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1. Introduction

Let D be a bounded domain in R® such that 8D is a ﬁ—set d-1< ﬁ < d), ie.,
there is a positive Radon measure pu satisfying

(1.1) bir? < p(B(z,r) NOD) < byrP

for all » < ry for some ry and all z € 8D. Here B(z,r) is a ball with centered at x
and radius r.

A. Jonsson and H. Wallin introduced an extension operator which extends func-
tions on 8D to R? and is bounded from a Besov space on 8D to a ssuitable Besov
space on R? by using the Whitney decomposition. ([JW1], [JW2]).

We consider a cylinderical domain Qp = D x (0,T) for the above domain D and
denote by Sp the lateral boundary 8D x [0, T] of Qp. '

In this paper we shall extend functions on Sp to R4*! in order to be useful for
considering the parabolic boundary value problems.

To do so, we consider the parabolic metric

p(X,Y) = [lz —yl2+]t - s

for X = (z,t), Y = (y,s) and z, ye R?%, t, se R.
Instead of balls we consider parabolic cylinders. Recall that the parabolic cylinder
with centered at X = (z,t) and radius r is defined by

C(X:'r) = {Y = (yv S); '(E - yl <r, |t - S| < T2}’

We may suppose that oD C B(0, R/2) for some R > 1 and 1o = 3R in (1.1). Fix
a (3-measure p on dD and denote by ur the product measure of the §-measure and
the 1-dimensional Lebesgue measure restricted to [0, 7).
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Let p > 1 and o > 0. We denote by LP(ur) the set of all LP-functions defined on
Sp with respect to pr and by A2(Sp) the space of all functions in LP(ur) such that

[l — F)PP
p(X,Y)B+2+pa

dur(X)dpr(Y) < oo.

For f € A2(Sp) the Besov norm of f is defined by

— p
£l = (f COPdur () + ([ LELLEN g ) dur e
Using a decomposition into closed parabolic cubes of (R?\ 8D) x R of Whitney type,
we construct an extension operator £ which extends in functions on SD to R4 in
§2 and investigate the properties of it. ’

We shall see by Lemma 2.2 that if f is p-continuous on Sp, then E£(f) is also
p-continuous in R? x [0, 7).

We shall show in Lemma 2.3 that £ is bounded from L?(ur) to LP(R"‘H).

Let Y = (y,s) € R? x [0,T]. We denote by §(Y) (resp. d(y)) the distance of Y
from Sp with respect to p (resp. the Euclidean distance of y from 8D). We easily
see that 8(Y) = 4d(y) for Y = (y,s) € R? x [0, 7.

For a C'-function f in (R \ 8D) x (0, T) we write

Vi) - (L), gL (1),

Using a maximal function of A in Ll(,uT x pr) on (R*\ 8D) x [0, T, we shall prove
the following theorem in §3.

THEOREM 1. Letp > 1, f € A2(Sp) and p — pa —d +8>0. Then

. Y)|PS(Y )PPe-dt+Bg
/(Rd\ap)x(o,ﬂ IVE(F)(Y)IP6(Y) Y

p 210 pa—d+3 <
/(Rd\aD) (0,71 638(]0)(}/)l () aY < || fII%

where ¢ is a constant independent of f.

We next introduce another maximal function of g € L*(ur) on B(0, R) x [0, T
and prove the following theorem in §4.

THEOREM 2. Letp > 1 and f € A5(Sp). Then

] [ ENX) - ENX)P
/Dx[o,T] dX\/(Rd\B)x[O,T] ‘p(X, Y)d+2+pa+¢-ﬁ dY< cllf ”ap)
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where ¢ is a constant independent of f.

2. Decomposition of an open set into parabolic cubes

In this chapter we decompose an open set in R%*! into parabolic cubes and extend
functions defined on Sp to R4*1.
By a parabolic cube we mean a closed set in R%*! of the form

Q = [a1,a1 + 7] X [ag, a0 + 7] X -+ - [ag, ag + 7] X [@ay1, Gar1 +77].
Especially, a k-parabolic cube is a parabolic cube of the form
Q= [m27*, (n +1)27%] x -+ [na27%, (ng + 1)27%] X [na4127", (nay1 +1)277),

where n;, ng,--+,ng, Ngy1 are integers.

