor axis
$\sqrt{1-4a^{2}}/a$ and the segment [-1, 1], and finally by $C_{a}$ the ring domain bounded by circles
$|z|=2a/(1+\sqrt{1-4a^{2}})$ and $|z|=1$ . By the conformal mapping $w=(z+1/z)/2$ , $C_{a}$ is
mapped onto $B_{a}$ . By the conformal mapping $w=az$ , $B_{a}$ is mapped onto $A_{a}$ . In view of
$\mathrm{m}\mathrm{o}\mathrm{d} A_{a}=\mathrm{m}\mathrm{o}\mathrm{d}$ $B_{a}=\mathrm{m}\mathrm{o}\mathrm{d} C_{a}$ , where e.g. $\mathrm{m}\mathrm{o}\mathrm{d} A_{a}$ means the modulus of $A_{a}$ , and

$\mathrm{m}\mathrm{o}\mathrm{d} C_{a}=\log[(1+\sqrt{1-4a^{2}})/2a]$ ,

we see that

(8) $\mathrm{m}\mathrm{o}\mathrm{d} A_{a}=\log[(1+\sqrt{1-4a^{2}})/2a]=2\mathrm{n}/\mathrm{D}\mathrm{A}\mathrm{n}(\mathrm{w})$ ,

where $w$ is the harmonic measure of the segment $[-a, a]$ on $\partial A_{a}$ . From the above (8) it
can be derived that

(9) $\frac{1}{2}\log\frac{1}{a}\leq \mathrm{m}\mathrm{o}\mathrm{d} A_{a}\leq\log\frac{1}{a}$ .
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We now turn to the proof of (7). Observe that $W_{n}\backslash \overline{W_{n-1}}$ consists of 4 $\cdot 3^{n-1}$ components
$F_{i_{1}}i_{n}$ for all admissible $n$-tuples $i_{1}\cdots i_{n}$ . Since the modulus $\mu_{i_{1}}i_{n}$ of $F_{i_{1}}i_{n}$ is given by
$2\pi/D_{F_{l}1}i_{n}(w_{n})$ , where $w_{n}$ is the harmonic measure of $\partial W_{n}$ on $W_{n}\backslash \overline{W_{n-1}}$ , and

$D_{W_{n}\backslash \overline{W_{n-1}}}(w_{n})= \sum_{i_{1}\cdot i_{n}}D_{i_{1}\cdot\cdot i_{n}}(w_{n})$
,

we conclude that

(10)
$1/ \mu_{n}=\sum_{i_{1}\cdots i_{n}}1/\mu_{i_{1}\cdots i_{n}}$

.

Let $A:=A_{a_{n}-1/2}+(|i_{n}|+a_{n-1}/2)$ , where $a_{0}=1/2$ , and $w$ be the harmonic measure of
the segment part of $\partial A$ on $A$ . Since $A\subset F_{i_{1}\cdot\cdot i_{n}}$ , the Dirichlet principle implies

$D_{A}(w)=D_{F_{i_{1}}}$ in
$(w)\geq D_{F_{i_{1}}}i_{n}(w_{n})$ ,

where $w$ is extended to $F_{i_{1}\cdot\cdot i_{n}}$ from $A$ by setting $w=0$ on $F_{i_{1}\cdots i_{n}}\backslash A$ . Thus $\mathrm{m}\mathrm{o}\mathrm{d} A_{a_{n-1}/2}=$

$\mathrm{m}\mathrm{o}\mathrm{d} A\leq\mu_{i_{1}\cdots i_{n}}$ . Using (10) we see that

$1/ \mu_{n}=\sum_{i_{1}\cdot\cdot i_{n}}1/(\frac{1}{2}\log\frac{1}{a_{n-1}})=4\cdot 3^{n-1}/(\frac{1}{2}\log\frac{1}{a_{n-1}})$

or $\mu_{n}\geq 8^{-1}3^{-(n-1)}\log(1/a_{n-1})$ . Therefore (5) implies

$\sum_{n\in \mathrm{N}}\mu_{n}\geq 8^{-1}\sum_{n\in \mathrm{N}}3^{-(n-1)}\log(1/a_{n-1})=+\infty$
,

which is the relation (7) to be proved.
By the sa$\mathrm{r}\mathrm{i}\mathrm{o}$-Noshiro modular criterion for the parabolicity of $W$ (cf. e.g. $[8],[9]$ , etc.),

the existence of the regular exhaustion $(W_{n})_{n\in \mathrm{N}}$ , which we call the standard exhaustion of
$W$ in this paper, of $W$ with (7) concludes that $W\in O_{G}$ . $\square$

