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Types of complete infinitely sheeted planes

‘ﬁlk(&imﬁ) F # = # (Mitsuru Nakai)

Nagoya Institute of Technology(Professor Emeritus)

1. Introduction

The purpose of this paper is to show the existence of a one parameter family (W[a])aca
of complete infinitely sheeted planes W{a] such that Wla] € Og for small a € A and
Wla] & Og for large a ¢ A.

Recall that a covering (Riemann) surface X, or more preciely, (X,Y, f) of Y is a triple
of two Riemann surfaces X and Y and an analytic mapping f of X to Y. It is said to
be complete (cf. [2]) if every a € Y has a closed parametric disc K about a such that
each component of f~}(K) is compact. When (X,Y, f) is smooth, i.e. there is no branch
point in X, the completeness of (X,Y, f) is equivalent to the regurarity of (X,Y, f), where
(X,Y, f) is regular if, for any arc v on Y and any point @ € X lying over the initial point
a of ~, there always exists a continuation 4 on X along ~ starting from a, i.e. there is an
arc 4 on X with its initial point @ such that f(¥) = v (cf. [2]).

Let P be the plane, or more precisely, P be the finite complex plane C : |z| < oo or the
infinite (i.e. extended) complex plane C : |2| < +oo (ie. C = CU {oc}, the Riemann
sphere). If the covering surface (X, P, 7) of P satisfies the following two conditions, then
X, or (X, P,7), is referred to as a multisheeted plane: the cardinal number card 7'(a) is
a constant ux € N U {¥g} for every a € P, where N is the set of positive integers and
Ry = card N; for any cover continuation (X', P,n') of (X, P, ), the closed set X'\ X
is of logarithmic capacity zero measured on X’, where a cover continuation (X', P,7') of
(X, P, ) is a covering surface of P such that X is a subsurface of X’ such that 7’| X = m. If
the number, which we call the sheet number of X, ux € N (ux = Ry, resp.), then (X, P, )
is said to be a finitely (infinitely, resp.) sheeted plane.

What we call our type problem is to judge whether X € Og or not for a given multisheeted
plane (X, P,n) (cf. [7], [11]), where Og¢ is the class of parabolic (i.e. not hyperbolic)
Riemann surfaces characterized by the nonexistence of Green function on them (cf. e.g.
[8],[9]). If (X, P,m) is finitely sheeted plane, then we can easily see that X € Og along
with the parabolicity or the ellipticity of P. In view of this, we will consider only infinitely
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sheeted planes in our type problem. We have a feeling that complete infinitely sheeted
planes are apt to become parabolic. In fact, we have shown the existence of a family W of
infinitely sheeted planes (X, C, 7) which is an equivalence class of infinitely sheeted planes
with respect to the similarity, where (X, C,m) and (X5, C, m) are similar to each other if
there is a topological mapping 7" of X; onto X, with the property that p € X; is a branch
point of multiplicity m if and only if T'(p) € X5 is a branch point of multiplicity m and in
this case 71 (p) = mo(T(p)), such that X € Og for a (X, C, ) € W if and only if (X,C,m) is
complete (cf. [5] and [6]). Nevertheless, the main purpose of this paper is to maintain that
the parabolicity and the completenes of infinitely sheeted planes have absolutely nothing
to do with each other. This will be shown by constructing a one sequential parameter
family (W[a])aca of complete infinitely sheeted planes (W[a],C,n) (a € .A) such that
Wla] € Og if a is ”small” and Wia] € Og if a is "large”, where A is the family of sequences
a = (an)neN With 0 < a, < 1/2. The one sequential parameterfamily (Wa]\ 771(00))aca

of (W[a]\ 771(00),C,7) (a € A) plays the same role as that of (W|a])aea-
2. Construction of a one parameter family

Consider the class A of sequences o = (ap)neN Of real numbers a, with 0 < a, <1/2 (n €
N). We view A = {a} the sequential parameters family. We will construct a complete
infinitely sheeted plane (W[a],C, ) for each a € A so that we obtain a one sequential
parameter family (W[a])aca of complete infinitely sheeted planes Wa].

