obooooooooo 12930 20020 175-182

175

A NOTE ON DIVERGENCE OF LP-INTEGRALS OF
SUBHARMONIC FUNCTIONS AND ITS APPLICATIONS

KENSHO TAKEGOSHI

Throughout this note we always denotes (M, g) a non-compact complete Riemannian man-
ifold of dimension m and A, the Laplacian defined by 4, := Trace,VV. Our interésts are
the divergence property of LP—integral of a non-trivial solution u satisfying the inequality
either udgu > k or Aglogu > k for a locally integralble function k on M, and its sev-
eral applications in differential geometry ; for instance conférmal deformation of metrics,
parabolicity of manifolds and Liouville theorem for harmonic maps. The non-negativity of
k is the most important case. However the condition can be relaxed by the non-negativity
of the interal [,  k dvg under assuming the integrability of the negative part of k. Such
an observation brings us a few interesting applications and is originated in Yau, [Y]. The

proof of results stated below will appear elsewhere.

1. To formulate our result we begin with the following theorem which contains a vanishing

of gradient length of certain functions whose LP—integrals have a moderate growth.

Theorem 1.1.  Let Z(r), and E(r) (resp. K+(r)) be non-negative absolutely continuous
and non-decreasing functions (resp. non-negative continuous functions) on Ry := [1,+00).

Suppose K_(+0) := liI_’r_l K_(r) < 400, £I(r) > 0 and

0 Ko(r)+ CE(r) < K- (r) + Ony| 2 2() )

for almost all T > rg >> 1 and two constants C, > 0, Cs > 0. Then the following assertions
are valid : The case C1 > 0 : if K_(+00) < Ky (400) := 1151_1 K (r) £ 400, then either
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E(r)=0o0r1/£4I(r) € L'(Ry). The case Cy = 0 : if K_(+00) < K, (+00) < +00, then
liminf E(r) [ [} dt/$Z(t) > 0.

Applying Theorem 1.1 to Z(r) = IZ(u,r) (see below) , E(r) = [ lu|P~2|Vu|? dvg and
K. (r) = 0 respectively we can obtain the following result which implies not only Theorem

2.1 but also Theorem 2.2 in [K] simultaneously, and is a generalization of Theorem 1, b)

in [S] for the Laplacian A, in view of Lemma given in 5. Appendix.

Theorem 1.2. Suppose u is a non-constant smooth function satisfying the inequality
uAgu >0 on M. Then for any p> 1,7 >0 and x € M, the function ZP(u,r) defined by
I2(u,) = [g_(»y |ulP dvy satisfies 1/£71P(u,r) € L}*(R4), where B,(r) is the geodesic
ball centered at x € M and of radius r.

Remark 1.  Since the distance function r, from a point x € M is Lipschitz continuous
on M and satisfies |Vr;| = 1 within the cut locus of z, letting o, be the m — 1-dimensional
Hausdorff measure of the geodesic sphere S, (r) induced by g, ;f—rIg (u,r) coincides with the
integral [ S.(r) |ulP o for almost all » > 0 by the co-area formula (cf. [F], 3.2.12, Theorem
and 3.2.46).

Let f : (M,g) — (M,g) be a conformal transformation of (M, g) with dimg M > 3 and
u the conformal facto_r of f defined by f*g = u?/(m=2)g Tt is known that u satisfies the

following non-linear equality
emAgu — sgu+ Kpequmtd/(m=2 = o on M

for ¢, := 4(m — 1)/(m — 2) and Ky« is the scalar curvature of f*g. If s; < 0 and f

preserves the scalar curvature sg, i.e., s; = Ky+4, then we can see

—sgu(u — 1)(u?/(m=2) — 1)

Cm

(u—1)Ag(u—1) = >0 onM.

Therefore Theorem 1.2 has the following interesting application which implies a uniqueness
of solution for the scalar curvature equation and is known for the case p = 2 (cf. [BRS],

Theorem 1.5).
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Theorem 1.3.  Let (M, g) be a non-compact complete Riemannian manifold of dimen-
sion m > 3 and f a conformal transformation of (M, g). Suppose (i) the scalar curvature
sg of g is non-positive on M, (ii) f preserves sy, and (iii) the conformal factor u satisfies
1/max {£TP(u—1,7),1} & L}(R..) for a constant p > 1 and a pointz € M. Thenu = 1,

ie., f is isometric.

Remark 2. In Theorem 1.3 the constant function 1 is a trivial solution of the above scalar
curvature equation under the condition sq4 = K- 4. However for two non-trivial solutions u;
and ug of the equation, we do not know whether u; = uy if 1 / max {%Ig(ul — Uug,T), 1} 4
LY(R.) for a constant p > 1. But under this condition it is not so hard to see that Theorem
1.2 implies |uy — uz| <1 on M, and moreover inf s |u; — uz| = 0 if (M, g) is not parabolic

(see Corollary 2.2 below).

As a corollary, we get the following gap theorem of solution for the scalar curvature equation

immediately.