4. Proof of Theorem: hyperbolicity

Under the assumption that the sequence $\alpha=(a_{n})_{n\in \mathrm{N}}$ is large in the sense that $c:=$

$\inf_{n\in \mathrm{N}}a_{n}>0$ , we will show that $W[\alpha]$ is hyperbolic, i.e. $W[\alpha]\not\in O_{G}$ . The largest menber
in $A$ may be said to be the sequence $\sigma:=(s_{n})_{\mathrm{N}\in \mathrm{N}}$ such that $s_{n}=1/2(n\in \mathrm{N})$ so that

$\sigma=(1/2,1/2, \cdots, 1/2, \cdots)$ .

The plan of our proof for $\mathrm{W}[\mathrm{a}]\not\in O_{G}$ goes as follows. First we will show in Subsection 4.1
the existence of aquasiconformal mapping $T$ of $W[\sigma]$ onto $W[\alpha]$ . By the quasiconformal
invariance of the parabolicity (i.e. if there is aquasiconformal mapping of aRiemann
surface $R_{1}$ onto another $R_{2}$ , then $R_{1}\in O_{G}$ if and oly if $R_{2}\in O_{G}$ (cf. e.g. [9]) $)$ , we can
conclude our objective $W[\alpha]\not\in O_{G}$ if we show that $\mathrm{W}[\mathrm{a}]\not\in O_{G}$ . Then, as the second step
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we will derive in Subsections 4.2 and 4.3 acontradiction from the errorneous assumption
$W[\sigma]\in O_{G}$ .

4.1. Construction of aquasiconformal mapping. In this first Subsection 4.1, we
will construct aquasiconformal mapping $T$ of $W[\sigma]$ onto $W[\alpha]$ . We consider, as we did
in Q3, the standard exhaustions for covering surfaces constructed in \S 2. Recall that the
standard exhaustion $(W_{n}[\alpha])_{n\geq 0}$ of $W[\alpha]$ is given by

$W_{0}[\alpha]:=F_{0}$ ,
$W_{n}[ \alpha]:=F_{0}+\sum_{i_{1}}F_{i_{1}}+\cdots+\sum_{i_{1}\cdots i_{n}}F_{i_{1}\cdots i_{n}}(n\geq 1)$

,

where $F_{i_{1}\cdots i_{k}}$ will also be denoted by $F_{i_{1}\cdots i_{k}}[\alpha]$ indicating the dependence on $\alpha$ . Take the
standard neighborhood $U_{n}[\alpha]$ of each $\partial W_{n}[\alpha](n\in \mathrm{N})$ characterized by the following three
conditions: a) each component of $U_{n}[\alpha]$ is apiecewise smooth annulus containing only one
component of $\partial W_{n}[\alpha]$ , where aregion is piecewise smooth if the region is relatively compact
and its relative boundary consists of afinite number of mutually disjoint piecewise smooth
Jordan curves; b) any two different components of $\bigcup_{n\geq 0}U_{n}[\alpha]$ are disjoint in their closures;
c) $W[ \alpha]\backslash \bigcup_{n\geq 0}\overline{U_{n}[\alpha]}$ is an open set independent of $\alpha$ so that, for example,

$W[ \alpha]\backslash \bigcup_{n\geq 0}\overline{U_{n}[\alpha]}=W[\sigma]\backslash \bigcup_{n\geq 0}\overline{U_{n}[\sigma]}$ .

Let $\gamma[\alpha]$ be aJordan curve which is acomponent of $\partial W_{n}[\alpha]$ and let $V[\alpha]$ be the annulus
containing $\gamma[\alpha]$ which is acomponent of $U_{n}[\alpha]$ .

