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Throughout this note we always denotes $(M, g)$ anon-compact complete Riemannian man-

ifold of dimension $m$ and $\Delta_{g}$ the Laplacian defined by $\Delta_{g}:=\mathrm{R}\mathrm{a}\mathrm{c}\mathrm{e}_{g}\nabla\nabla$. Our interests are

the divergence property of $L^{p}$ -integral of anon-trivial solution $u$ satisfying the inequality

either $uAgu\geq k$ or $\Delta_{g}\log u\geq k$ for alocally integralble function $k$ on $M$ , and its sev-

eral applications in differential geometry ;for instance conformal deformation of metrics,

parabolicity of manifolds and Liouville theorem for harmonic maps. The non-negativity of
$k$ is the most important case. However the condition can be relaxed by the non-negativity

of the interal $\int_{M}kdv_{g}$ under assuming the integrability of the negative part of $k$ . Such

an observation brings us afew interesting applications and is originated in Yau, [Y]. The

proof of results stated below will appear elsewhere.

1. To formulate our result we begin with the following theorem which contains avanishing

of gradient length of certain functions whose $L^{p}$ -integrals have amoderate growth.

Theorem 1.1. Let $\mathrm{I}(r)$ , and $E(r)$ (resp. $K_{\pm}(r)$ ) be non-negative absolutely continuous

and non-decreasing functions (resp. non-negative continuous functions) on $\mathrm{R}_{+}:=[1, +\infty)$ .
Suppose $K_{-}(+ \infty):=\lim_{rarrow+\infty}K_{-}(r)<+\infty$ , $\frac{d}{dr}\mathrm{I}(r)>0$ and

(1) $K_{+}(r)+C_{1}E(r)\leq \mathrm{K}_{-}(\mathrm{r})$
$+c_{2}\sqrt{\frac{d}{dr}\mathrm{I}(r)\frac{d}{dr}E(r)}$

for almost all $r\geq r_{0}>>1$ and two constants $C_{1}\geq 0$ , $C_{2}>0$ . Then the following assertions

are valid:The case $C_{1}>0$ : if $K_{-}(+ \infty)\leq K_{+}(+\infty):=\lim_{rarrow+\infty}K_{+}(r)\leq+\infty$ , then either
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$\mathrm{E}(\mathrm{r})\equiv 0$ or $1/ \frac{d}{dr}\mathrm{I}(r)\in L^{1}(\mathrm{R}_{+})$ . The case $C_{1}=0$ : if $K_{-}(+\infty)<K_{+}(+\infty)\leq+\infty$ , then

$\lim_{rarrow+}\inf_{\infty}E(r)/\int_{1}^{r}dt/\frac{d}{dt}\mathrm{I}(t)>0$ .

Applying Theorem 1.1 to $\mathrm{I}(r)=\mathrm{I}_{x}^{p}(u, r)$ (see below), $E(r)= \int_{B_{x}(r)}|u|^{p-2}|\nabla u|^{2}dv_{g}$ and

$K_{\pm}(r)\equiv 0$ respectively we can obtain the following result which implies not only Theorem

2.1 but also Theorem 2.2 in [K] simultaneously, and is ageneralization of Theorem 1, b)

in [S] for the Laplacian $\Delta_{g}$ in view of Lemma given in 5. Appendix.

Theorem 1.2. Suppose $u$ is anon-constant smooth function $satisffi\dot{n}g$ the inequality

$uA9u\geq 0$ on M. Then for any $p>1$ , $r>0$ and $x\in M$ , the function $\mathrm{I}_{x}^{p}(u, r)$ defined by

$\mathrm{I}_{x}^{p}(u, r):=\int_{B_{x}(r)}|u|^{p}dv_{g}$ satisfies $1/ \frac{d}{dr}\mathrm{I}_{x}^{p}(u, r)\in L^{1}(\mathrm{R}_{+})$, where $B_{x}(r)$ is the geodesic

ball centered at $x\in M$ and of radius $r$ .

Remark 1. Since the distance function $r_{x}$ from apoint $x\in M$ is Lipschitz continuous

on $M$ and satisfies $|\nabla r_{x}|\equiv 1$ within the cut locus of $x$ , letting $\sigma_{r}$ be the $m-1$-dimensional

Hausdorff measure of the geodesic sphere $S_{x}(r)$ induced by $g$ , $\frac{d}{dr}\mathrm{I}_{x}^{p}(u, r)$ coincides with the

integral $\int_{S_{x}(r)}|u|^{p}\sigma_{r}$ for almost all $r>0$ by the $\mathrm{c}\mathrm{o}$-area formula (cf. [F], 3.2.12, Theorem

and 3.2.46).