Corollary 1.4. Let (M,g) and f be as above. Suppose the conditions (i) and (ii) of
Theorem 1.3 are satisfied and moreover (iii)’ (M, g) has polynomial volume growth, i.e.,
r}irwaol(By(r))/ra < +00 for some a > 0 and |u(z) - 1| < C/ (1 + ry(:c))ﬂ, z € M, for
the distance function r, from a fixed point y € M, C > 0 and 3 > 0. Then f is isometric.

2. (M, g) is said to be parabolic if (M, g) admits no positive Green’s function. Varopoulos
showed that (M, g) is pafabolic ifr/Vy(r) & L*(R,) for some point z € M, whefe Vz(r) =
Vol(B,(r)) is the volume of B,(r) relative to g (cf.[V],Theorem 2 and [Gri], Corollary
2). Later Li and Tam proved the same result under the condition 1/£V,(r) ¢ L*(R4)
(cf.[LT1], Corollary 2.3). Here we note that <=V, (r) is the area of the geodesic sphere
Sz(r) induced by g for almost all 7 > 0. In view of Lemma ih 5.Appendix, Li and Tam’s
assertion is sharper than Varopoulos’ one. The idea of proof of Theorem 1.2 allows us to

give an alternative and elementary proof of their result by showing the following.

Theorem 2.1.  Suppose (M, g) admits a non-constant continuous subharmonic function

bounded from above. Then 1/%V,(r) € L'(Ry) for any point z € M.
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Remark 3. Here a continuous function u is said to be subharmonic if D is any relatively
compact open subset in M, Aqv =0on D, and u < von D—\D, thenu <von D. Huisof
class C?, then u satisfies Aju > 0. It is known that a positive Green’s function produces

smooth non-constant bounded subharmonic functions (cf. [CTW], Theorem 1.4).

By Theorem 2.1, we get the following in view of Remark 3.

Corollary 2.2. If (M,g) admits a point x € M such that l/j‘i—Vz(r) € L'(R,), then
(M, g) is parabolic.

Remdrk 4. If (M, g) is rotationally symmetric at a point z, VE M, letting 7'* be the distance
function from z. € M, then we can see that (i) w(z) = o () dr / £V, (r) is harmonic
on M\ {z.} and lim,, o w(z) = —o0, (i) [ rdr/Ve.(r) > [F¥dr/ 4V, (r) if
the radial curvature is non-positive (cf.[(GW1] and Lemma in 5.Appendix). In particulaf
u := expw > 0 defines a continuous bounded subharmonic function on M if and only
if 1/24V, (r) € L'(Ry). If the Ricci curvature of (M,g) is non-negative, then (M,g)
is parabolic if and only if r/V,(r) ¢ L'(R4) for some point £ € M (cf.[V], Theorem 2
and [LT2], Theorem 1.9). Howevér the integrability of r/ Vz(r) does not always imply the

existence of Green’s function on (M, g) generally as observed in [V].

3. The parabolicity of manifold is related to Liouville theorem for harmonic maps. First

we state the following.

Theorem 3.1. Let f : (M,g) — (N,h) be a smoothvmap from (M, g) to a Riemann-
ian manifold N prox}ided with a smooth function ¢ and a continuous function x > 0
such that Hess(cp) > xh and |Vp| < C for a constant C > 0 on N. Suppose f is har-
monic, and the energy density e(f) := (1 /2)|df|? of f satisfies the following condition (x)
: Bz ") e(f) dv, = o (f{ dt/&Va(t)) for some point x € M. Then f is a constant map.

This can be induced by applying the case C; = 0 in Theorem 1.1 to E(r) = [ B.(r) |Vu|? dv,
for u := f*p and Z(r) = Vz(r). As a corollary we obtain the following Liouville theorem

for harmonic maps to a manifold of asymptotically non-positive curvature.

Corollary 3.2. Let f:(M,g) — (N,h) be a harmonic map to a complete Riemannian
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manifold (N, h) with a pole y € N whose radial curvature Ry satisfies Ry < 1/4(1 +7y)?
on N. Suppose the energy density e(f) of f satisfies the condition () in Theorem 3.1.

Then f is a constant map.

Remark 5. 1t is known that if (M, g) is parabolic, then any harmonic map of finite energy
from (M, g) to any Hadamard manifold (N, h), i.e., N is simply connected and Ry < 0
on N, is constant (cf.[CTW],Proposition 2.1 and Theorem 3.2). On the other hand there
exists a non-degenerate harmonic map from a two dimensional Euclidean space R? with
flat metric to a hyperbolic plane of constant cur\fature —1 (cf.[CT]). The energy of such a

map on B,(r) C R? with z = (0,0) € R? diverges not slower than logr by Theorem 3.1.

However the analyticity of map yields the following Liouville theorem of holomorphic ones

to a manifold of negative curvature bounded away from zero.

Theorem 3.3. Let f : (M,wpy) — (N,wn) be a holomorphic map from a complete
Kéhler manifold (M,wy) of dimension m = dimc M to a Kéahler manifold (N,wn). If
(M,wyr) admits a point x € M such that l/d%Vx(r) ¢ L*(R,), and (N,wy) admits a

smooth 1—form 6 such that wy = df and C := supy |0|, < +00, then f is a constant ndap.