The construction of $T$ goes as follows. First let the mapping $T$ be defined as the identity
between $W[ \sigma]\backslash \bigcup_{n\geq 0}U_{n}[\sigma]$ and $W[ \alpha]\backslash \bigcup_{n\geq 0}U_{n}[\alpha]$ . The construction will be over if we
define a $K$-quasiconformal mapping of $V[\sigma]$ onto $V[\alpha]$ for every $V[\alpha]$ and its corresponding
$V[\sigma]$ such that $T$ : $\partial V[\sigma]\mapsto\partial V[\alpha]$ is the identity and $K\leq K_{0}$ , where $K_{0}$ is aconstant
independent of the choice of $V[\alpha]$ (and $V[\sigma]$ ).

Suppose $\gamma[\alpha]$ comes from the slit $I_{n+1,i_{n+1}}=I_{n+1,i_{n+1}}[\alpha]=[|i_{n+1}|, |i_{n+1}|+a_{n}]$ in $F_{i_{1}\cdots i_{n}i_{n+1}}$

$=F_{i_{1}\cdots i_{n}i_{n+1}}[\alpha]$ and the slit $I_{n,-i_{n+1}}=I_{n,-i_{n+1}}[\alpha]$ in $F_{i_{1}\cdots i_{n}}=F_{i_{1}\cdots i_{n}}[\alpha]$ , which are pasted
crosswise and give rise to the analytic Jordan curve $\gamma[\alpha]$ . Let $\gamma[\sigma]$ be the corresponding
one to $\gamma[\alpha]$ in $W[\sigma]$ so that it comes from $I_{n+1,i_{n+1}}[\sigma]=[|i_{n+1}|, |i_{n+1}|+s_{n}]$ in $F_{i_{1}\cdots i_{n}i_{n+1}}[\sigma]$

and $I_{n,-i_{n+1}}[\sigma]=[|-i_{n+1}|, |-i_{n+1}|+s_{n}]$ in $F_{i_{1}\cdots i_{n}}[\sigma]$ , which are pasted crosswise and give
rise to $\gamma[\sigma]$ .

We denote by $Z(d)$ the slitted square

$Z(d):=Q\backslash J(d)$ ,

where $Q=$ $(0, 1)$ $\cross(0, 1)$ is the unit square and $J(d)=[1/4,1/4+d]+\sqrt{-1}/2$ is the line
segment of the length $0<d\leq 1/2$ and set

$Z_{i}(d):=Z(d)-\sqrt{-1}/2+|i|$
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for $i\in\Lambda$ . Then $Z_{i_{n+1}}(a_{n})$ is viewed as being contained in $F_{i_{1}}i_{n}i_{n+1}[\alpha]$ and the slit of
$Z_{i_{n+1}}(a_{n})$ is identical with $I_{n+1,i_{n+1}}[\alpha]$ . Similarly $Z_{-i_{n+1}}(a_{n})$ is viewed as being contained in
$F_{i_{1}}i_{n}[\alpha]$ and the slit of $Z_{-i_{n+1}}(a_{n})$ is identical with $I_{n,-i_{n+1}}[\alpha]$ . Thus as $V[\alpha]$ we take the
annulus obtained by pasting $Z_{i_{n+1}}(a_{n})$ to $Z_{-i_{n+1}}(a_{n})$ crosswise along $I_{n+1,i_{n+1}}$ and $I_{n,-i_{n+1}}$ .
If we can construct aquasiconfo rmal mapping $T$ of $Z_{i_{n+1}}(s_{n})\cup I_{n+1,i_{n+1}}[\sigma]$ to $Z_{i_{n+1}}(a_{n})\cup$

$I_{n+1,i_{n+1}}[\alpha]$ such that $T$ is identity on their boundaries and

$T(I_{n+1,i_{n+1}}[\sigma])=I_{n+1,i_{n+1}}[\alpha]$ ,

then it can be continued symmetrically to the mapping $T$ of $V[\sigma]$ to $V[\alpha]$ with the dilatation
less than afixed constant $K_{0}$ independent of $\gamma[\sigma]$ and $\gamma[\alpha]$ .