Let $f$ : $(M, g)arrow(M, g)$ be aconformal transformation of $(M,g)$ with $\dim_{\mathrm{R}}M\geq 3$ and

$u$ the conformal factor of $f$ defined by $f^{*}g=u^{4/(m-2)}g$ . It is known that $u$ satisfies the

following non-linear equality

$c_{m}\Delta_{g}u-s_{g}u+K_{fg}.u^{(m+2)/(m-2)}\equiv 0$ on $M$

for $c_{m}:=4(m-1)/(m-2)$ and $K_{f^{*}g}$ is the scalar curvature of $f^{*}g$ . If $s_{g}\leq 0$ and $f$

preserves the scalar curvature $s_{g}$ , i.e., $s_{g}=Kf*g$ ’then we can see

$(u-1) \Delta_{g}(u-1)=\frac{-s_{g}u(u-1)(u^{4/(m-2)}-1)}{c_{m}}\geq 0$ on $M$ .

Therefore Theorem 1.2 has the following interesting application which implies auniqueness

of solution for the scalar curvature equation and is known for the case p $=2$ (cf. [BRS],

Theorem 1.5).
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Theorem 1.3. Let (M, g) be anon-compact complete Riemannian manifold of dimen-

sion $m\geq 3$ and $f$ aconformal transformation of $(M, g)$ . Suppose (i) the scalar curvature

$s_{g}$ of $g$ is non-positive on $M$ , (ii) $f$ preserves $s_{g}$ , and (iii) tie conformal factor $u$ satisfies
$1/ \max\{\frac{d}{dr}\mathrm{I}_{x}^{p}(u-1, r), 1\}\not\in L^{1}(\mathrm{R}_{+})$ for aconstant $p>1$ and apoint $x\in M$ . Then $u\equiv 1$ ,

i.e., $f$ is isometric.

Remark 2. In Theorem 1.3 the constant function 1is atrivial solution of the above scalar

curvature equation under the condition $s_{g}=Kf*g$ . However for two non-trivial solutions $u_{1}$

and $u_{2}$ of the equation, we do not know whether $u_{1}\equiv u_{2}$ if $1/ \max\{\frac{d}{dr}\mathrm{I}_{x}^{p}(u_{1}-u_{2}, r), 1\}\not\in$

$L^{1}(\mathrm{R}_{+})$ for aconstant $p>1$ . But under this condition it is not so hard to see that Theorem

1.2 implies $|u_{1}-u_{2}|\leq 1$ on $M$ , and moreover $\inf_{M}|u_{1}-u_{2}|=0$ if $(M, g)$ is not parabolic

(see Corollary 2.2 below).

As acorollary, we get the following gap theorem of solution for the scalar curvature equation

immediately.

Corollary 1.4. Let $(M, g)$ and $f$ be as above. Suppose the conditions (i) and (ii) of

Theorem 1.3 are satisfied and moreover (iii)’ $(M, g)$ has polynomial volume growth, i.e.,

$\lim_{rarrow+\infty}\mathrm{V}\mathrm{o}\mathrm{l}(B_{y}(r))/r"<+\infty$ for some $\alpha>0$ and $|u(x)-1|<C/(1+r_{y}(x))^{\beta}$ , $x\in M$ , for

the distance function $r_{y}$ from afixed point $y\in M$ , $C>0$ and $\beta>0$ , Then $f$ is isometric.

2. (A#, $g$ ) is said to be parabolic if $(M, g)$ admits no positive Green’s function. Varopoulos

showed that $(M, g)$ is parabolic if $r/V_{x}(r)\not\in L^{1}(\mathrm{R}_{+})$ for some point $x\in M$ , where $V_{x}(r):=$

$\mathrm{V}\mathrm{o}\mathrm{l}(B_{x}(r))$ is the volume of $B_{x}(r)$ relative to $g$ (cf.[V],Theorem 2and [Gri], Corollary

2). Later Li and Tam proved the same result under the condition $1/ \frac{d}{dr}V_{x}(r)\not\in L^{1}(\mathrm{R}_{+})$

(cf.[LTl], Corollary 2.3). Here we note that $\frac{d}{dr}V_{x}(r)$ is the area of the geodesic sphere

$S_{x}(r)$ induced by $g$ for almost all $r>0$ . In view of Lemma in $5.\mathrm{A}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{x}$ , Li and Tarn’s

assertion is sharper than Varopoulos’ one. The idea of proof of Theorem 1.2 allows us to

give an alternative and elementary proof of their result by showing the following.