Remark 6.  The target manifold (N,wy) in Theorem 3.3 should be non-compact. Many
kinds of hyperbolic Kahler manifold admit such a Kéahler metric (cf. [Gro]).

4. In Theorem 1.2 we can relax the non-negativity condition of k for the case p = 2.

Theorem 4.1. Let u be a smooth non-constant solution satisfying the inequality uldgu >
k for a locally integrable function k on M. If k_ := max{—k,0} € L*(M) and [,, k dvg > 0,
then 1/%I§(u,r) € LY(R,) for any z € M.

According to the same spirit as Theorem 4.1 we can show the following which is a gener-

alization of Theorem 2.1 in [LY] and Theorem 1 in [Y].

Theorem 4.3. Let u be a smooth non-constant solution satisfying the inequality A4 logu
> k on My := {u > 0}. If either k = 0 or k- € L'(M) and [,, k dvy > 0O, then
1/3‘1;1'5(11,7') € L'(R,) foranyp> 0 and z € M.
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Remark 7. Under the same situation Li and Yau showed lim }_nf ZP(u,r)/r? > 0 in [LY],
r—+00
which follows from 1 / a‘%l’fc’ (u,7) € L*(Ry) in view of Lemma in 5. Appendix.

The condition |, v K dvg > 0 follows from the non-parabolicity of (M, g).

Corollary 4.3.  Let u be a smooth non-negative solution of the inequality Aglogu > k
on M,. Ifk_ € LY(M), (M, g) is not parabolic, and 1/ max {1, £72(u,r)} & L*(R) for
some p > 0 and a point x € M, then u should be identically zero.

Let f: (M,wp) — (N,wn) be a holomorphic map from a non-compact complete Kéhler
manifold (M, wys) to a complex Hermitian manifold (/V,wy) whose holomorphic sectional
curvature is non-positive. Letting e(f) be the energy density e(f) of f and Ry, the point-

wise lower bound of the Ricci curvature of M, one can show the following inequality
Agloge(f) > 2Ry

where e(f) # 0 (see [R], Proposition 4). A complex differential geometric interpretation of

Theorem 4.2 and Corollary 4.3 is the following Liouville theorem for holomorphic maps.

Theorem 4.4. Let f: (M,wpn) — (N,wn) be a holomorphic map from a non-compact
complete Kahler manifold (M,wys) to a complex Hermitian manifold (N,wy) whose holo-
morphic sectional curvature is non-positive, and Ry, the negative part of Rps. Suppose
(i) Rm,— € L*(M), (ii) either (M,wyr) is not parabolic or f,, Ru dvas > 0, and (iii) the
energy density e(f) of f satisfies 1/ma.x {1, £12(e(f),7)} & L*(R+) for some p > 0 and

a point x € M. Then f is a constant map.

Remark 8. In case Ry, = 0 and p = 1 the condition (ii) can be dropped as shown in

[SY], which deals with harmonic maps of finite energy (see also [LY], theorem 3.1).

Let f: (M,wpr) — (N,wn) be a holomorphic map from a non-compact complete Kéhler
manifold (M,wys) of dimension m to a complex hermitian manifold (N,wy) of the same
dimension whose Ricci curvature is non-positive. Letting uy denote the ratio f*Vy/Vas of
the volume forms V), relative to wys and Vi relative to wy respectively and Sy, the scalar

curvature of (M, wys), one can see the following inequality

Agloguy > Su
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where us # 0 (see [LY], the proof of Theorem 3.5). Hence we can also show the following
theorem (cf.[MY], §1 and [LY], Theorem 3.5 and Corollary 3.6).

Theorem 4.5. Let f: (M,wpy) — (N,wn) be a holomorphic map from a non-compact
complete Kéhler manifold (M,wys) of dimension m to a cdmp]ex hermitian manifold
(N,wn) of the same dimension whose Ricci curvature is non-positive, and Sy, the nega-
tive part of Spr of M. Suppose (i) Sy~ € LY(M), (ii) either (M,wpr) is not parabolic or
fis Sm dvar > 0, and (iii) 1/ max {1, £7P(us,r)} & L*(R.) for some p > 0 and a point
x € M. Then f degenerates everywhere on M.

5. Appendix

Lemma. Let v(r) > 0 be an absolutely continuous function on [0,+o00) such that

a‘%v(r) > 0 for almost all r € [0,400). Then v satisfies the following integral inequality :

/ —tilt~§4/ d—dt— for any r> 2.
2 U(t) 1 Ei”(t) ,
If v(r)/r is non-decreasing (in particular v(r) is convex and v(0) = 0), then r/v(r) €

LY(Ry) if and only if 1/ Zuv(r) € L}(R).

Proof. By integration by parts and Schwarz’s inequality we get the following :

T — T
/ t 1dt§2/ -di forany r > 1,
1 () 1 () .

which implies the desired inequality. 0O
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