Based upon the observation above we, hence, only have to show the existence of a
quaiconformal mapping $w$ from the square $Q=(0,1)\cross(0, 1)$ to itself fixing $\partial Q$ such that
$w(I(1/2))=I(a_{n})$ , where

$I(1/2):=[1/4,1/4+1/2]\sqrt{-1}/2$ , $I(a_{n}):=[1/4,1/4+a_{n}]+\sqrt{-1}/2$

and the dilatation $K$ is bounded by aconstant $K_{0}$ depending only on $c$ . For simplicity we
set $a_{n}=:d$ in this proof so that $I(d):=I(a_{n})$ and $0<c\leq d\leq 1/2$ .

Consider ahomeomorphic mapping $w$ of $Q$ onto itself given by

$w(z):=u(x)+\sqrt{-1}y(z=x+\sqrt{-1}y)$ ,

where $u(z):=x$ for $0\leq x\leq 1/4,2(\xi(y)-1/4)(x-1/4)+1/4$ for $1/4\leq x\leq 2/4$ , and
$4(1-\xi(y)(x-1)+1$ for $3/4\leq x\leq 1$ , where

$\xi(y):=(1-2d)|y-1/2|+(1/4+d)$ ,

which maps $[0, 1]$ to $[1/4+d, 3/4]$ . Then $w_{x}=u_{x}$ and $w_{y}=u_{y}+\sqrt{-1}$ and thus $w_{z}=$

$(w_{x}-\sqrt{-1}w_{y})/2=(u_{x}+1-\sqrt{-1}u_{y})/2$ and $w_{\overline{z}}=(w_{x}+\sqrt{-1}w_{y})/2=(u_{x}-1+\sqrt{-1}u_{y})/2$

so that the candidate of complex dilatation

$\mu(z):=w_{\overline{z}}(z)/w_{z}(z)$

satisfies $|\mu|^{2}=(P-p)/(P+p)$ , where $P:=(u_{x}^{2}+u_{y}^{2}+1)/2$ and $p:=u_{x}$ . Since $P\leq P_{0}:=$

$11/2$ and $p\geq p_{0}:=2d$ , we have

$| \mu|^{2}=\frac{P-p}{P+p}\leq\frac{P_{0}-p_{0}}{P_{0}+p_{0}}=(\frac{K-1}{K+1})^{2}$

or equivalently
$| \mu|\leq\frac{K-1}{K+1}$ ,

where
$K:= \frac{11}{4d}+\sqrt{\frac{121}{16d^{2}}-1}\leq\frac{11}{4c}+\sqrt{\frac{121}{16c^{2}}-1}=:K_{0}$
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$K \geq\frac{11}{4\cdot(1/2)}+\sqrt\frac{121}{16\cdot(1/2)^{2}}-1=\frac{11}{2}+\sqrt{\frac{1}{4}+29}>1$ .

Hence $\mu$ defined above is ameasurable function on $\overline{Q}$ such that $|\mu|\leq(K-1)/(K+1)$

on $\overline{Q}$ so that $\mu$ is eligible to be acomplex dilatation on $\overline{Q}$ . Clearly $w$ : $\overline{Q}\mapsto\overline{Q}$ is a
homeomorphism, the identity on $\partial Q$ , ACL on $\overline{Q}$ and $w(I(1/2))=I(d)$ , and satisfies the
Beltrami equation

$w_{\overline{z}}(z)=\mu(z)w_{z}(z)$

almost everywhere on $\overline{Q}$ , i.e. $w$ is ageneralized solution of the above Beltrami equation on
$\overline{Q}$ . Therefore $w$ is arequired $K$-quasiconformal mapping of $\overline{Q}$ to $\overline{Q}$ (cf. e.g. [3]) fixing $\partial Q$

pointwise with $K\leq K_{0}$ , afixed constant depending only upon $c$ .