Theorem 2.1. Suppose $(M, g)$ admits anon-constant continuous subharmonic function

bounded from above. Then $1/ \frac{d}{dr}V_{x}(r)\in L^{1}(\mathrm{R}_{+})$ for any point x $\in M$ .
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Remark 3. Here acontinuous function u is said to be subharmonic if D is any relatively

compact open subset in $M$ , $\Delta_{g}v\equiv 0$ on $D$ , and $u\leq v$ on $\overline{D}\backslash D$ , then $u\leq v$ on $D$ . If $u$ is of

class $C^{2}$ , then $u$ satisfies $\Delta_{g}u\geq 0$ . It is known that apositive Green’s function produces

smooth non-constant bounded subharmonic functions (cf. [CTW], Theorem 1.4).

By Theorem 2.1, we get the following in view of Remark 3.

Corollary 2.2. If $(M, g)$ admits apoint $x\in M$ such that $1/ \frac{d}{dr}V_{x}(r)\not\in L^{1}(\mathrm{R}_{+})$ , then

$(M, g)$ is parabolic.

Remark 4. If $(M, g)$ is rotationally symmetric at apoint $x_{*}\in M$ , letting $r_{*}$ be the distance

function from $x_{*}\in M$ , then we can see that (i) $w(x):= \int_{1}^{r_{*}(x)}dr/\frac{d}{dr}V_{x_{*}}(r)$ is harmonic

on $M\backslash \{x_{*}\}$ and $\lim_{r_{*}(x)arrow 0}w(x)=-\infty$ , $( \mathrm{i}\mathrm{i})\int_{1}^{+\infty}rdr/V_{x_{*}}(r)\geq\int_{1}^{+\infty}dr/\frac{d}{dr}V_{x_{*}}(r)$ if

the radial curvature is non-positive (cf.[GWl] and Lemma in $5.\mathrm{A}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{x}$). In particular

$u:=\exp w\geq 0$ defines acontinuous bounded subharmonic function on $M$ if and only

if $1/ \frac{d}{dr}V_{x_{*}}(r)\in L^{1}(\mathrm{R}_{+})$ . If the Ricci curvature of $(M, g)$ is non-negative, then $(M,g)$

is parabolic if and only if $r/V_{x}(r)\not\in L^{1}(\mathrm{R}_{+})$ for some point $x\in M$ (cf.[V], Theorem 2

and [LT2], Theorem 1.9). However the integrability of $r/V_{x}(r)$ does not always imply the

existence of Green’s function on $(M, g)$ generally as observed in [V].

3. The parabolicity of manifold is related to Liouville theorem for harmonic maps. First

we state the following.

Theorem 3.1. Let $f$ : $(M, g)arrow(N, h)$ be asmooth map from $(M, g)$ to aRiemannia
$i\mathrm{a}n$ manifold $N$ provided with asmooth function $\varphi$ and acontinuous function $\chi>0$

such that $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(\varphi)\geq\chi h$ and $|\nabla\varphi|\leq C$ for aconstant $C>0$ on N. Suppose $f$ is har-

monic, and the energy density $\mathrm{e}(f):=(1/2)|df|^{2}$ of $f$ satisfies the following condition $(*)$

: $\int_{B_{x}(r)}\mathrm{e}(f)dv_{g}=o$ $( \int_{1}^{r}dt/\frac{d}{dt}V_{x}(t))$ for some point $x\in M$ . Then $f$ is aconstant map.

This can be induced by applying the case $C_{1}=0$ in Theorem 1.1 to $E(r)= \int_{B_{x}(r)}|\nabla u|^{2}dv_{g}$

for $u:=f^{*}\varphi$ and $\mathrm{I}(r)=V_{x}(r)$ . As acorollary we obtain the following Liouville theorem

for harmonic maps to amanifold of asymptotically non-positive curvature.

Corollary 3.2. Let $f$ : $(M, g)arrow(N, h)$ be aharmonic map to acomplete Riemannia
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manifold $(N, h)$ with apole $y\in N$ whose radial curvature $R_{N}$ satisfies $R_{N}\leq 1/4(1+r_{y})^{2}$

on N. Suppose the energy density $\mathrm{e}(f)$ of $f$ satisfies the condition $(*)$ in Theorem 3.1.