Let F be a non-empty closed set in R4+ and F # Re*!. Consider the lattice of
k-parabolic cubes in R%! and omit all those that touch F' or that touch a k-parabolic
cube that touches F'. Discarding any parabolic cubes that are contained in larger
ones, we take the union over k. The final collection W,(R%! \ F) of parabolic cubes
is called the Whitney parabolic decomposition of R4+1 \ F.

For each k-parabolic cube Q 1(Q) (resp. diam,Q) stands for 2% (resp.
SUDxeoyeq A(X,Y) = 27%\/d +1). We denote by dist,(A, B) the distance of A and
B with respect of p for two sets A, B C R4+1,

We easily see that it has the following properties (cf. [HN}]).

LEMMA 2.1. Let F be a non-empty closed set in R**! such that F' # R%*. The
Whitney parabolic decomposition W,(R4* \ F) = {Q,} has the following properties.

(i) U;Q; =R\ F. |

(ii) The interiors of any two parabolic cubes of W,(R**! \ F) are disjoint.

(iii) vd + 127% < dist,(Q, F) < 4V/d + 127% for each k-parabolic cube.

(iv) If Q € W,(R¥1\ F) and Q is a k-parabolic cube, then each k-parabolic cube
touching Q is contained in R4\ F.

Using this Whitney parabolic decomposition of (R¢\ D) x R, we shall extend
a function defined on the fractal lateral boundary Sp of Qp to all of R4+!, Fix i
satisfying 0 < 77 < 1/8 and let Q, denote the closed cube in R? of unit length centered
at the origin. Fix a C*®-function ¢ in R? such that

0<¢<1, ¢=10nQo suppsC (L+7n)Qo,



where supp ¢ stands for the support of ¢ and

1 1 1 1
(1+7))Q0={1”:(331,332,"',2«1);—5—'2-7)S$jS§+§n(J:1,~--,d)}.
Further let ¥ be a C°°-function on R such that
11 1 1 1 1
<< = —2 = S —Ip =4+

Let Q; € W,((R?\ 8D) x R) and set, for X = (z, 1),

— (D — $(9)
8:(6) = 9E =y (o

. 7 );
J l]

where X () = (z(9,¢()) is the center of Q; and I; = I(Q;). We note that ¢;(X) =

for X € Q; if Q; does not touch @;. We also note that

| 0
61‘,;

#;i(z)| < cdiam Q;

fori=1,---,d and
0

'ade‘b"(m)l < c¢(diam Q;)?,

where c is a constant inependent of j. We now define

¢;(X)
o(X)’

¢;(X) =

where &(X) = ¥, ¢;(X).
It is obvious that ,
Y #5(X)=1o0n (R*\8D) x R.
J

For each parabolic cube Q; we fix a point A; = A(Q,) € Sp such that
inf{p(X, Y); X e QJ" Ye SD} = p(XJ':AJ');

for some X; € Q; and A; € Sp.

0

Using these functions and points, we extend a function defined on Sp to R*+!,

Let 0 < n < %, f € L*(ur) and we define, for X = (z,t),
£(X) | if X € 8D x [0,T]
Eo(F)(X) = 0 if X € 8D x (R\ [0,T])

Jotasmansy ¥ )dur(¥Y) .
¥ SR 83(X) i X € (R%\ D) x [0,T.
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We remark that
&) =1 on R4 x[0,T).

Choose a C*™-function 7 in R%t! such that
7(X)=1 on B(O,R) x [-1,T +1]

and
0<7<1, suppT C B(0,2R) x (-2,T + 2),

and define, for f € L'(ur) and X € R4+,

E(F)(X) = T(X)E(F)(X)-

We note that
E(f)=1 on B(0,R) x [0,T).

Under the definition of the extension operator £ we can prove the following lemma
by the similar method as Proposition on p.172 in [S]. ‘

LEMMA 2.2. If f is p-continuous on Sp, then E(f) is also p-continuous in
R? x [0, 7).