Let J = [0, 1] be the slit in C. We denote by S the surface obtained from two copies of
C\ J by pasting C\ J and C\ J crosswise along J. The closure of one of C\ J in S will
be called the upper sheet of S and denoted by S+. The other closure of C \ J left in S is
then referred to as the lower sheet of S and denoted by S~. The surface S is conformally
the sphere C but presently represented as a two-sheeted plane.

In addition to A and S we use the index set A = {—2,—1,1,2} as another ingredient
in our construction of W{a] (o € A). An admissible n-tuple iyiy - - - i, of elements in A

is an ordered n-tuple of i;,7, - -,4, in A such that iy # —ix—; (k = 2,---,n). There are
4 = 4-3'! admissible 1-tuples ¢; in A, 43 = 4-32"! admissible 2-tuples i,is, 4-3%2 = 4.33-1
admissible 3-tuples i1é5i3, and so on, - - -, and in general 4-3"~! admissible n-tuples i; - - - i,,.

First consider 4 slits Io; = [|¢],]é| +1/2] (: € A) in S by the following rule: Ip; C S* for
i > 0and I; C S™ for i < 0 so that Ip; and Iop are in S* and Iy, and Ip_5 are in S™.
Then we consider the 4-slitted S:

(1) . F05=S\UI(),‘.
iceA

We now fix an & = (@n)neN € A so that 0 < a, < 1/2 (n € N). Let I; := [|i], |i] + an)
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(2) Fiyoiy = 8\ (In—l,in U ( U Ini))
i€A\in

for each 4y ---i, of 43" admissible n-tuples in A (n € N). We then form an infinitely
sheeted planes W{a], which we express symbolically as follows:

(3) Wil =Fo+> Fy+Y Fyp++ > Foi, +-00,
1 112 11in

where 4; - - - i, are admissible n-tuples (n € N). Here we add a few words to mention the
exact procedure in the construction in (3). As the first step, we perform the following: each
F,, of the four F;, (i; € A) is pasted to Fy crosswise along I —;, in Fy and Iy, in F;;. From
the second step on, and in general as the n**step, we perform the following: each Fj,..;, _,i,
of three Fj,..;,_,i, (in € A\ {~in_1}) is pasted to each F},..;,_, of 4-3"2 F,,..; _, for every
admissible (n — 1)-tuple ;- --i,-; in A crosswise along I,y _;, in Fj,..;,_, and I,_q;, in
Fi i yin R
From the construction it is clear that each p € W/a] lies above a point in C, which we
denote by 7(p). Then p — 7(p) is an analytic mapping of W[a] to C. Now it is easy to see
that Wa], or more precisely (W[a], C, ), is a complete infinitely sheeted plane. Moreover
Wa] is planar. Concerning the one parameter family (W[a])aca constructed above,we
have the following result.

THEOREM. The complete infinitely sheeted plane Wo| determined by the sequence a =
(@n)neN with 0 < a, < 1/2 (n € N) is hyperbolic, i.e. Wla] & Og, if o is large in the
sense e.g. that

(4) inf a, > 0;

neN

and Wa] is parabolic, i.e. Wa] € Og, if a is small in the sense e.g. that

1 1
(5) > = log— = +o0.
neN 3 n

The proof of the second part of our thorem above will be givn in the next §3 and the
first part in §4. The proof of the second part is easy and very short. Since the proof given
in §4 is considerably long, the section is divided into 3 subsections §§4.1-4.3.

3. Proof of Theorem: parabolicity

We now start the proof of our theorem stated in §2. In this present short §3 we prove that
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if @ = (ap)neN € A is so small as to satisfy (5), then W(a] € Og. For simplicity we set
W .= W[a]. Let W,, (n > 0) be regular subregions of W given by

(6) Wo=F, W,=F+> F,+> Fi,+-+ Y FE.i (n€N),
11 1112 i1 in

where i;---i; (1 < k < n) are admissible k-tuples (1 < k < n). Then (W,),>o forms
a regular exhaustion of W, which is called the standard ezhaustion of W in this present
paper. For each n € N let w, be the continuous function on W,, \ W,_; such that w,
is harmonic on W, \ W,_; with boundary values w,|0W, = 1 and w,|0W,_; = 0. The
function w, is referred to as the harmonic measure of 8W,, on W, \ W,_;. The Dirichlet
integral Dy, \g—(wn) of wy, over W, \ W,_1 is, by definition,

|Vwn(2)|?dzdy (z =z 4+ v—1y).

