フラクタルな側面を持つ円筒状領域での側面関数の 放物型拡張

お茶の水女子大学・人間文化研究科 渡辺 ヒサ子 (Hisako Watanabe) Graduate School of Humanities and Sciences, Ochanomizu University

1. Introduction

Let D be a bounded domain in \mathbb{R}^d such that ∂D is a β -set $(d-1 \leq \beta < d)$, i.e., there is a positive Radon measure μ satisfying

$$(1.1) b_1 r^{\beta} \le \mu(B(z, r) \cap \partial D) \le b_2 r^{\beta}$$

for all $r \leq r_0$ for some r_0 and all $z \in \partial D$. Here B(x,r) is a ball with centered at x and radius r.

A. Jonsson and H. Wallin introduced an extension operator which extends functions on ∂D to \mathbf{R}^d and is bounded from a Besov space on ∂D to a ssuitable Besov space on \mathbf{R}^d by using the Whitney decomposition. ([JW1], [JW2]).

We consider a cylinderical domain $\Omega_D = D \times (0, T)$ for the above domain D and denote by S_D the lateral boundary $\partial D \times [0, T]$ of Ω_D .

In this paper we shall extend functions on S_D to \mathbf{R}^{d+1} in order to be useful for considering the parabolic boundary value problems.

To do so, we consider the parabolic metric

$$\rho(X,Y) = \sqrt{|x-y|^2 + |t-s|}$$

for X = (x, t), Y = (y, s) and $x, y \in \mathbf{R}^d$, $t, s \in \mathbf{R}$.

Instead of balls we consider parabolic cylinders. Recall that the parabolic cylinder with centered at X = (x, t) and radius r is defined by

$$C(X,r) = \{Y = (y,s); |x-y| < r, |t-s| < r^2\}.$$

We may suppose that $\partial D \subset B(0, R/2)$ for some $R \geq 1$ and $r_0 = 3R$ in (1.1). Fix a β -measure μ on ∂D and denote by μ_T the product measure of the β -measure and the 1-dimensional Lebesgue measure restricted to [0, T].

Let $p \ge 1$ and $\alpha > 0$. We denote by $L^p(\mu_T)$ the set of all L^p -functions defined on S_D with respect to μ_T and by $\Lambda^p_{\alpha}(S_D)$ the space of all functions in $L^p(\mu_T)$ such that

$$\iint \frac{|f(X) - f(Y)|^p}{\rho(X, Y)^{\beta + 2 + p\alpha}} d\mu_T(X) d\mu_T(Y) < \infty.$$

For $f \in \Lambda_{\alpha}^{p}(S_{D})$ the Besov norm of f is defined by

$$||f||_{\alpha,p} = \left(\int |f(X)|^p d\mu_T(X)\right)^{1/p} + \left(\int \int \frac{|f(X) - f(Y)|^p}{\rho(X,Y)^{\beta+2+p\alpha}} d\mu_T(X) d\mu_T(Y)\right)^{1/p}.$$

Using a decomposition into closed parabolic cubes of $(\mathbf{R}^d \setminus \partial D) \times \mathbf{R}$ of Whitney type, we construct an extension operator \mathcal{E} which extends in functions on S_D to \mathbf{R}^{d+1} in §2 and investigate the properties of it.

We shall see by Lemma 2.2 that if f is ρ -continuous on S_D , then $\mathcal{E}(f)$ is also ρ -continuous in $\mathbf{R}^d \times [0,T]$.

We shall show in Lemma 2.3 that \mathcal{E} is bounded from $L^p(\mu_T)$ to $L^p(\mathbf{R}^{d+1})$.

Let $Y = (y, s) \in \mathbf{R}^d \times [0, T]$. We denote by $\delta(Y)$ (resp. $\delta(y)$) the distance of Y from S_D with respect to ρ (resp. the Euclidean distance of y from ∂D). We easily see that $\delta(Y) = \delta(y)$ for $Y = (y, s) \in \mathbf{R}^d \times [0, T]$.

For a C^1 -function f in $(\mathbf{R}^d \setminus \partial D) \times (0,T)$ we write

$$\nabla f(Y) = (\frac{\partial f}{\partial y_1}(Y), \cdots, \frac{\partial f}{\partial y_d}(Y)).$$

Using a maximal function of h in $L^1(\mu_T \times \mu_T)$ on $(\mathbf{R}^d \setminus \partial D) \times [0, T]$, we shall prove the following theorem in §3.

THEOREM 1. Let p > 1, $f \in \Lambda^p_{\alpha}(S_D)$ and $p - p\alpha - d + \beta > 0$. Then

$$\int_{(\mathbf{R}^d \setminus \partial D) \times [0,T]} |\nabla \mathcal{E}(f)(Y)|^p \delta(Y)^{p-p\alpha-d+\beta} dY \\
+ \int_{(\mathbf{R}^d \setminus \partial D) \times [0,T]} |\frac{\partial}{\partial s} \mathcal{E}(f)(Y)|^p \delta(Y)^{2p-p\alpha-d+\beta} dY \le c \|f\|_{\alpha,p}^p,$$

where c is a constant independent of f.

We next introduce another maximal function of $g \in L^1(\mu_T)$ on $B(0,R) \times [0,T]$ and prove the following theorem in §4.

THEOREM 2. Let p > 1 and $f \in \Lambda^p_{\alpha}(S_D)$. Then

$$\int_{D\times[0,T]} dX \int_{(\mathbf{R}^d\setminus\overline{D})\times[0,T]} \frac{|\mathcal{E}(f)(X) - \mathcal{E}(f)(Y)|^p}{\rho(X,Y)^{d+2+p\alpha+d-\beta}} dY \le c||f||_{\alpha,p}^p,$$

where c is a constant independent of f.