By the similar method as in [S, p.174] we also see that, if f is A-Holder continuous
on Sp with respect to p, then

(2.1) |5%50( £(X) < edist(X, Sp)*!

fori=1,---,d, where dist(X, Sp) stands for the Euclidian distance of X from Sp.
Using (2.1) and noting that dist(X, .S’b) is equal to the parabolic distance of X
from Sp for X € R? x [0, T], we also see that, if f is A-Holder on Sp with respect to
p, then &(f) is A-Hélder continuous in R x [0, T] with respect to p (cf. [S, Theorem
3, p.194]). Hence £(f) is also A-Hélder continuous in R? x [0, 7] with respect to p.

LEMMA 2.3. Letp>1 and f € LP(ur). Then -
[1enray <c [ \fPdur,
where c is a constant independent of f.

PROOF. Denote by P; the set of all parabolic k-cubes @ in W,((R?\8D) x R) =
{Q;} such that @ N ((R*\ D) x (—=2,T +2)) # 0. For each'Y € Q € P, we deduce
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from the definition of the extension &

B S @S GG [, SOl

—B-2
< 2” f(Z
< c2( 7 ey, (Dlaur(2),

where A = A(Q) and b is a constant independent of ). In fact, suppose that Q,
touches @ and Z € C(A;,nl;). We choose X € Q; N Q. Then

p(Z,4) < p(Z,A)) + p(A;, X) + p(X, A)
< Vol +5vVd+ 1+ 5Vd + 1
<

2V + 15V/d T 1)l = bl.

Hence

EAEIP @) [ (2P dur(2)

(A@)p27*)NSp
for every Y c Q € P;. Consider {C(A(Q) b2~ ’“)}erk Using a covermg lemma of
Vitali type (cf. [W2, Lemma 2.1]), we can find a subcovering ’Pk o such that each pair
of Py is mutually disjoint and - :

> ClA@),27*) c Y C(A(Q),3b2“’°).

- QEP, - . Q€Pk0

Each point X in Tgep, , C(A(Q),b27) is at most contained in N-many parabolic
cubes of Ygep, , C(A(Q), 3b27%), where N is a constant depending only on the di-
mension d + 1. Hence : ’

> [P <e (277 / (2)Pdpr(2).

QEPy

Consequently we have

T X [ sa | [#@Fdun?)

k QEPy

Since 0 < 7(X) < 1, we have the conclusion. - = . ‘ Q.E.D.

For f € L'(ur) we define the parabolic maximal function of f by

Mg () = supf 12 T)(rg?)lcf(ﬁd; T>(Z)

Then we see that M, ., .f is lower semicontinuous on Sp and satisfies

[ Murpfldur < [ 17Pdur

;7 0<r <2R}.



for f € LP(ur).

3. Estimate of the extension operator

In this section we estimate the norm of |VE(f)| by the Besov norm on the fractal
lateral boundary Sp. '

Let f € L*(ur X pr). We introduce a maximal function M(ur x pr)(f) of
f € LY(ue x pe) on (B(0, R) \ 8D) x [0, T] defined by

M(ur X ur)({)(X)

= S AT Joxnsy, W) L, (2 Y ldur(2);
b6(X) <r< R}

for each X € (B(0,R) \ 8D) x [0,T). Here b is a fixed real number satlsfymg b>1.
We next define a meaure vy on R%! by

vo(E) = / §(Y)2B+2-dgy
(B(0,3R)\AD)x[0,TINE

for a Borel measurable set E C R4+,
The measure v, is dominated by pr x ur for parabolic cubes in the following
sense.

LEMMA 3.1. Fizb> 1. Let X = (z,t) € (B(0,R) \ 8D) x [0,T] and b6(X) <
r < 3R. Then

(3.1) (C(X,r)) € err®+ < cuur(C(X,r) N Sp)2.

PROOF. Let X = (z,t) € (B(0, R)\0D) x [0, T] and z’ be a point in 8D satisfying
d(z) = |z — z'|. Putting X' = (x’,t), we see that C(X,r) € C(X’,2r). Then

C(X',2 </ 5(y)2B+ gy,
w(@Xam)< [ /(Rd\au,nw,m (v) y
By Lemma 2.2 in [W1] we have

w(C(X',2r)) < e1(2r)P+2(2r)? < cpr?P+e,

Hence the first inequality holds. :
Since C(X',(1 — 1/b)r) € C(X,r) and 6D is a ﬁ set, we also have the second
inequality of (3.1). Q.ED.
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Using this, we have the following estimate of the maximal function of f in L' (ur x
pr) on (B(0,R)\ 8D) x [0,T).