DWn\Wn—l(wn) = /W \Wn_1

Then the modulus u, of the configulation W, \ W,,_; is given by

MHn = Qw/DWn\_W::(w")

By virtue of (5) we will derive

(7) Z Up = +00.
neN

Before proceeding to the proof of the above (7), we pause here to make the following
simple observation. We denote by A, for 0 < a < 1/4 the annulus bounded by the ellipse
centered at the origin 0 with major axis 1 and minor axis v/1 — 4a? and the segment [—a, a],
by B, the annulus bounded by the ellipse centered at 0 with major axis 1/a and minor axis
v/1 = 4a%/a and the segment [—1, 1], and finally by C, the ring domain bounded by circles
|z| = 2a/(1 4+ +/1 - 4a?) and |2| = 1. By the conformal mapping w = (z + 1/2)/2, C, is
mapped onto B,. By the conformal mapping w = az, B, is mapped onto A,. In view of
mod A, = mod B, = mod C’a,vwhere e.g. mod A, means the modulus of A,, and

mod C, = log [(1+ V1 —4a?)/2d],
we see that
(8) mod A, = log [(1 + VT = 4a%)/2a] = 2/ D, (w),

where w is the harmonic measure of the segment [—a,a] on dA4,. From the above (8) it
can be derived that

1. 1 1
—log - < < -
9) 5 log ~ <mod A4, < loga
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We now turn to the proof of (7). Observe that W, \ W,,_; consists of 4-3"~! components
F;, ., for all admissible n-tuples i; - - -i,. Since the modulus g;,..;, of Fj,..;, is given by
27T/DF

(2

in (wn), where w, is the harmonic measure of 8W,, on W, \ W, _;, and
Dy, v (wn) = Z D, .., (wy),
i1in
we conclude that
(10) Vbn =3 1/ iy
i1

Let A:= Ay, .2+ ([in| + an-1/2), where ap = 1/2, and w be the harmonic measure of
the segment part of 04 on A. Since A C F,..;,, the Dirichlet principle implies

DA(U)) = DF'l'“’in (w) Z VDFil...in (wn)7

1

where w is extended to Fj,..;, from A by setting w =0 on Fj,..;, \ A. Thus mod A,,_,/2 =
mod A < py,..4,. Using (10) we see that

11 (11
Vpn= Y 1/ (ilogan—l) =4-3"""/ (ilogan_l)

i1-in

or u, > 8713 Vlog(1/a,_;). Therefore (5) implies

S pn =813 37 Viog(1/an-1) = +oo,
neN neN
which is the relation (7) to be proved.
By the Sario-Noshiro modular criterion for the parabolicity of W (cf. e.g. [8],[9], etc.),
the existence of the regular exhaustion (W, ),eN, which we call the standard exhaustion of
W in this paper, of W with (7) concludes that W € Og. O

4. Proof of Theorem: hyperbolicity

Under the assumption that the sequence a = (an),eN is large in the sense that ¢ :=
infreN an, > 0, we will show that W(a] is hyperbolic, i.e. W[a] & Og. The largest menber
in A may be said to be the sequence o := (s,)NeN such that s, = 1/2 (n € N) so that

o=(1/2,1/2,---,1/2,---).

The plan of our proof for W[a] € Og goes as follows. First we will show in Subsection 4.1
the existence of a quasiconformal mapping T of W{s] onto W/a]. By the quasiconformal
invariance of the parabolicity (i.e. if there is a quasiconformal mapping of a Riemann
surface R; onto another Ry, then R; € Og if and oly if Ry, € Og (cf. e.g. [9])), we can
conclude our objective Wia] & O¢ if we show that W[o] € Og. Then, as the second step,
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we will derive in Subsections 4.2 and 4.3 a contradiction from the errorneous assumption
W[O‘ ] € Og.