Then $f$ is aconstant map.

Remark 5. It is known that if $(M, g)$ is parabolic, then any harmonic map of finite energy

from $(M, g)$ to any Hadamard manifold $(N, h)$ , i.e., $N$ is simply connected and $R_{N}\leq 0$

on $N$ , is constant (cf.[CTW],Proposition 2.1 and Theorem 3.2). On the other hand there

exists anon-degenerate harmonic map from atwo dimensional Euclidean space $\mathrm{R}^{2}$ with

flat metric to ahyperbolic plane of constant $\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}-1$ (cf.[CT]). The energy of such a

map on $B_{x}(r)\subset \mathrm{R}^{2}$ with $x=(0,0)\in \mathrm{R}^{2}$ diverges not slower than $\log r$ by Theorem 3.1.

However the analyticity of map yields the following Liouville theorem of holomorphic ones

to amanifold of negative curvature bounded away from zero.

Theorem 3.3. Let $f$ : $(M, \omega_{M})arrow(N,\omega_{N})$ be aholomorphic map from acomplete

K\"ahler manifold $(M, \omega_{M})$ of dimension $m=\dim_{\mathbb{C}}M$ to aKiihler manifold $(N, \omega_{N})$ . If

$(M, \omega_{M})$ admits apoint $x\in M$ such that $1/ \frac{d}{dr}V_{x}(r)\not\in L^{1}(\mathrm{R}_{+})$, and $(N,\omega_{N})$ admits a

smooth 1-form0such that $\omega_{N}=d\theta$ and $C:= \sup_{N}|\theta|_{g}<+\infty$ , then $f$ is aconstant map.

Remark 6. The target manifold $(N, \omega_{N})$ in Theorem 3.3 should be non-compact. Many

kinds of hyperbolic Kahler manifold admit such aKahler metric (cf. [Gro]).

4. In Theorem 1.2 we can relax the non-negativity condition of $k$ for the case $p=2$ .

Theorem 4.1. Let $u$ be asmooth non-constant solution satisfying the inequality $u\Delta_{g}u\geq$

$k$ for locally integrable function $k$ on M. If$k_{-}:= \max\{-k, 0\}\in L^{1}(M)$ and $\int_{M}kdv_{g}\geq 0$ ,

then $1/ \frac{d}{dr}\mathrm{I}_{x}^{2}(u, r)\in L^{1}(\mathrm{R}_{+})$ for any $x\in M$ .

According to the same spirit as Theorem 4.1 we can show the following which is agener-

alization of Theorem 2.1 in [LY] and Theorem 1in [Y].

Theorem 4.3. Let $u$ be asmooth non-constant solution satisfying the inequality $\Delta_{g}\log u$

$\geq k$ on $M_{+}:=\{u>0\}$ . If either $k\equiv 0$ or $k_{-}\in L^{1}(M)$ and $\int_{M}kdv_{g}>0$ , then
$1/ \frac{d}{dr}\mathrm{I}_{x}^{p}(u, r)\in L^{1}(\mathrm{R}_{+})$ for any $p>0$ and $x\in M$ .
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Remark 7. Under the same situation Li and Yau showed $\lim_{rarrow+}\inf_{\infty}\mathrm{I}_{x}^{p}(u, r)/r^{2}>0$ in [LY],

which follows from $1/ \frac{d}{dr}\mathrm{I}_{x}^{p}(u, r)\in L^{1}(\mathrm{R}_{+})$ in view of Lemma in 5. Appendix.

The condition $\int_{M}kdv_{g}>0$ follows from the non-parabolicity of $(M, g)$ .

Corollary 4.3. Let $u$ be asmooth non-negative solution of the inequality $\Delta_{g}\log u\geq k$

on $M_{+}$ . If $k_{-}\in L^{1}(M)$ , $(M, g)$ is not parabolic, and $1/ \max\{1, \frac{d}{dr}\mathrm{I}_{x}^{p}(u, r)\}\not\in L^{1}(\mathrm{R}_{+})$ for

some $p>0$ and apoint $x\in M$ , then $u$ should be identically zero.

Let $f$ : $(M, \omega_{M})arrow(N, \omega_{N})$ be aholomorphic map from anon-compact complete Kahler

manifold $(M, \omega_{M})$ to acomplex Hermitian manifold $(N, \omega_{N})$ whose holomorphic sectional

curvature is non-positive. Letting $\mathrm{e}(f)$ be the energy density $\mathrm{e}(f)$ of $f$ and $R_{M}$ the point

wise lower bound of the Ricci curvature of $M$ , one can show the following inequality

$\Delta_{g}\log \mathrm{e}(f)\geq 2R_{M}$ ,

where $\mathrm{e}(f)\neq 0$ (see [R], Proposition 4). Acomplex differential geometric interpretation of

Theorem 4.2 and Corollary 4.3 is the following Liouville theorem for holomorphic maps.