LEMMA 3.2. (i) Let A > 0 and f be a (ur X pr)-integrable function. Put
By = {X € (B(0,R)\8D) x [0, T} M(ur x pur)(£)(X) > A}.
Then
(32) w(B) < 5 [ [1F06Y)ldpr(X)dpn(¥),

where c is a constant independent of f and A.
(ii) If p > 1 and f € LP(ur x ur), then

(33) [ Mlprx ur)(EPdno(Y) < [ [0V )Pdpr(X)aur(Y).

PROOF. Let f € L (ur x pr) and A > 0. Then we see that E) is open as usual.
Let K be a compact subset of E. For each X € K we can find a real number rx > 0
such that

(34) wur(C(X,rx)NSp)™ |f(Y, 2)|dpr(Y)dpr(Z) > A

C(X,rx)NSp /C'(X,rx)ﬂsn

and §(X) < rx < R. Then the covering lemma of Vitali type (cf. [W2, Theo-
rem 2.1]) asserts that there is a subfamily {(C(Xj,rx;)} of finite many elements of
{C(X,7x)}xex such that {C(X;,7x,)} are mutually disjoint and

K C UjC(Xj,37‘xj).
Then, by Lemma 3.1,
Vo(K) S ZV()(C(XJ',BT){J.)) S (4] Z(3T‘xj)2’6+4
j j

J
= ¢ }:rfg,H < ey ur(C(Xj,rx,;) N Sp)?.
j J
The inequality (3.4) implies

w(K) < Y 5 (¥, 2)ldur (¥ dpir(2)

C(Xj ,’r'xJ. yNSp L(Xj,rxj)ﬁSD

Since {C(Xj,rx,)}; are mutually disjoint, we have

(k)< [ D /.  |f\dusrdpr
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Since vy(E\) = sup{K; K is compact, K C E,}, we have (3.2).
The inequality (3.3) is deduced from (3.2) by the usual method. (e.g.[S, p.7]).
Q.E.D.

We now are ready to prove Theorem 1.

Proof of Theorem 1. We write Y = (y,s). Let {Q;} be the Whitney parabolic
decomposition of (R¢\ D) x R. For a parabolic cube Q; € {Q;} we set I; = [(Q;)
and A; = A(Qy).

LetY € Q € {Q;}and Y € (R¥\8D) x [0, T)]. Furtherlet ! = (Q) and A = A(Q).

Put
4 1

N ur(C(A,nl) N Sp) Jeamvnso (Z)dpr(2).

Noting that & is a linear operator and & (1) = 1, we have

IVEPY)] = V&S - V) |
0% Fh drl2) [ 12) = FO)ldur (V).

15+318+2 Jo(amisnso

e set £(2) - W)
h(2,U) = p(Z, U)B+D/pra”

Then
[~1+(8+2)/p+a

Ty S Z / h(Z,U)d ,
18+2]8+2 /C(A,b'z)nsp A ) C(Am)NSD ( Jur(U)

b’ is a constant independent of Y. ;
We first suppose that Y € (B(0, R) \ 8D) x [0,T). Since p(Y,A) < 5v/d+ 11 and
IVE(H (V)] = IVEF)(Y)| for Y € (B(0, R) \ 0D) x [0, T}, we have, by (3.5),

IVE(F)(Y)6(Y) o Bra)/p
1
< _—
= Qe /c(y,b"z)nsD dpr(2) (CY.H"1)NSp
< eaM(pr x pr)(h)(Y),

where b” is a constant independent of Y.
Using Lemma 3.2, we have

(3.5) |[V&(NHY)| L e

h(Z, U)dp/r(U)

) |
P p(1-a—(6+2)/p) 26+2~d
[ ds [ IPEO@PE) oy )B+-4dy

T .
< : : p 20+2—d
< o f ds [ Mlurx ur) ()Y POy

< e / / WZ, U dur(Z)dur(U),



(3.6) / ds / VEY XIS P 7=4dy < c5 [[ W(Z, U dyn(2)dur(U).