2. Decomposition of an open set into parabolic cubes

In this chapter we decompose an open set in \mathbf{R}^{d+1} into parabolic cubes and extend functions defined on S_D to \mathbf{R}^{d+1} .

By a parabolic cube we mean a closed set in \mathbb{R}^{d+1} of the form

$$Q = [a_1, a_1 + r] \times [a_2, a_2 + r] \times \cdots [a_d, a_d + r] \times [a_{d+1}, a_{d+1} + r^2].$$

Especially, a k-parabolic cube is a parabolic cube of the form

$$Q = [n_1 2^{-k}, (n_1 + 1) 2^{-k}] \times \cdots [n_d 2^{-k}, (n_d + 1) 2^{-k}] \times [n_{d+1} 2^{-k}, (n_{d+1} + 1) 2^{-k}],$$

where $n_1, n_2, \dots, n_d, n_{d+1}$ are integers.

Let F be a non-empty closed set in \mathbf{R}^{d+1} and $F \neq \mathbf{R}^{d+1}$. Consider the lattice of k-parabolic cubes in \mathbf{R}^{d+1} and omit all those that touch F or that touch a k-parabolic cube that touches F. Discarding any parabolic cubes that are contained in larger ones, we take the union over k. The final collection $\mathcal{W}_p(\mathbf{R}^{d+1} \setminus F)$ of parabolic cubes is called the Whitney parabolic decomposition of $\mathbf{R}^{d+1} \setminus F$.

For each k-parabolic cube Q l(Q) (resp. $\operatorname{diam}_{\rho}Q$) stands for 2^{-k} (resp. $\sup_{X \in Q, Y \in Q} \rho(X, Y) = 2^{-k} \sqrt{d+1}$). We denote by $\operatorname{dist}_{\rho}(A, B)$ the distance of A and B with respect of ρ for two sets $A, B \subset \mathbf{R}^{d+1}$.

We easily see that it has the following properties (cf. [HN]).

LEMMA 2.1. Let F be a non-empty closed set in \mathbf{R}^{d+1} such that $F \neq \mathbf{R}^{d+1}$. The Whitney parabolic decomposition $\mathcal{W}_p(\mathbf{R}^{d+1} \setminus F) = \{Q_j\}$ has the following properties.

- (i) $\cup_j Q_j = \mathbf{R}^{d+1} \setminus F$.
- (ii) The interiors of any two parabolic cubes of $W_p(\mathbf{R}^{d+1} \setminus F)$ are disjoint.
- (iii) $\sqrt{d+1}2^{-k} \leq dist_{\rho}(Q, F) \leq 4\sqrt{d+1}2^{-k}$ for each k-parabolic cube.
- (iv) If $Q \in W_p(\mathbf{R}^{d+1} \setminus F)$ and Q is a k-parabolic cube, then each k-parabolic cube touching Q is contained in $\mathbf{R}^{d+1} \setminus F$.

Using this Whitney parabolic decomposition of $(\mathbf{R}^d \setminus \partial D) \times \mathbf{R}$, we shall extend a function defined on the fractal lateral boundary S_D of Ω_D to all of \mathbf{R}^{d+1} . Fix η satisfying $0 < \eta < 1/8$ and let Q_0 denote the closed cube in \mathbf{R}^d of unit length centered at the origin. Fix a C^{∞} -function ϕ in \mathbf{R}^d such that

$$0 \le \phi \le 1$$
, $\phi = 1$ on Q_0 , supp $\phi \subset (1 + \eta)Q_0$,

where supp ϕ stands for the support of ϕ and

$$(1+\eta)Q_0 = \{x = (x_1, x_2, \cdots, x_d); -\frac{1}{2} - \frac{1}{2}\eta \le x_j \le \frac{1}{2} + \frac{1}{2}\eta \ (j = 1, \cdots, d)\}.$$

Further let ψ be a C^{∞} -function on **R** such that

$$0 \le \psi \le 1$$
, $\psi = 1$ on $[-\frac{1}{2}, \frac{1}{2}]$, $\operatorname{supp} \phi \subset [-\frac{1}{2} - \frac{1}{2}\eta, \frac{1}{2} + \frac{1}{2}\eta]$.

Let $Q_j \in \mathcal{W}_p((\mathbf{R}^d \setminus \partial D) \times \mathbf{R})$ and set, for X = (x, t),

$$\phi_j(X) = \phi(\frac{x - x^{(j)}}{l_j})\psi(\frac{t - t^{(j)}}{l_i^2}),$$

where $X^{(j)} = (x^{(j)}, t^{(j)})$ is the center of Q_j and $l_j = l(Q_j)$. We note that $\phi_j(X) = 0$ for $X \in Q_i$ if Q_i does not touch Q_j . We also note that

$$\left| \frac{\partial}{\partial x_i} \phi_j(x) \right| \le c \operatorname{diam} Q_j$$

for $i = 1, \dots, d$ and

$$\left|\frac{\partial}{\partial x_{d+1}}\phi_j(x)\right| \le c (\operatorname{diam} Q_j)^2,$$

where c is a constant inependent of j. We now define

$$\phi_j^*(X) = \frac{\phi_j(X)}{\Phi(X)},$$

where $\Phi(X) = \sum_{j} \phi_{j}(X)$.