4.1. Construction of a quasiconformal mapping. In this first Subsection 4.1, we
will construct a quasiconformal mapping T of W{o] onto W{a]. We consider, as we did
in §3, the standard exhaustions for covering surfaces constructed in §2. Recall that the
standard ezhaustion (Wy[a])n>0 of W]a] is given by

Wolo] == Fp, Wylal:=FR+Y F,+-+ Y F., (n>1),
i1 ™
where Fj,..;, will also be denoted by Fj,..;, [a] indicating the dependence on a. Take the
standard neighborhood U,[a] of each OW,[a] (n € N) characterized by the following three
conditions: a) each component of U,[a] is a piecewise smooth annulus containing only one
component of 9W,[a], where a region is piecewise smooth if the region is relatively compact
and its relative boundary consists of a finite number of mutually disjoint piecewise smooth
Jordan curves; b) any two different components of U,>oU,[a] are disjoint in their closures;
¢) Wla] \ UnsoUy,[a] is an open set independent of « so that, for example,

Wla] \ UnzoUn[e] = Wio] \ UnzoUnlo].

Let v[a] be a Jordan curve which is a component of 8W,[a] and let V|a] be the annulus
containing <y[a] which is a component of U,[a].

The construction of T' goes as follows. First let the mapping T be defined as the identity
between Wio] \ Un>oUnlo] and W(a] \ Un>oUn[a]. The construction will be over if we
define a K-quasiconformal mapping of Vo] onto Vo] for every V|[a] and its corresponding
Vo] such that T : 0V{o] — 0V[q] is the identity and K < Ky, where Kj is a constant
independent of the choice of V[a] (and V[o]).

Suppose v[a] comes from the slit Iny14,,, = Tnt1insi[0] = [Jins1]s [ins1] +an] in Fy iy,
= Fij.inin,. |0 and the slit I, _;.,. = I, _;..,[e] in Fi..;, = F;,..; [a], which are pasted
crosswise and give rise to the analytic Jordan curve y[a]. Let ¥[o] be the corresponding
one to y[a] in W(o] so that it comes from Inyy,,,[0] = [[int1], [int1| + 8n) in Fjy.ii,, (0]
and I, _;,,.[0] = [| —int1],| — tnt1]| + Sn] in F,..;, [o], which are pasted crosswise and give
rise to v[o].

We denote by Z(d) the slitted square

Z(d) :==Q\ J(d),

where Q = (0,1) x (0, 1) is the unit square and J(d) = [1/4,1/4 + d] + /=1/2 is the line
segment of the length 0 < d < 1/2 and set

Zi(d) == Z(d) — vV—-1/2 + i
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for i € A. Then Z; ,,(a,) is viewed as being contained in Fj,..,,,[a] and the slit of
Zi,..(ay) is identical with I,414,,,[e]. Similarly Z_;,,,(a,) is viewed as being contained in
F, ..|a] and the slit of Z_; (ay) is identical with I, _;,,,[e]. Thus as V[a] we take the
annulus obtained by pasting Z;_ ., (an) to Z_;,,,(an) crosswise along Iny1,,, and In —i,,;.
If we can construct a quasiconformal mapping T of Z;,,,(Sn) U Int1,in,.[0] to Zi,,, (an) U
In41,in,. 0] such that T is identity on their boundaries and

T(In+1,in+1 [0']) = In+1,in+1 [Ot},

then it can be continued symmetrically to the mapping T of V[o] to V'[a] with the dilatation
less than a fixed constant K, independent of y[o] and +[a].

Based upon the observation above we, hence, only have to show the existence of a
quaiconformal mapping w from the square Q = (0,1) x (0,1) to itself fixing 0Q such that
w(I(1/2)) = I(a,), where

1(1/2) = [1/4,1/4+ 1/2V/=1/2, I(an) :=[1/4, 1/4+ an) + V=1/2

and the dilatation K is bounded by a constant K, depending only on c. For simplicity we
set a, =: d in this proof so that I(d) := I(a,) and 0 < ¢ < d < 1/2.