Noting that |5s—d>;-‘l < cgl™2, we also have

' l(ﬁ+2 /p+a

120 < er rramamn- @) [ WEU)du D),

: : T\
-L(A,b’l)ﬂSD C(AnhNSp

whence 5 T ‘ S
|5 ENYNSE V72D < e M(ur x pr)(R)(Y).

Using Lemma 3.2, we have

i Y)2p-pa—d+8 P
e [ as [ ISEO@IPSY) dy < oo [[ W2, U dur(Z)dpr (V).
We next suppose that ¥ & (R¢\ B(0, R)) x [0 T)and Y € Q. We note that

¥)l = l—(go(f)(Y)T(Y))

)Y+ ISo(f)( iz

and P
supp 8—y8(f) C B(0,2R) x (-2,T + 2).

Since OD < B(0, R/2), we have 6(y) > R/2. Noting that | > 6(y) > R/2, we also
have, by (3.5), ' ,
V&) < exo [[ MZ,U)dur(Z)dpr(U),

whence |
9 ()Y Pa(y Pty
[ as /B(m)\m o5 &) PEY) y
< Cu/ hZ, U dur(Z)dur(U).
On the other hand we note that

B < S [ 1O ur(z)

j C(A:'-'ﬂj)
< e [ 1£(2)ldur(2),
whence | | , v
T o .
: Y)IPl—=—+(Y)I|PS(Y P~ Pr—d+0
Ly 85 s OO VPSP dy

< cu [ If(2)Pdur(2).
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From those we deduce
T
P p—pa—d+f 1., « P
95 [ o [VED@IPEY P r-t40dy < i1,

Similarly we also have

T o
v p 2p—pa—d+B 1, <« P
/o ds /B(o,m)\B(o,R) Bsg(f)(y)l oY) 4y < cusllflle

Thus we have, together with (3.6) and (3.7), the conclusion. - 'Q.E.D.

4. Another property of the extension operator

In this secion we consider a maximal function of f in L'(ur) on (B(0, R) \ D) x
[0,T]. Let us begin with the following lemma.

LEMMA 4.1. Letb > 1 and X € B(0,2R) x [0,T]. Further let Yy = (o, 50) €
(B(0,R)\ D) x [0,T] and b6(y) < T < 3R. Then

1
4.1 / ——————dY<crﬂ+2<c/ dur(2),
D foomntaomonyoan 707, X JFE Y S ATTSE s, HT v)
where ¢, and ¢y are constants independent of r, Yy, X.
PROOF. Put ‘
B(Z,e) ={Y e R";p(Z,Y) < €}

for Z € R¥*! and € > 0.
We first assume that p(X,Y;) < 2r. Then
C(¥o,7) C B(¥o, v3r) C B(X, (2 + V).

By the property of p in [W2, Lemma 2.5] we have
/ 1
C(Yo,)N{(B(O,R\8D)x (0,1} p(Y, X )P

dY S cl((2 -+ \/E)_T‘)df2—d+ﬁ = CQTﬁ+2.

day

1
/Br(X.(zJﬂ/i)r) p(Y, X)4-P
We next assume that p(X,Y;) > 2r. Then

J Ly
C(Yor)N{(BO.R\NGD)x[0,7)} p(Y, X)4-B
, 1
< / | e dY
= e x)2@-vErinctor) p(Y, X)4P
1

< dY < car~Bpdt? — o A2,
T (2= Vr)Etlowen T o
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Thus we obtain the first inequality of (3.1).
Noting that 0D is a 3-set, we also have the the second inequality of (4.1). Q.E.D.

Fix b > 1 and define, for f € L'(ur) and Y € (B(0, R) \ 8D) x [0, T},

fC(Y,r)nSD |f(Z)ldNT(Z)
pr(C(Y,r) N Sp)

M(uzr)(F)(Y) = sup{ ;66(Y) <r < 3R}.

Using Lemma 4.1, we can prove the following lemma by the same method as in
the proof of Lemma 3.1.