It is obvious that

$$\sum_{j} \phi_{j}^{*}(X) = 1 \text{ on } (\mathbf{R}^{d} \setminus \partial D) \times \mathbf{R}.$$

For each parabolic cube Q_j we fix a point $A_j = A(Q_j) \in S_D$ such that

$$\inf\{\rho(X,Y);\,X\in Q_j,\,\,Y\in S_D\}=\rho(X_j,A_j),$$

for some $X_j \in Q_j$ and $A_j \in S_D$.

Using these functions and points, we extend a function defined on S_D to \mathbf{R}^{d+1} . Let $0 < \eta < \frac{1}{8}$, $f \in L^1(\mu_T)$ and we define, for X = (x, t),

$$\mathcal{E}_{0}(f)(X) = \begin{cases} f(X) & \text{if } X \in \partial D \times [0, T] \\ 0 & \text{if } X \in \partial D \times (\mathbf{R} \setminus [0, T]) \\ \sum_{j} \frac{\int_{C(A_{j}, \eta l_{j}) \cap S_{D}} f(Y) d\mu_{T}(Y)}{\mu_{T}(C(A_{j}, \eta l_{j}) \cap S_{D})} \phi_{j}^{*}(X) & \text{if } X \in (\mathbf{R}^{d} \setminus \partial D) \times [0, T]. \end{cases}$$

We remark that

$$\mathcal{E}_0(1) = 1$$
 on $\mathbf{R}^d \times [0, T]$.

Choose a C^{∞} -function τ in \mathbf{R}^{d+1} such that

$$\tau(X) = 1$$
 on $\overline{B(0,R)} \times [-1, T+1]$

and

$$0 \le \tau \le 1$$
, supp $\tau \subset B(0, 2R) \times (-2, T+2)$,

and define, for $f \in L^1(\mu_T)$ and $X \in \mathbf{R}^{d+1}$,

$$\mathcal{E}(f)(X) = \tau(X)\mathcal{E}_0(f)(X).$$

We note that

$$\mathcal{E}(f) = 1$$
 on $\overline{B(0,R)} \times [0,T]$.

Under the definition of the extension operator \mathcal{E} we can prove the following lemma by the similar method as Proposition on p.172 in [S].

LEMMA 2.2. If f is ρ -continuous on S_D , then $\mathcal{E}(f)$ is also ρ -continuous in $\mathbf{R}^d \times [0,T]$.

By the similar method as in [S, p.174] we also see that, if f is λ -Hölder continuous on S_D with respect to ρ , then

(2.1)
$$\left| \frac{\partial}{\partial x_i} \mathcal{E}_0(f)(X) \le c \operatorname{dist}(X, S_D)^{\lambda - 1} \right|$$

for $i=1,\dots,d$, where $\operatorname{dist}(X,S_D)$ stands for the Euclidean distance of X from S_D . Using (2.1) and noting that $\operatorname{dist}(X,S_D)$ is equal to the parabolic distance of X from S_D for $X \in \mathbf{R}^d \times [0,T]$, we also see that, if f is λ -Hölder on S_D with respect to ρ , then $\mathcal{E}_0(f)$ is λ -Hölder continuous in $\mathbf{R}^d \times [0,T]$ with respect to ρ (cf. [S, Theorem 3, p.194]). Hence $\mathcal{E}(f)$ is also λ -Hölder continuous in $\mathbf{R}^d \times [0,T]$ with respect to ρ .

LEMMA 2.3. Let p > 1 and $f \in L^p(\mu_T)$. Then

$$\int |\mathcal{E}(f)|^p dY \le c \int |f|^p d\mu_T,$$

where c is a constant independent of f.

PROOF. Denote by \mathcal{P}_k the set of all parabolic k-cubes Q in $\mathcal{W}_p((\mathbf{R}^d \setminus \partial D) \times \mathbf{R}) = \{Q_j\}$ such that $Q \cap ((\mathbf{R}^d \setminus \partial D) \times (-2, T+2)) \neq \emptyset$. For each $Y \in Q \in \mathcal{P}_k$ we deduce

from the definition of the extension \mathcal{E}_0

$$|\mathcal{E}_{0}(f)(Y)| \leq c_{1} \sum_{j} \phi_{j}^{*}(Y) \frac{1}{l_{j}^{\beta+2}} \int_{C(A_{j}, \eta l_{j}) \cap S_{D}} |f(Z)| d\mu_{T}(Z)$$

$$\leq c_{2} \left(2^{-k}\right)^{-\beta-2} \int_{C(A, b2^{-k}) \cap S_{D}} |f(Z)| d\mu_{T}(Z),$$

where A = A(Q) and b is a constant independent of Q. In fact, suppose that Q_j touches Q and $Z \in C(A_j, \eta l_j)$. We choose $X \in Q_j \cap Q$. Then

$$\rho(Z, A) \leq \rho(Z, A_j) + \rho(A_j, X) + \rho(X, A)
\leq \sqrt{2\eta} l_j + 5\sqrt{d+1} l_j + 5\sqrt{d+1} l
\leq (2\sqrt{2\eta} + 15\sqrt{d+1}) l \equiv bl.$$

Hence

$$|\mathcal{E}_0(f)(Y)|^p \leq c_2 \left(2^{-k}\right)^{-\beta-2} \int_{C(A(Q),b2^{-k})\cap S_D} |f(Z)|^p d\mu_T(Z)$$

for every $Y \in Q \in \mathcal{P}_k$. Consider $\{C(A(Q), b2^{-k})\}_{Q \in \mathcal{P}_k}$. Using a covering lemma of Vitali type (cf. [W2, Lemma 2.1]), we can find a subcovering $\mathcal{P}_{k,0}$ such that each pair of $\mathcal{P}_{k,0}$ is mutually disjoint and

$$\sum_{Q \in \mathcal{P}_k} C(A(Q), b2^{-k}) \subset \sum_{Q \in \mathcal{P}_{k,0}} C(A(Q), 3b2^{-k}).$$