4.2. Exhausting regions with short boundaries. We are in the position to prove
$W[\sigma]\not\in O_{G}$ . We will do this by contradiction so that we now make the errorneous as-
sumption that $W:=W[\sigma]\in O_{G}$ . Then there exists an Evans-Selberg potential $h$ on $W$

(cf. [4], see also [9] and [10]): $h$ is aharmonic function on $W\backslash a$ such that $h$ has the
negative logrithmic pole at $a\in W$ , i.e. $z\mapsto h(z)+\log(1/|z|)$ is harmonic at $a$ for the local
parameter $z$ at $a$ with $z(a)=0$ , and $h(z)arrow+\infty$ as $z$ tends to the Alexandroff point of
$W$ . We consider the polar coordinate $re^{\sqrt{-1}\theta}$ on $W$ constructed from $h$ , where $r=e^{h}$ and
0is the multivalued conjugate harmonic function of $h$ on $W\backslash a$ so that $d\theta=*dh$ on $W\backslash a$ .
Using abranch $\theta$ of 0we can use $re^{\sqrt{-1}\theta}$ as local paeameters at each point of $W$ except for
an isolated point set of points with $|\nabla h|=0$ .

For each $0<t<+\infty$ we set

$R(t):=\{z\in W : h(z)<\log t\}=\{z\in W : r=r(z)<t\}$

so that $a\in R(t)$ since $r(a)=0$ . Clearly $R(t)$ is arelatively compact region and its relative
boundary $\Gamma(t):=\partial R(t)$ consists of afinite number of Jordan curves which may have
common points at $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}*dh=0$ . Except these points which are isolated in $W$ the above
Jordan curves are analytic. Hence except for acountable number of $0<t<+\infty$ , $R(t)$ is
aregular region and $\Gamma\langle t$) consists of afinite number of mutually disjoint analytic Jordan
curves. Clerly

$\int_{\Gamma(t)}d\theta=2\pi$ .

In the covering surface $(W,\hat{\mathrm{C}}, \pi)$ we consider the induced spherical metric on $W$ induced
from $\hat{\mathrm{C}}$ by the projection $\pi$ . The area of aset $G\subset W$ is denoted by $|G|$ and the length of
acurve $\gamma\subset W$ is also denoted by $|\gamma|$ in the above induced metric. Put $A(t):=|R(t)|$ , i.e.
the area of $R(t)$ . By denoting $\pi’(z)=d\pi(z)/dz$ , we have

$A(t):= \int\int_{R(t)}(\frac{|\pi’(z)|}{1+|\pi(z)|^{2}})^{2}rdrd\theta$
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$= \int_{0}^{t}(\int_{\Gamma(r)}(\frac{|\pi’(z)|}{1+|\pi(z)|^{2}})^{2}rd\theta)dr(z=re^{\sqrt{-1}\theta})$ .

Clearly $t\mapsto A(t)$ is continuous and

$A( \infty)=\int\int_{W}(\frac{|\pi’(z)|}{1+|\pi(z)|^{2}})^{2}$ rdrr $\theta=\mu w\int\int_{F_{0}}(\frac{|\pi’(z)|}{1+|\pi(z)|^{2}})^{2}rdrd\theta=+\infty$ .

Hence we conclude that

(11) $A(\infty)=1\mathrm{m}A(t)t\mathrm{j}\infty=+\infty$ .

Put $L(t):=|\Gamma(t)|$ , the length of $\Gamma(t)=\mathrm{L}(\mathrm{t})$ , so that

$L(t):= \int_{\Gamma(t)}\frac{|\pi’(z)|}{1+|\pi(z)|^{2}}td\theta$ $(z=re^{\sqrt{-1}\theta})$ ,

which is also continuous in $t$ . Denoting by $A’(t)=dA(t)/dt$, we have

$A’(t)= \int_{\Gamma(t)}(\frac{|\pi’(z)|}{1+|\pi(z)|^{2}})^{2}td\theta$ .

By th Schwarz inequality we see that

$L(t)^{2}=( \int_{\Gamma(t)}\frac{|\pi’(z)|}{1+|\pi(z)|^{2}}td\theta)^{2}$

$\leq(\int_{\Gamma(t)}(\frac{|\pi’(z)|}{1+|\pi(z)|^{2}})^{2}td\theta)\cdot(\int_{\Gamma(t)}td\theta)=2\pi tA’(t)$

and thus we have obtained the inequality

(12) $L(t)^{2}\leq 2\pi tA’(t)$ .