Consider a homeomorphic mapping w of @ onto itself given by

w(z) = u(r) + V-1y (z =12+ V-1y),
where u(z) := z for 0 < z < 1/4, 2(&(y) — 1/4)(z — 1/4) + 1/4 for 1/4 < x < 2/4, and
4(1 - €&(y)(x—1)+ 1 for 3/4 < x < 1, where
£(y) = (1 —2d)ly — 1/2| + (1/4 +d),

which maps [0, 1] to [1/4 + d,3/4]. Then w, = u, and wy = uy + +/—1 and thus w, =
~v/=1wy)/2 = (uz + 1~ v/~1uy)/2 and wz = (wz + V=1wy)/2 = (ug — 14+ v/ —1uy)/2

so that the candidate of complex dilatation

u(z) = wg(z)/w.(2)

satisfies |u|? = (P —p)/(P + p), where P := (u2 +u2 +1)/2 and p := u,. Since P < By :=
11/2 and p > po := 2d, we have

uf? = P—-p Po—Poz(K“1)2
P+p Py+po K+1

or equivalently
K-1

“K+1'

121
,/ —1=:K,
4d 1642 = 4c 16¢2 0

lul <

where
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aliu

K>—21 4 121 —1—E+,/3+29>1
= 4-(1/2) 16-(1/2)2 =~ 2 4 '

Hence p defined above is a measurable function on @ such that |u| < (K — 1)/(K + 1)
on @ so that yu is eligible to be a complex dilatation on Q. Clearly w : Q — Q is a
homeomorphism, the identity on dQ, ACL on @ and w(I(1/2)) = I(d), and satisfies the
Beltrami equation

wz(2) = p(2)w.(2)

almost everywhere on @Q, i.e. w is a generalized solution of the above Beltrami equation on
Q. Therefore w is a required K-quasiconformal mapping of @ to @ (cf. e.g. [3]) fixing 8Q
pointwise with K < Kj, a fixed constant depending only upon c.

4.2. Exhausting regions with short boundaries. We are in the position to prove
Wio] € Og. We will do this by contradiction so that we now make the errorneous as-
sumption that W := W/[o] € Og. Then there exists an Evans-Selberg potential A on W
(cf. [4], see also [9] and [10]): h is a harmonic function on W \ a such that h has the
negative logrithmic pole at a € W, i.e. z — h(z) +log(1/|z]) is harmonic at a for the local
parameter z at a with z(a) = 0, and h(z) — 400 as z tends to the Alexandroff point of
W. We consider the polar coordinate re¥=2 on W constructed from h, where r = e” and
¢ is the multivalued conjugate harmonic function of A on W'\ a so that df = *dh on W'\ a.
Using a branch 6 of § we can use reV=1 as local paeameters at each point of W except for
an isolated point set of points with |Vh| = 0.

For each 0 <t < +00 we set

R(t)={zeW: :h(z)<log t} ={zeW: :r=r(z) <t}

so that a € R(t) since r(a) = 0. Clearly R(t) is a relatively compact region and its relative
boundary T'(t) := OR(t) consists of a finite number of Jordan curves which may have
common points at where *dh = 0. Except these points which are isolated in W the above
Jordan curves are analytic. Hence except for a countable number of 0 < t < +o00, R(t) is
a regular region and I'(¢) consists of a finite number of mutually disjoint analytic Jordan
curves. Clerly

df = 2m.
I(t)

In the covering surface (W, C, ) we consider the induced spherical metric on W induced
from C by the projection 7. The area of a set G C W is denoted by |G| and the length of
a curve ¥ C W is also denoted by |v| in the above induced metric. Put A(t) := |R(t)], i.e.
the area of R(t). By denoting 7'(z) = dn(z)/dz, we have

= fho (0 |w<z)|2> rava?
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Clearly t — A(t) is continuous and

)= [ (ﬁ_l?lz_l"> rdrdg = o ], O(Ilflﬂz)' ) rdrdf = +oo.