Each point X in $\sum_{Q \in \mathcal{P}_{k,0}} C(A(Q), b2^{-k})$ is at most contained in N-many parabolic cubes of $\sum_{Q \in \mathcal{P}_{k,0}} C(A(Q), 3b2^{-k})$, where N is a constant depending only on the dimension d+1. Hence

$$\sum_{Q \in \mathcal{P}_k} \int_{Q} |\mathcal{E}_0(f)(Y)|^p \le c_3 \left(2^{-k}\right)^{d-\beta} \int_{S_D} |f(Z)|^p d\mu_T(Z).$$

Consequently we have

$$\sum_{k} \sum_{Q \in \mathcal{P}_k} \int_{Q} |\mathcal{E}_0(f)(Y)|^p \le c_4 \int_{S_D} |f(Z)|^p d\mu_T(Z).$$

Since $0 \le \tau(X) \le 1$, we have the conclusion.

Q.E.D.

For $f \in L^1(\mu_T)$ we define the parabolic maximal function of f by

$$\mathcal{M}_{\mu_T,p}f(X) = \sup\{rac{\int_{C(X,r)\cap S_D} |f(Z)|d\mu_T(Z)}{\mu_T(C(X,r)\cap S_D)}; \ 0 < r < 2R\}.$$

Then we see that $\mathcal{M}_{\mu_T,p}f$ is lower semicontinuous on S_D and satisfies

$$\int |\mathcal{M}_{\mu_T,p} f|^p d\mu_T \le \int |f|^p d\mu_T$$

for $f \in L^p(\mu_T)$.

3. Estimate of the extension operator

In this section we estimate the norm of $|\nabla \mathcal{E}(f)|$ by the Besov norm on the fractal lateral boundary S_D .

Let $f \in L^1(\mu_T \times \mu_T)$. We introduce a maximal function $\mathcal{M}(\mu_T \times \mu_T)(f)$ of $f \in L^1(\mu_t \times \mu_t)$ on $(B(0,R) \setminus \partial D) \times [0,T]$ defined by

$$\mathcal{M}(\mu_{T} \times \mu_{T})(f)(X) = \sup \{ \frac{1}{\mu_{T}(C(X,r) \cap S_{D})^{2}} \int_{C(X,r) \cap S_{D}} d\mu_{T}(Y) \int_{C(X,r) \cap S_{D}} |f(Z,Y)| d\mu_{T}(Z); \\ b\delta(X) < r < R \}$$

for each $X \in (B(0,R) \setminus \partial D) \times [0,T]$. Here b is a fixed real number satisfying b > 1. We next define a meaure ν_0 on \mathbf{R}^{d+1} by

$$\nu_0(E) = \int_{(B(0,3R)\backslash \partial D)\times [0,T]\cap E} \delta(Y)^{2\beta+2-d} dY$$

for a Borel measurable set $E \subset \mathbf{R}^{d+1}$.

The measure ν_0 is dominated by $\mu_T \times \mu_T$ for parabolic cubes in the following sense.

LEMMA 3.1. Fix b>1. Let $X=(x,t)\in (B(0,R)\setminus \partial D)\times [0,T]$ and $b\delta(X)< r<3R$. Then

(3.1)
$$\nu_0(C(X,r)) \le c_1 r^{2\beta+4} \le c_2 \mu_T(C(X,r) \cap S_D)^2.$$

PROOF. Let $X=(x,t)\in (B(0,R)\setminus \partial D)\times [0,T]$ and x' be a point in ∂D satisfying $\delta(x)=|x-x'|$. Putting X'=(x',t), we see that $C(X,r)\subset C(X',2r)$. Then

$$\nu_0(C(X',2r)) \le \int_{t-(2r)^2}^{t+(2r)^2} ds \int_{(\mathbf{R}^d \setminus \partial D) \cap B(x',2r)} \delta(y)^{2\beta+2-d} dy.$$

By Lemma 2.2 in [W1] we have

$$\nu_0(C(X',2r)) \le c_1(2r)^{2\beta+2}(2r)^2 \le c_2r^{2\beta+4}$$
.

Hence the first inequality holds.

Since $C(X', (1-1/b)r) \subset C(X,r)$ and ∂D is a β -set, we also have the second inequality of (3.1). Q.E.D.

Using this, we have the following estimate of the maximal function of f in $L^1(\mu_T \times \mu_T)$ on $(B(0,R) \setminus \partial D) \times [0,T]$.

LEMMA 3.2. (i) Let $\lambda > 0$ and f be a $(\mu_T \times \mu_T)$ -integrable function. Put

$$E_{\lambda} = \{ X \in (B(0,R) \setminus \partial D) \times [0,T]; \mathcal{M}(\mu_T \times \mu_T)(f)(X) > \lambda \}.$$

Then

(3.2)
$$\nu_0(E_{\lambda}) \le \frac{c}{\lambda} \int \int |f(X,Y)| d\mu_T(X) d\mu_T(Y),$$

where c is a constant independent of f and λ .