Choose and then fix an arbitrary $1/2<\tau<1$ . We consider

–(-S) $:=\{t\in[s, \infty) : L(t)\geq A(t)^{\tau}\}$ ,

which is closed in $[5, \infty)$ . Choose an $r_{0}>0$ such that $R(r_{0})$ is aregular region. Take an
$s_{n} \in(\max\{n, r_{n-1}\}, \infty)$ for each $n\in \mathrm{N}$ . Considering the logarithmic length

$\mathcal{L}(X):=\int_{X}\frac{dt}{t}$

for measurable subset $X\subset(0, \infty)$ , we observe that

$\mathcal{L}([s_{n}, \infty))=\int_{s_{n}}^{\infty}\frac{dt}{t}=[\log t]_{s_{n}}^{\infty}=+\infty$ .
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Using $1/t\leq 2\pi A’(t)/L(t)^{2}$ for t $\in[s_{n}, \infty)$ as aconsequence of (12) and $2\pi A’(t)/L(t)^{2}\leq$

$2\pi A’(t)/A(t)^{2\tau}$ for t $\in\Xi(s_{n})$ , we deduce

$\mathcal{L}(_{-}^{-}-(s_{n}))=\int_{-(s_{n})}--\frac{dt}{t}\leq 2\pi\int_{-(s_{n})}--fracA’(t)A(t)^{2\tau}dt$

$\leq 2\pi\int_{s_{n}}^{\infty}\frac{A’(t)}{A(t)^{2\tau}}=2\pi\int_{A(s_{n})}^{A(\infty)}\frac{dA}{A^{2\tau}}$

$=2 \pi[\frac{1}{1-2\tau}A^{-2\tau+1}]_{A(s_{n})}^{\infty}=\frac{2\pi}{2\tau-1}A(s_{n})^{-2\tau+1}<\infty$ .

Hence $([s_{n}, \infty)\backslash ---(s_{n}))=\infty-(2\pi/(2\tau-1))A(s_{n})^{-2\tau+1}=+\infty$ . This shows that the set
$[s_{n}, \infty)\backslash ---(s_{n})\neq\emptyset$ is open and afortiori we can find an $r_{n}\in(s_{n}, \infty)$ with $r_{n}\not\in---(s_{n})$ , i.e.
$L(rn)<\mathrm{A}(\mathrm{r}\mathrm{n})\mathrm{T}$ , such that $R(r_{n})$ is regular. Since $r_{n}>s_{n}> \max\{n, r_{n-1}\}$ , we have

$0<r_{0}<r_{1}<r_{2}<\cdots<r_{n-1}<r_{n}\uparrow\infty$ .

Using this sequence we finally define

(13) $R_{n}:=\mathrm{H}(\mathrm{s}\mathrm{n}))$ $\Gamma_{n}=\mathrm{L}(\mathrm{r}\mathrm{n})=\partial R(r_{n})$ . $(n\geq 0)$

Then $(R_{n})_{n\geq 0}$ is aregular exhaustion of $W$ and

$|\Gamma_{n}|/|R_{n}|=L(r_{n})/A(r_{n})<A(r_{n})^{\tau}/A(r_{n})=A(r_{n})^{\tau-1}\downarrow 0(n\uparrow\infty)$.

Thus the boundaries $\Gamma_{n}$ of the exhausting regions $R_{n}$ of $W$ are relatively short in the sense
that

(14) $\lim_{narrow\infty}\frac{|\Gamma_{n}|}{|R_{n}|}=0$.

4.3. Exhausting regions with long boundaries. As aconsequence of $W:=$
$W[\sigma]\in O_{G}$ , we have seen in the preceding subsection 4.2 the existence of aregular ex-
haustion $(R_{n})_{n\geq 0}$ of $W$ given in (13) that the boundaries $\Gamma_{n}=\partial R_{n}$ of $R_{n}$ are so short as
to satisfy (14). We will see from adifferent view point that the same exhaustion $(R_{n})_{n\geq 0}$

satisfies

(15) $\lim_{narrow}\inf_{\infty}\frac{|\Gamma_{n}|}{|R_{n}|}>0$

as aconsequence of $W\in O_{G)}$ which contradicts (14). Thus we should not have assumed
$W\in O_{G}$ and the proof of $W:=W[\sigma]\not\in O_{G}$ will be over. The proof of (15) goes as follows.