LEMMA 4.2. Let X € B(0,2R) x [0,T.
(i) Set, for A > 0,

Fy={Y € (B(0,R) \ 0D) x [0, T]; M(ur)(f)(Y) > A}
If f € L*(ur), then

IA ;(—x%wdi’ < 5 [1#@)ldur(2).

(i) If1 < p < oo and f € LP(ur), then

M(pr) () ,
/ (¥, X584 S ¢ [11(2)Pdur(2).

Here c s a constant independent of f, A and X.

We now prove Theorem 2.
Proof of Theorem 2. Let X € D x [0,T) and Y € (B(0, R) \ D) x [0, T]. Further,
let Y € Q € W,(R?\ 8D) x R) = {Q,} and set
1=1Q), Li=UQ;), A=A(Q)andA;=AQ;)

Since & (1) = 1, we have

L) = EDEO] = 6ol S — EDEONY)
< aTHEO o [ 12~ ENX)ldur(2),

(A;n;)NSp

I

I

whence

1/(2) = E(H)(X)
(4.2) I<c l_ﬁ—:?—,/o(Abl)nSD p(Z, X)(@+2)/p+a

(Z’ X)(d+2)/p+ad/.l/1‘(Z)

Here b is a constant independent of [ with b > 5v/d + 1.
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We consider two cases. If p(X, A) < 3bl, then, for Z € C(A,bl) N Sp,
o(Z,X) < p(Z,4) + p(A, X) < (V2 +3)bl =Vl

and [ < |z —y| < p(X,Y). From (4.2) we deduce

- Z) = E(NHX)]
< ca](@t2)/pta—-p-2 |f(
I's el /C(Y,b’l)nSD p(Z, X )(d+2)/pta dpr(2),
whence
I 1 |£(Z) = E()(X)]
(4.3) p(X,Y)(d+2)/pt+a sc 3lﬁ+2 /C(Yb'l)nsp o(Z, X )(@+2)/p+a dur(Z).

If p(X, A) > 3bl, then, for Z € C(A,bl) N Sp,

o(X, Z) < p(X, A) + p(A, Z) < p(X, A) + Vbl < %(3 +V2)p(X, A)

and 5
AX,Y) 2 p(X, A) = oY, A) 2 Zp(X, A)

Hence

o(X,2) <3 +2‘/— (X,Y).

From (4.2) we deduce (4.3).
In each case we have (4.3) and hence

I I£() = EHX)|
p(X,Y)(d+2)/pta < caM(pr)( (-, X)(@+2)/pte )(Y).

Using Lemma 4.2, we obtain

” ay
/(B(o,R)\ﬁ)x[o,T] p(X, Y)d+2+ap+d—;3

AfO) =ED O e 1 "
s o /(B(o.R)\ﬁ)x[o,Tl (k) p(-, X)@+2/pe /) p(X-Y)““’dY
< st 1£(Z2) = E(HX)P dun(2),

p(Z, X )d+2+er

whence

/ - ENE) - ENOXP Ly
D><[0T] (B(o,R)\E)x[o,T] p(X,Y)d+2+op+d—p

1£(2) = ENX)P
/x[OT] /So p(Z, X )d+2+er dur(Z).
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Similarly we also have

ENX) = f(2)P
Sp dpr(Z) /Dx[O,T] p(X, Z)d+2+ep dX

_<_ C7[SDdﬂT(Z)[9 lf(X)_f(Z)IpdﬂT(X),

p p(X, Z)B+2+ep

whence,
IENE) = EHX)IP
v/Dx[O,T} aX /(B(o,R)\E)x[o,T] p( X’Y)d+2+ap+d-ﬁ dY
X) - f(Z)P
< o f due(2) [ I/J)‘ ((x,)Z)ﬁ{r I fyir()
Since

ELNE) — EF)X)P
dX
/D><[0.T] /(R"\B(O,R))x(o,T] p(X,Y)d+2+ap+d—p ay

< P p
S oo EDWPEY +a [ EOOFAX,

we have, by Lemma 2.3,

IE)Y) = EF)X)P
/Dxlo,Tl = /(R"\E)xlo,TJ p(X,Y)d+2+ap+d—B ay

< ([ aurx) [, LOTE )+ [ 1100Paue ).

Thus we have the conclusion. Q.E.D.
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