(ii) If
$$p > 1$$
 and $f \in L^p(\mu_T \times \mu_T)$, then

$$(3.3) \qquad \int \mathcal{M}(\mu_T \times \mu_T)(f)(Y)^p d\nu_0(Y) \leq \int \int |f(X,Y)|^p d\mu_T(X) d\mu_T(Y).$$

PROOF. Let $f \in L^1(\mu_T \times \mu_T)$ and $\lambda > 0$. Then we see that E_{λ} is open as usual. Let K be a compact subset of E_{λ} . For each $X \in K$ we can find a real number $r_X > 0$ such that

$$(3.4) \mu_T(C(X, r_X) \cap S_D)^{-2} \int_{C(X, r_X) \cap S_D} \int_{C(X, r_X) \cap S_D} |f(Y, Z)| d\mu_T(Y) d\mu_T(Z) > \lambda$$

and $\delta(X) < r_X < R$. Then the covering lemma of Vitali type (cf. [W2, Theorem 2.1]) asserts that there is a subfamily $\{(C(X_j, r_{X_j}))\}$ of finite many elements of $\{C(X, r_X)\}_{X \in K}$ such that $\{C(X_j, r_{X_j})\}$ are mutually disjoint and

$$K \subset \cup_j C(X_j, 3r_{X_j}).$$

Then, by Lemma 3.1,

$$\nu_0(K) \leq \sum_j \nu_0(C(X_j, 3r_{X_j})) \leq c_1 \sum_j (3r_{X_j})^{2\beta+4}$$

$$= c_2 \sum_j r_{X_j}^{2\beta+4} \leq c_3 \sum_j \mu_T(C(X_j, r_{X_j}) \cap S_D)^2.$$

The inequality (3.4) implies

$$\nu_0(K) \le c_3 \sum_{j} \frac{1}{\lambda} \int_{C(X_j, r_{X_j}) \cap S_D} \int_{C(X_j, r_{X_j}) \cap S_D} |f(Y, Z)| d\mu_T(Y) d\mu_T(Z).$$

Since $\{C(X_j, r_{X_j})\}_j$ are mutually disjoint, we have

$$\nu_0(K) \le \frac{c_3}{\lambda} \int_{S_D} \int_{S_D} |f| d\mu_T d\mu_T.$$

Since $\nu_0(E_{\lambda}) = \sup\{K; K \text{ is compact}, K \subset E_{\lambda}\}$, we have (3.2).

The inequality (3.3) is deduced from (3.2) by the usual method. (e.g.[S, p.7]). Q.E.D.

We now are ready to prove Theorem 1.

Proof of Theorem 1. We write Y = (y, s). Let $\{Q_j\}$ be the Whitney parabolic decomposition of $(\mathbf{R}^d \setminus \partial D) \times \mathbf{R}$. For a parabolic cube $Q_j \in \{Q_j\}$ we set $l_j = l(Q_j)$ and $A_j = A(Q_j)$.

Let $Y \in Q \in \{Q_j\}$ and $Y \in (\mathbb{R}^d \setminus \partial D) \times [0, T]$. Further let l = l(Q) and A = A(Q). Put

$$b = \frac{1}{\mu_T(C(A, \eta l) \cap S_D)} \int_{C(A, \eta l) \cap S_D} f(Z) d\mu_T(Z).$$

Noting that \mathcal{E}_0 is a linear operator and $\mathcal{E}_0(1)=1,$ we have

$$\begin{aligned} |\nabla \mathcal{E}_{0}(f)(Y)| &= |\nabla \mathcal{E}_{0}(f - b)(Y)| \\ &\leq c_{1} \sum_{j} \frac{\phi_{j}^{*}(Y)}{l_{j}^{\beta+3} l^{\beta+2}} \int_{C(A_{j}\eta l_{j}) \cap S_{D}} d\mu_{T}(Z) \int_{C(A,\eta l) \cap S_{D}} |f(Z) - f(U)| d\mu_{T}(U). \end{aligned}$$

We set

$$h(Z,U) = \frac{|f(Z) - f(U)|}{\rho(Z,U)^{(\beta+2)/p+\alpha}}.$$

Then

$$(3.5) |\nabla \mathcal{E}_0(f)(Y)| \le c_2 \frac{l^{-1+(\beta+2)/p+\alpha}}{l^{\beta+2}l^{\beta+2}} \int_{C(A,b'l)\cap S_D} d\mu_T(Z) \int_{C(A,\eta l)\cap S_D} h(Z,U) d\mu_T(U),$$

b' is a constant independent of Y.

We first suppose that $Y \in (B(0,R) \setminus \partial D) \times [0,T]$. Since $\rho(Y,A) \leq 5\sqrt{d+1} l$ and $|\nabla \mathcal{E}_0(f)(Y)| = |\nabla \mathcal{E}(f)(Y)|$ for $Y \in (B(0,R) \setminus \partial D) \times [0,T]$, we have, by (3.5),

$$|\nabla \mathcal{E}(f)(Y)|\delta(Y)^{1-\alpha-(\beta+2)/p}$$

$$\leq c_3 \frac{1}{l^{\beta+2}l^{\beta+2}} \int_{C(Y,b''l)\cap S_D} d\mu_T(Z) \int_{(C(Y,b''l)\cap S_D} h(Z,U) d\mu_T(U)$$

$$\leq c_4 \mathcal{M}(\mu_T \times \mu_T)(h)(Y),$$

where b'' is a constant independent of Y.