Theorem 4.4. Let $f$ : $(M, \omega_{M})arrow(N,\omega N)$ be aholomorphic map from anon-compact

complete Kiihler manifold $(M, \omega_{M})$ to acomplex Hermitian manifold $(N, \omega_{N})$ whose holo

morphic sectional curvature is non-positive, and $R_{M,-}$ the negative part of $R_{M}$ . Suppose

(i) $\mathrm{R}\mathrm{m},-\in L^{1}(M)$ , (ii) either $(M, \omega_{M})$ is not parabolic or $\int_{M}R_{M}dv_{M}>0$ , and (iii) the

energy density $\mathrm{e}(f)$ of $f$ satisfies $1/ \max\{1, \frac{d}{dr}\mathrm{I}_{x}^{p}(\mathrm{e}(f), r)\}\not\in L^{1}(\mathrm{R}_{+})$ for some $p>0$ and

apoint $x\in M$ . Then $f$ is aconstant map.

Remark 8. In case $\mathrm{R}\mathrm{m},-\equiv 0$ and $p=1$ the condition (ii) can be dropped as shown in

[SY], which deals with harmonic maps of finite energy (see also [LY], theorem 3.1).

Let $f$ : $(M, \omega M)$ $arrow(N, \omega_{N})$ be aholomorphic map from anon-compact complete Kahler

manifold $(M, \omega_{M})$ of dimension $m$ to acomplex hermitian manifold $(N,\omega_{N})$ of the same
dimension whose Ricci curvature is non-positive. Letting $uf$ denote the ratio $f^{*}V_{N}/V_{M}$ of

the volume forms $V_{M}$ relative to $\omega M$ and $V_{N}$ relative to $\omega_{N}$ respectively and $S_{M}$ the scalar

curvature of $(M, \omega M)$ , one can see the following inequality

$\Delta_{g}\log u_{f}\geq S_{M}$
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where $u_{f}\neq 0$ (see [LY], the proof of Theorem 3.5). Hence we can also show the following

theorem (cf.[MY], \S 1 and [LY], Theorem 3.5 and Corollary 3.6).

Theorem 4.5. Let $f$ : $(M, \omega_{M})arrow(N, \omega_{N})$ be aholomorphic map from anon-compact

complete Kihler manifold $(M, \omega_{M})$ of dimension $m$ to acomplex hermitian manifold

$(N, \omega N)$ of the same dimension whose Ricci curvature is non-positive and $S_{M,-}$ the nega-

tive part of $S_{M}$ of M. Suppose (i) $\mathrm{S}\mathrm{m},-\in L^{1}(M)$ , (ii) either $(M, \omega_{M})$ is not parabolic or

$\int_{M}S_{M}dv_{M}>0$ , and (iii) $1/ \max\{1, \frac{d}{dr}\mathrm{I}_{x}^{p}(u_{f}, r)\}\not\in L^{1}(\mathrm{R}_{+})$ for some $p>0$ and apoint

$x\in M$ . Then $f$ degenerates everywhere on $M$ .

5. Appendix

Lemma. Let $v(r)>0$ be an absolutely continuous function on $[0, +\infty)$ such that

$\frac{d}{dr}v(r)>0$ for almost all $r\in[0, +\infty)$ . Then $v$ satisfies the following integral inequality:

$\int_{2}^{r}\frac{tdt}{v(t)}\leq 4\int_{1}^{r}\frac{dt}{\frac{d}{dt}v(t)}$ for any $r>2$ .

If $v(r)/r$ is non-decreasing (in particular $v(r)$ is convex and $v(0)=0$), then $r/v(r)\in$

$L^{1}(\mathrm{R}_{+})$ if and only if $1/ \frac{d}{dr}v(r)\in L^{1}(\mathrm{R}_{+})$ .

Proof. By integration by parts and Schwarz’s inequality we get the following:

$\int_{1}^{r}\frac{t-1}{v(t)}dt\leq 2\int_{1}^{r}\frac{dt}{\frac{d}{dt}v(t)}$ for any $r>1$ ,

which implies the desired inequality. $\square$
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