Hence we conclude that

(11) A(o0) = lim A(t) = +o0.

tToo

Put L(t) := |['(¢)], the length of I'(t) = OR(t), so that

o [7'(2)] _ VT
L(t) := /I‘(t) T |7r(z)|2td0 (z =rev™19),

which is also continuous in ¢. Denoting by A’(t) = dA(t)/dt, we have

' 7'(z) 2
A = /m) (_———-1 L Ivr(z|)l2) td6.

By th Schwarz inequality we see that

Lty = (/m) r ’Isrz()l)lztda)

) \* ,
< ) tas) - ([ td) =2meA(t
- (/I"(t) (1 + |7(2)]? I(t) mtA(t)
and thus we have obtained the inequality
(12) L(t)? < 2wt A'(t).
Choose and then fix an arbitrary 1/2 < 7 < 1. We consider

Z(s) := {t € [s,00) : L(t) > A(t)"},
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which is closed in [s,00). Choose an ry > 0 such that R(ro) is a regular region. Take an

Sp € (max{n,r,_1},00) for each n € N. Considering the logarithmic length

L= [ %

for measurable subset X C (0, 00), we observe that

L([sn,0)) = /S:o Edt—t = [log t|3. = +oo0.
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Using 1/t < 2w A'(t)/L(t)? for t € [s,,00) as a consequence of (12) and 2w A'(¢)/L(t)* <
2w A'(t)/A(t)* for t € Z(s,), we deduce

LEe) = [ G [ fraca@awr

o A'(t) A() dA
<9 A\ /
= m sn A(t)? 4 A(sn) AT
1 e 27
=9 A—27+1] — A —27+1 .
i [1 g ay 2P 1) T <00

Hence ([sn,00) \ Z(s,)) = 00 — (27/(27 — 1))A(sn) 2! = +o00. This shows that the set
[57,00) \ Z(s5,) # 0 is open and a fortiori we can find an 7, € (s, 00) with r, & Z(s,), i.e.
L(r,) < A(ryp)7, such that R(r,) is regular. Since 7, > s, > max{n,r,_1}, we have

O0<ro<ri<ryg<- - <Tp_1 <1 T 0.
Using this sequence we finally define
(13) Ra:=R(ra), Ta=T(r,)=08R(r)). (n>0)
Then (Rp)n>o is a regular exhaustion of W and
ITal/|Ra| = L(ra)/A(ra) < A(ra)"/A(ra) = A(ra)™ L0 (n T 00).

Thus the boundaries I';, of the exhausting regions R,, of W are relatively short in the sense
that

(14) lim L

n—o00 IRnI -

0.

4.3. Exhausting regions with long boundaries. As a consequence of W :=
Wio] € Og, we have seen in the preceding subsection 4.2 the existence of a regular ex-
haustion (R,),>0 of W given in (13) that the boundaries I', = dR, of R, are so short as
to satisfy (14). We will see from a different view point that the same exhaustion (Rp)n>0
satisfies

(15) lim inf R >0

as a consequence of W € Og, which contradicts (14). Thus we should not have assumed

W € O¢ and the proof of W := W{o] € O¢ will be over. The proof of (15) goes as follows.
Besides the main covering surface (W, é, 7) we have two other covering surfaces (W, F, ;)

and (F, @, 79) involved in (W, C, 7) with the relation 7 = my o m;, where F is the closed

surface of genus 2 obtained from Fg by pasting crosswise along Ip; and I _; and also along
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Ipp and Iy _5. The metric on F' is the one induced from the sperical metric on C by 7o
and that on W is the one iduced from that on F by =, which is identical with the one
induced from the sperical metric on C by 7 already considered in the preceding subsection
4.2. The area (length, resp.) of a set G (an arc v, resp.) is denoted as before by the same
notation |G| (|, resp.) on eithe one of three (F,C, ), (W, F,m;), and (W, C, 7).

We denote by ®(W) (®(F), resp.) the set of closed curves ¢ on W (F, resp.) which are
not of homotopy null. We maintain

a(W) := Spelél(fw) le] > 0.