Using Lemma 3.2, we have

$$\int_0^T ds \int_{B(0,R)} |\nabla \mathcal{E}(f)(Y)|^p \delta(Y)^{p(1-\alpha-(\beta+2)/p)} \delta(Y)^{2\beta+2-d} dy$$

$$\leq c_4 \int_0^T ds \int_{B(0,R)} \mathcal{M}(\mu_T \times \mu_T)(h)(Y)^p \delta(y)^{2\beta+2-d} dy$$

$$\leq c_5 \iint h(Z,U)^p d\mu_T(Z) d\mu_T(U),$$

$$(3.6) \quad \int_0^T ds \int_{B(0,R)} |\nabla \mathcal{E}(f)(Y)|^p \delta(Y)^{p-p\alpha-d+\beta} dy \le c_5 \iint h(Z,U)^p d\mu_T(Z) d\mu_T(U).$$

Noting that $\left|\frac{\partial}{\partial s}\phi_{j}^{*}\right| \leq c_{6}l^{-2}$, we also have

$$\left|\frac{\partial}{\partial s}\mathcal{E}(f)(Y)\right| \leq c_7 \frac{l^{(\beta+2)/p+\alpha}}{l^{\beta+4}l^{\beta+2}} \int_{C(A,b'l)\cap S_D} d\mu_T(Z) \int_{C(A,\eta l)\cap S_D} h(Z,U) d\mu_T(U),$$

whence

$$\left|\frac{\partial}{\partial s}\mathcal{E}(f)(Y)\right|\delta(Y)^{2-\alpha-(\beta+2)/p} \leq c_8\mathcal{M}(\mu_T \times \mu_T)(h)(Y).$$

Using Lemma 3.2, we have

$$(3.7) \int_0^T ds \int_{B(0,R)} \left| \frac{\partial}{\partial s} \mathcal{E}(f)(Y) \right|^p \delta(Y)^{2p-p\alpha-d+\beta} dy \le c_9 \iint h(Z,U)^p d\mu_T(Z) d\mu_T(U).$$

We next suppose that $Y \in (\mathbf{R}^d \setminus B(0,R)) \times [0,T]$ and $Y \in Q$. We note that

$$|\frac{\partial}{\partial y_i}\mathcal{E}(f)(Y)| = |\frac{\partial}{\partial y_i}(\mathcal{E}_0(f)(Y)\tau(Y))| \le |\frac{\partial}{\partial y_i}(\mathcal{E}_0(f)(Y)| + |\mathcal{E}_0(f)(Y)||\frac{\partial}{\partial y_i}\tau(Y)|$$

and

$$\operatorname{supp} \frac{\partial}{\partial y_i} \mathcal{E}(f) \subset B(0, 2R) \times (-2, T+2).$$

Since $\partial D \subset B(0, R/2)$, we have $\delta(y) \geq R/2$. Noting that $l \geq \delta(y) \geq R/2$, we also have, by (3.5),

$$|\nabla \mathcal{E}_0(Y)| \leq c_{10} \iint h(Z, U) d\mu_T(Z) d\mu_T(U),$$

whence

$$\int_{0}^{T} ds \int_{B(0,2R)\backslash B(0,R)} \left| \frac{\partial}{\partial y_{i}} \mathcal{E}_{0}(f)(Y) \right|^{p} \delta(Y)^{p-p\alpha-d+\beta} dy \\
\leq c_{11} \iint h(Z,U)^{p} d\mu_{T}(Z) d\mu_{T}(U).$$

On the other hand we note that

$$|\mathcal{E}_{0}(f)(Y)| \leq c_{12} \sum_{j} \frac{\phi_{j}^{*}(Y)}{l_{j}^{\beta+2}} \int_{C(A_{j},\eta l_{j})} |f(Z)| d\mu_{T}(Z)$$

 $\leq c_{13} \int |f(Z)| d\mu_{T}(Z),$

whence

$$\int_0^T ds \int_{B(0,2R)\backslash B(0,R)} |\mathcal{E}_0(f)(Y)|^p |\frac{\partial}{\partial y_i} \tau(Y)|^p \delta(Y)^{p-p\alpha-d+\beta} dy$$

$$\leq c_{14} \int |f(Z)|^p d\mu_T(Z).$$

From those we deduce

$$\int_{0}^{T} ds \int_{B(0,2R)\backslash B(0,R)} |\nabla \mathcal{E}(f)(Y)|^{p} \delta(Y)^{p-p\alpha-d+\beta} dy \le c_{15} ||f||_{\alpha,p}^{p}.$$

Similarly we also have

$$\int_0^T ds \int_{B(0,2R)\backslash B(0,R)} |\frac{\partial}{\partial s} \mathcal{E}(f)(Y)|^p \delta(Y)^{2p-p\alpha-d+\beta} dy \le c_{16} ||f||_{\alpha,p}^p.$$

Thus we have, together with (3.6) and (3.7), the conclusion.

Q.E.D.

4. Another property of the extension operator

In this section we consider a maximal function of f in $L^1(\mu_T)$ on $(B(0,R) \setminus \partial D) \times [0,T]$. Let us begin with the following lemma.

LEMMA 4.1. Let b > 1 and $X \in B(0, 2R) \times [0, T]$. Further let $Y_0 = (y_0, s_0) \in (B(0, R) \setminus \partial D) \times [0, T]$ and $b\delta(y_0) < r < 3R$. Then

$$(4.1) \qquad \int_{C(Y_0,r)\cap\{(B(0,R)\setminus\partial D)\times[0,T]\}} \frac{1}{\rho(Y,X)^{d-\beta}} dY \le c_1 r^{\beta+2} \le c_2 \int_{C(Y_0,r)\cap S_D} d\mu_T(Z),$$

where c_1 and c_2 are constants independent of r, Y_0 , X.

PROOF. Put

$$\mathcal{B}(Z,\epsilon) = \{Y \in \mathbf{R}^{d+1}; \rho(Z,Y) < \epsilon\}$$

for $Z \in \mathbf{R}^{d+1}$ and $\epsilon > 0$.