Besides the main covering surface $(W,\hat{\mathrm{C}}, \pi)$ we have two other covering surfaces $(W, F, \pi_{1})$

and $(F,\hat{\mathrm{C}}, \pi_{2})$ involved in $(W,\hat{\mathrm{C}}, \pi)$ with the relation $\pi=\pi_{2}\circ\pi_{1}$ , where $F$ is the closed
surface of genus 2obtained from $F_{0}$ by pasting crosswise along $I_{01}$ and $I_{0,-1}$ and also alon$\mathrm{g}$
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$I_{02}$ and $I_{0,-2}$ . The metric on $F$ is the one induced from the sperical metric on $\hat{\mathrm{C}}$ by $\pi_{2}$

and that on $W$ is the one iduced from that on $F$ by $\pi_{1}$ , which is identical with the one
induced from the sperical metric on $\hat{\mathrm{C}}$ by $\pi$ already considered in the preceding subsection
4.2. The area (length, resp.) of aset $G$ (an arc $\gamma$ , resp.) is denoted as before by the same
notation $|G|$ ( $|\gamma|$ , resp.) on eithe one of three $(F,\hat{\mathrm{C}}, \pi_{2})$ , $(W, F, \pi_{1})$ , and $(W,\hat{\mathrm{C}}, \pi)$ .

We denote by $\Phi(W)$ ( $\Phi(F)$ , resp.) the set of closed curves $\varphi$ on $W$ ( $F$ , resp.) which are
not of homotopy null. We maintain

$a(W):= \inf_{\varphi\in\Phi(W)}|\varphi|>0$ .

For aproof observe first that $(W, F, \pi_{1})$ is complete and therefore the monodromy theorem
assurs that $\pi_{1}(\varphi)\in\mathrm{F})$ along with $\varphi\in\mathrm{W})$ : $\pi_{1}(\Phi(W)\subset\Phi(F)$ . Since the metric on
$W$ may be viewed as induced from one on $F$ by $\pi_{1}$ , we see that $|\varphi|\geq|\pi_{1}(\varphi)|$ . Hence

$a(W)= \inf_{\varphi\in\Phi(W)}|\varphi|\geq\inf_{\varphi\in\Phi(W)}|\pi_{1}(\varphi)|=\inf_{\varphi\in\pi_{1}(\Phi(W))}|\varphi|\geq\inf_{\varphi\in\Phi(F)}|\varphi|$,

by which we only have to prove

(17) $a(F):= \inf_{\varphi\in\Phi(F)}|\varphi|>0$

to conclude (16), i.e. $a(W)\geq a(F)>0$ . Fix an arbitrary $p\in F$ and denote by $\Phi_{p}(F)$ the
set of $\varphi\in\Phi(F)$ passing through $p$ and consider

$f(p):= \inf_{\varphi\in\Phi_{\mathrm{p}}(F)}|\varphi|$ .

Then $a(F)= \inf_{p\in F}f(p)$ . We maintain that $f(p)>0$ . Contrary to the assertion assume
that $f(p)=0$ for a $p\in F$ . Choose an open parametric disc $B$ centered at $p$ and let $\epsilon$

be the distance between $p$ and $F\backslash B$ measured by the induced spherical metric on $F$ .
Then there is a $\varphi_{0}\in\Phi_{p}(F)$ such that $\varphi_{0}\subset B$ , which is impossible since $B$ is simply
connected and $\varphi_{0}$ is not homotop null. Otherwise every $\varphi\in\Phi_{p}(F)$ is not contained in
$B$ , i.e. $\varphi\cap(F\backslash B)\neq\emptyset$ , and afortiori $|\varphi|\geq\epsilon$ , which leads to $f(p)= \inf_{\varphi\in\Phi_{p}(F)}|\varphi|\geq\epsilon$,
contradicting the present errorneous assumption $/(\mathrm{p})=0$ . Thus we have seen that $f(p)>0$
for every $p\in F$ . Next choose an arbitrary pair $(p, q)$ of points in $F$ and an arc $\gamma\subset F$

connecting $p$ and $q$ . For any $\varphi\in\Phi_{q}(F)$ , we have $\gamma\varphi\gamma^{-1}\in\Phi_{p}(F)$ and $|\gamma\varphi\gamma^{-1}|\leq|\varphi|+2|\gamma|$ .
Hence $f(q)\leq f(p)+2d_{F}(p, q)$ , which implies the (Lipschitz) continuity of $f$ On $F$ , i.e.
$|f(p)-f(q)|\leq 2d_{F}(p, q)$ for every pair $(p, q)$ of points in $F$ , where $d_{F}(p, q)$ is the induced
spherical distance on $F$ . Thus $f\in C(F)$ and $f>0$ on $F$ implies that infir $f>0$ , which
proves (17).