For a proof observe first that (W, F, ) is completé and therefore the monodromy theorem
assurs that m(¢) € ®(F) along with ¢ € ®(W) : 7 (®(W) C ®(F). Since the metric on
W may be viewed as induced from one on F' by 7, we see that |¢| > |71(¢)|. Hence

W)= inf > inf =  inf > inf |y,
a(W) welqrg(w)lwl_welq{l(w)lm(so)! weﬂ;&(w))lcpl_mmlsOI

by which we only have to prove

(17) a(F) = ¢Elg(fF) lel >0
to conclude (16), i.e. a(W) > a(F) > 0. Fix an arbitrary p € F and denote by ®,(F’) the
set of ¢ € ®(F) passing through p and consider
f(p) = ¢e¥§,f(F) ol

Then a(F') = infper f(p). We maintain that f(p) > 0. Contrary to the assertion assume
that f(p) = 0 for a p € F. Choose an open parametric disc B centered at p and let
be the distance between p and F' \ B measured by the induced spherical metric on F.
Then there is a ¢y € ®,(F) such that ¢, C B, which is impossible since B is simply
connected and o is not homotop null. Otherwise every ¢ € ®,(F) is not contained in
B, ie. ¢pN(F\ B) # 0, and a fortiori |p| > €, which leads to f(p) = infuee,F) l¢| = €,
contradicting the present errorneous assumption f(p) = 0. Thus we have seen that f(p) > 0
for every p € F. Next choose an arbitrary pair (p,q) of points in F and an arc v C F
connecting p and g. For any ¢ € ®,(F), we have yoy~! € ®,(F) and |ypy7!| < || + 27/
Hence f(q) < f(p) + 2dr(p, q), which implies the (Lipschitz) continuity of f On F, i.e.
|f(p) — f(g)] < 2dr(p,q) for every pair (p, q) of points in F, where dg(p, q) is the induced
spherical distance on F. Thus f € C(F) and f > 0 on F implies that infr f > 0, which
proves (17).

Concerning the standard exhaustion (R,),>0 introduced in the preceding subsection 4.2,
we suppose the relative boundary dR,, =: I, consists of a finite number v,, of components
I'ni (1 <i< )Ty = Uigicy, [ni- Observe that Ty, is not homologue null. Otherwise
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[,; is the boundary of a relatively closed region, which we denote by (I'y;). Since h =1,
on A(Iy;) = Ty, the maximum principle yields h = r, on (I'y;) and thus h must be a
constant 7, on W, which is clearly a contradiction. Since the homology group H(W) of
W is isomorphic to the factor group F(W)/F(®)(W) of the homotopy group F(W) of
W with its commutator subgroup F(*)(W), being homotop null implies being homologue
null for any closed curve on W and thus we see that I';; € ®(W) (1 < i < v,) so that

|Pn| = EISiSVn > ElSiSUn G(W), i.e.
(18) ITn| 2 tna(W) (n € N).

We denote by p(R,,) (p(F), resp.) the Euler characteristic of R, (F, resp.). As arelatively
compact subsurface of the planar surface W, R, is a planar surface bounded by v,, Jordan
curves I'y; and a fortiori p(R,) = v, — 2. Since the genus g(F) of F is 2, i.e. g(F) =2, we
see that p(F) = 2g(F) — 2 = 2. Recall the main theorem of the Ahlfors theory of covering
surfaces (cf. [1], see also e.g. [7],[10]) applied to the covering surface (R,, F,m):

(19) max{ Bl _

PRn),0} 2 p(F) L = BT,
where hr is a positive number depending only upon F' and independent of R,. The in-
equality (18) implies |T'y|/a(W) > v, and the relation p(R,) = v, — 2 yields v, > p(R,).
Hemce |T',|/a(W) > p(R,) holds. These with p(F) = 2 transform (19) into the following
form:

ITnl/a(W) > 2|Rn|/|F| = hpi|Tx|.

Rewriting the above inequality with b := 2a(W)/|F|(a(W)hr + 1) > 0, we obtain the
inequality |T'n|/|Rn] > b > O for every n € N and thus we can finally deuce (15):
liminf, o |Tn|/|Rn| = b > 0. ]
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