We first assume that $\rho(X, Y_0) < 2r$. Then

$$C(Y_0,r)\subset \mathcal{B}(Y_0,\sqrt{2}r)\subset \mathcal{B}(X,(2+\sqrt{2})r).$$

By the property of ρ in [W2, Lemma 2.5] we have

$$\int_{C(Y_0,r)\cap\{(B(0,R)\setminus\partial D)\times[0,T]\}} \frac{1}{\rho(Y,X)^{d-\beta}} dY
\leq \int_{B(X,(2+\sqrt{2})r)} \frac{1}{\rho(Y,X)^{d-\beta}} dY \leq c_1((2+\sqrt{2})r)^{d+2-d+\beta} = c_2 r^{\beta+2}.$$

We next assume that $\rho(X, Y_0) \geq 2r$. Then

$$\int_{C(Y_0,r)\cap\{(B(0,R)\setminus\partial D)\times[0,T]\}} \frac{1}{\rho(Y,X)^{d-\beta}} dY \\
\leq \int_{\{\rho(Y,X)\geq (2-\sqrt{2})r\}\cap C(Y_0,r)} \frac{1}{\rho(Y,X)^{d-\beta}} dY \\
\leq \frac{1}{((2-\sqrt{2})r)^{d-\beta}} \int_{C(Y_0,r)} dY \leq c_3 r^{-d+\beta} r^{d+2} = c_4 r^{\beta+2}.$$

Thus we obtain the first inequality of (3.1).

Noting that ∂D is a β -set, we also have the second inequality of (4.1). Q.E.D.

Fix b > 1 and define, for $f \in L^1(\mu_T)$ and $Y \in (B(0, R) \setminus \partial D) \times [0, T]$,

$$\mathcal{M}(\mu_T)(f)(Y) = \sup\{\frac{\int_{C(Y,r)\cap S_D} |f(Z)| d\mu_T(Z)}{\mu_T(C(Y,r)\cap S_D)}; b\delta(Y) < r < 3R\}.$$

Using Lemma 4.1, we can prove the following lemma by the same method as in the proof of Lemma 3.1.

LEMMA 4.2. Let $X \in B(0, 2R) \times [0, T]$.

(i) Set, for $\lambda > 0$,

$$F_{\lambda} = \{ Y \in (B(0,R) \setminus \partial D) \times [0,T]; \mathcal{M}(\mu_T)(f)(Y) > \lambda \}$$

If $f \in L^1(\mu_T)$, then

$$\int_{F_{\lambda}} \frac{1}{\rho(Y,X)^{d-\beta}} dY \le \frac{c}{\lambda} \int |f(Z)| d\mu_T(Z).$$

(ii) If $1 and <math>f \in L^p(\mu_T)$, then

$$\int \frac{\mathcal{M}(\mu_T)(f)(Y)^p}{\rho(Y,X)^{d-\beta}} dY \le c \int |f(Z)|^p d\mu_T(Z).$$

Here c is a constant independent of f, λ and X.

We now prove Theorem 2.

Proof of Theorem 2. Let $X \in D \times [0,T]$ and $Y \in (B(0,R) \setminus \overline{D}) \times [0,T]$. Further, let $Y \in Q \in \mathcal{W}_{\rho}(\mathbf{R}^d \setminus \partial D) \times \mathbf{R}) = \{Q_j\}$ and set

$$l = l(Q), \quad l_j = l(Q_j), \quad A = A(Q) \text{ and } A_j = A(Q_j).$$

Since $\mathcal{E}_0(1) = 1$, we have

$$I \equiv |\mathcal{E}(f)(Y) - \mathcal{E}(f)(X)| = |\mathcal{E}_0(f - \mathcal{E}(f)(X))(Y)|$$

$$\leq c_1 \sum_j \phi_j^*(Y) \frac{1}{l_j^{\beta+2}} \int_{C(A_j, \eta l_j) \cap S_D} |f(Z) - \mathcal{E}(f)(X)| d\mu_T(Z),$$

whence

$$(4.2) I \leq c_2 \frac{1}{l^{\beta+2}} \int_{C(A,bl)\cap S_D} \frac{|f(Z) - \mathcal{E}(f)(X)|}{\rho(Z,X)^{(d+2)/p+\alpha}} \rho(Z,X)^{(d+2)/p+\alpha} d\mu_T(Z).$$

Here b is a constant independent of l with $b \ge 5\sqrt{d+1}$.

We consider two cases. If $\rho(X, A) \leq 3bl$, then, for $Z \in C(A, bl) \cap S_D$,

$$\rho(Z,X) \le \rho(Z,A) + \rho(A,X) \le (\sqrt{2} + 3)bl \equiv b'l$$

and $l \leq |x - y| \leq \rho(X, Y)$. From (4.2) we deduce

$$I \le c_3 l^{(d+2)/p + \alpha - \beta - 2} \int_{C(Y, b'l) \cap S_D} \frac{|f(Z) - \mathcal{E}(f)(X)|}{\rho(Z, X)^{(d+2)/p + \alpha}} d\mu_T(Z),$$

whence

(4.3)
$$\frac{I}{\rho(X,Y)^{(d+2)/p+\alpha}} \le c_3 \frac{1}{l^{\beta+2}} \int_{C(Y,b'l)\cap S_D} \frac{|f(Z) - \mathcal{E}(f)(X)|}{\rho(Z,X)^{(d+2)/p+\alpha}} d\mu_T(Z).$$

If $\rho(X, A) > 3bl$, then, for $Z \in C(A, bl) \cap S_{D}$

$$\rho(X,Z) \le \rho(X,A) + \rho(A,Z) < \rho(X,A) + \sqrt{2}bl \le \frac{1}{3}(3+\sqrt{2})\rho(X,A)$$

and

$$\rho(X,Y) \ge \rho(X,A) - \rho(Y,A) \ge \frac{2}{3}\rho(X,A).$$

Hence

$$\rho(X,Z) < \frac{3+\sqrt{2}}{2}\rho(X,Y).$$

From (4.2) we deduce (4.3).