Concerning the standard exhaustion $(R_{n})_{n\geq 0}$ introduced in the preceding subsection 4.2,
we suppose the relative boundary $\partial R_{n}=:\Gamma_{n}$ consists of afinite number $\nu_{n}$ of components
$\Gamma_{ni}(1\leq i\leq\nu_{n})$ : $\Gamma_{n}=\bigcup_{1\leq i\leq\nu_{n}}\Gamma_{ni}$ . Observe that $\Gamma_{ni}$ is not homologue null. Otherwise
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$\Gamma_{ni}$ is the boundary of arelatively closed region, which we denote by $(\Gamma_{ni})$ . Since $h=r_{n}$

on $\partial(\Gamma_{ni})=\Gamma_{ni}$ , the maximum principle yields $h\equiv r_{n}$ on $(\Gamma_{ni})$ and thus $h$ must be a
constant $r_{n}$ on $W$ , which is clearly acontradiction. Since the homology group $\mathcal{H}(W)$ of
$W$ is isomorphic to the factor group $\mathcal{F}(\mathcal{W})/\mathcal{F}^{(\infty)}(\mathcal{W})$ of the homotopy group $\mathcal{F}(\mathcal{W})$ of
$W$ with its commutator subgroup $\mathcal{F}^{(\infty)}(\mathcal{W})$ , being homotop null implies being homologue
null for any closed curve on $W$ and thus we see that $\Gamma_{ni}\in\Phi(W)(1\leq i\leq\nu_{n})$ so that
$| \Gamma_{n}|=\sum_{1\leq i\leq\nu_{n}}\geq\sum_{1\leq i\leq\nu_{n}}a(W)$, $\mathrm{i}.\mathrm{e}$ .

(18) $|\Gamma_{n}|\geq\nu_{n}a(W)(n\in \mathrm{N})$ .

We denote by $\rho(R_{n})$ ( $\rho(F)$ , resp.) the Euler characteristic of $R_{n}$ ( $F$ , resp.). As arelatively
compact subsurface of the planar surface $W$ , $R_{n}$ is aplanar surface bounded by $\nu_{n}$ Jordan
curves $\Gamma_{ni}$ and afortiori $\rho(R_{n})=\nu_{n}-2$ . Since the genus $g(F)$ of $F$ is 2, i.e. $g(F)=2$ , we
see that $\rho(F)=2g(F)-2=2$ . Recall the main theorem of the Ahlfors theory of covering
surfaces (cf. [1], see also e.g. $[7],[10]$ ) applied to the covering surface $(R_{n}, F, \pi_{1})$ :

(19) $\max\{\rho(R_{n}), \mathrm{O}\}\geq\rho(F)\frac{|R_{n}|}{|F|}-h_{F}|\Gamma_{n}|$ ,

where $h_{F}$ is apositive number depending only upon $F$ and independent of $R_{n}$ . The in-
equality (18) implies $|\Gamma_{n}|/a(W)\geq\nu_{n}$ and the relation $\rho(R_{n})=\nu_{n}-2$ yields $\nu_{n}>\rho(R_{n})$ .
deuce $|\Gamma_{n}|/a(W)>\rho(R_{n})$ holds. These with $\rho(F)=2$ transform (19) into the following
form:

$|\Gamma_{n}|/a(W)>2|R_{n}|/|F|-h_{F}|\Gamma_{n}|$ .
Rewriting the above inequality with $b:=2a(W)/|F|(a(W)h_{F}+1)>0$ , we obtain the
inequality $|\Gamma_{n}|/|R_{n}|>b>0$ for every $n\in \mathrm{N}$ and thus we can finally deuce (15):
$\lim\inf_{narrow\infty}|\Gamma_{n}|/|R_{n}|\geq b>0$ . $\square$
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