In each case we have (4.3) and hence

$$\frac{I}{\rho(X,Y)^{(d+2)/p+\alpha}} \le c_4 \mathcal{M}(\mu_T) \left(\frac{|f(\cdot) - \mathcal{E}(f)(X)|}{\rho(\cdot,X)^{(d+2)/p+\alpha}}\right) (Y).$$

Using Lemma 4.2, we obtain

$$\int_{(B(0,R)\setminus\overline{D})\times[0,T]} \frac{I^{p}}{\rho(X,Y)^{d+2+\alpha p+d-\beta}} dY \\
\leq c_{5} \int_{(B(0,R)\setminus\overline{D})\times[0,T]} \mathcal{M}(\mu_{T}) \left(\frac{|f(\cdot)-\mathcal{E}(f)(X)|}{\rho(\cdot,X)^{(d+2)/p+\alpha}}\right) (Y)^{p} \frac{1}{\rho(X,Y)^{d-\beta}} dY \\
\leq c_{6} \int_{S_{D}} \frac{|f(Z)-\mathcal{E}(f)(X)|^{p}}{\rho(Z,X)^{d+2+\alpha p}} d\mu_{T}(Z),$$

whence

$$\int_{D\times[0,T]} dX \int_{(B(0,R)\setminus\overline{D})\times[0,T]} \frac{|\mathcal{E}(f)(Y) - \mathcal{E}(f)(X)|^p}{\rho(X,Y)^{d+2+\alpha p+d-\beta}} dY$$

$$\leq c_6 \int_{D\times[0,T]} dX \int_{S_D} \frac{|f(Z) - \mathcal{E}(f)(X)|^p}{\rho(Z,X)^{d+2+\alpha p}} d\mu_T(Z).$$

Similarly we also have

$$\int_{S_{D}} d\mu_{T}(Z) \int_{D \times [0,T]} \frac{|\mathcal{E}(f)(X) - f(Z)|^{p}}{\rho(X,Z)^{d+2+\alpha p}} dX
\leq c_{7} \int_{S_{D}} d\mu_{T}(Z) \int_{S_{D}} \frac{|f(X) - f(Z)|^{p}}{\rho(X,Z)^{\beta+2+\alpha p}} d\mu_{T}(X),$$

whence,

$$\int_{D\times[0,T]} dX \int_{(B(0,R)\setminus\overline{D})\times[0,T]} \frac{|\mathcal{E}(f)(Y) - \mathcal{E}(f)(X)|^p}{\rho(X,Y)^{d+2+\alpha p+d-\beta}} dY
\leq c_8 \int_{S_D} d\mu_T(Z) \int_{S_D} \frac{|f(X) - f(Z)|^p}{\rho(X,Z)^{\beta+2+\alpha p}} d\mu_T(X).$$

Since

$$\int_{D\times[0,T]} dX \int_{(\mathbf{R}^d\setminus B(0,R))\times[0,T]} \frac{|\mathcal{E}(f)(Y) - \mathcal{E}(f)(X)|^p}{\rho(X,Y)^{d+2+\alpha p+d-\beta}} dY
\leq c_9 \int_{(\mathbf{R}^d\setminus B(0,R))\times[0,T]} |\mathcal{E}(f)(Y)|^p dY + c_9 \int_{D\times[0,T]} |\mathcal{E}(f)(X)|^p dX,$$

we have, by Lemma 2.3,

$$\int_{D\times[0,T]} dX \int_{(\mathbf{R}^d\setminus\overline{D})\times[0,T]} \frac{|\mathcal{E}(f)(Y) - \mathcal{E}(f)(X)|^p}{\rho(X,Y)^{d+2+\alpha p+d-\beta}} dY \\
\leq c_{10} \left(\int_{S_D} d\mu_T(X) \int_{S_D} \frac{|f(X) - f(Y)|^p}{\rho(X,Y)^{\beta+2+\alpha p}} d\mu_T(Y) + \int_{S_D} |f(X)|^p d\mu_T(X) \right).$$

Thus we have the conclusion.

Q.E.D.

References

- [HN] J. Harrison and A. Norton, Geometric integration on fractal curves in the plane, Indiana Univ. Math. J. 40 (1991), 567–594.
- [JW1] A. Jonsson and H. Wallin, A Whitney extension theorem in L_p and Besov spaces, Ann. Inst. Fourier, Grenoble 28, 1 (1978), 139–192.
- [JW2] A. Jonsson and H. Wallin, Function spaces on subsets of \mathbb{R}^d , Harwood Academic Publishers, London-Paris-New York, 1984.
- [S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Prinston-New Jersey, 1970.
- [W1] H. Watanabe, The double layer potentials for a bounded domain with fractal boundary, Potential Theory-ICPT94, 463–471, Walter de Gruyyter, Berlin-New York, 1996.
- [W2] H. Watanabe, Estimates of the Besov norms on fractal lateral boundary by volume integrals, Natur. Sci. Rep. Ochanomizu Univ. **52**, 2 (2001), 9-22.