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1. Introduction
Let $X$ be alocally compact but non-compact Hausdorff space satisfying the second

countability axiom. Afunction $G=G(x, y)$ on $X\cross X$ is called acontinuous
function-kernel on $X$ if $G(x, y)$ is continuous in the extended sense and satisfies

$0<G(x, x)\leq+\infty$ for $\forall x\in X$ ,

$0\leq G(x, y)<+\infty$ for $\forall(x, y)\in X\cross X$ with $x\neq y$ .

In general, apositive linear mapping from $C_{K}$ to $C$ is called acontinuous kernel
on $X$ .

When acontinuous function-kernel $G$ satisfies the continuity principle, we
can verify, under the additional condition that every non-empty open set in $X$ is of

positive $G$-inner capacity, that there exists apositive mesure 4everywhere dence in $X$

satisfying

(1) $G(x, y)$ is locally 404-summable,

(2) $V_{G}^{\xi}(f)(x)= \int G(x, y)f(y)d\xi(y)$ is continuous on $X$ for $\forall f\in C_{K}$ .

Then we can consider $V_{G}^{\xi}$ as acontinuous kernel on $X$ .

Let $V$ be acontinuous kernel on $X$ . The family $(V_{p})_{p>0}$ of continuous kernels on
$X$ is colled aresolvent family associated with $V$ , if it satisfies the following

equalities:

(3) $V_{p}-V_{q}=(q-p)V_{p}\cdot V_{q}=(q-p)V_{q}\cdot V_{p}$ , $\forall p$ , $\forall q>0$ ,

(4) $\lim_{parrow 0}V_{p}=V$ .
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$\mathrm{G}.\mathrm{A}$ .Hunt[9] verified that, when acontinuous kernel $V$ satisfies the complete maximum
principle, we can associate aresolvent family $(V_{p})_{p>0}$ with $V$ , under the assumption
that $V(C_{K})\subset C_{0}$ and $V(C_{K})$ is dense in $C_{0}$ .

The existence of aresolvent family may be developped to the theory of asemi-group.
So we can consider acontinuous kernel as the elementary solution of the infinitesimal
generator of the semi-group and hence we can enter analytically into the arguement of
the generalized Poisson and Dirichlet problems.

Subsequently, G.Lion[18] obtained the same result without the condition that $V(C_{K})$

is dense in $C_{0}$ .
On the other hand, P.A.Meyer[19], J.C.Taylor[20] and F.Hirsch[8] constructed the re-

solvent family replacing the condition that $V(C_{K})\subset C_{0}$ with the weaker conditions on
the vanishing properties of potentials at infinity.

Now, let us recall here the arranged results in the theory of convolution kernels.
Aconvolution kernel $N$ on alocally compact abelian group $X$ is said to be aHunt

kernel when there exists avaguely continuous semi-group $(\alpha_{t})_{\mathrm{t}>0}$ of positive measures
on $X$ satisfying

$N= \int_{0}^{\infty}\alpha_{t}dt$ ( i.e., $\int fdN=\int_{0}^{\infty}\{\int fd\alpha_{t}\}d\mathrm{t}$ for $\forall f\in C_{K}$ ).

Concerning the characterization of aHunt kernel, the following rerults are well known.
Anon-periodic convolution kernel $N$ becomes a Hunt kernel if and only if $N$ satisfies

one of the following conditions:

(A) $N$ is balayable, that is, there exists abalayaged mesure on every open set not
necessarily relatively compact (cf. G.Choquet-J.Deny[l]).

(B) There exists aresolvent family associated with N (cf. M.It\^o[10]).
(C) $N$ satisfies the domination principle and $\mathrm{N}$ is regular (cf. M.It\^o[10]).
(D) $N$ satisfies the domination principle and has the dominated convergent

property ( $\mathrm{c}\mathrm{f}$, M.It\^o[10] and M.Kishi[17]).

Remark1. The author has investigated the relations $(A)\sim(D)$ with respect to
the continuous function-kernel$\mathrm{s}$ and verified already the equivalence of (C) and (D) and
obtained the relations $(C)arrow(A)$ and $(C)arrow(B)$ (cf. I.Higuchi[4], [5], [6]). Bu $\mathrm{t}$ the
inverse relations $(A)arrow(C)$ and $(B)arrow(C)$ fail to hold in general (cf. I.Higuchi[6]
and M.It\^o[12] $)$ . These facts suggest that the treatments of the function-kernels are more
complicated than that of of the convolution kernels.

The regularity of function kernel is concerned deeply with the vanishing property of
potentials in the neighborhood of the point at infinity.

The purpose of this paper is to characterize the regularity of anon-symmetric
continuous function-kernel $G=G(x, y)$ satisfying the complete maximum principle and
to prove that at least one of $G$ and $\check{G}$ converges to 0quasi-everywhere at infinity.
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2. preliminaries
The $\mathrm{G}$-potential $G\mu(x)$ of aRadon mesure $\mu$ on X is defined by

$G \mu(x)=\int G(x, y)d\mu(x)$ .

Put

$M=$ { $\mu$ : positive Radon mesure on $X$ },

$E=E(G)= \{\mu\in M ; \int G\mu(x)d\mu(x)<+\infty\}$,

$F=F(G)=$ { $\mu\in M$ : $G\mu(x)$ is finite continuous on $X$ },

$D=D(G)=$ { $\mu\in M$ : $G\mu(x)<+\infty$ G-n.e. on $X$ }.

And we write their sub-families consisting of the measures with compact support by
$M_{0}$ , $E_{0}$ , $F_{0}$ respectively.

We denote by $P_{M_{0}}(G)$ the totality of $\mathrm{G}$-potentials of the measures in $M_{0}$ . The notations
of the families of various class of potensiala are also denoted similarly.

ABorel measurable set $B$ is said to be $\mathrm{G}$-negligible if $\mu(B)=0\mathrm{f}\mathrm{o}\mathrm{r}.\forall\mu\in E_{0}(G)$ .
We say that aproperty $\mathrm{P}$ holds $\mathrm{G}$-nearly everywhere on asubset $A$ of $X$ and write simply

that $\mathrm{P}$ holds G-n.e. on $A$ , when it holds on $A$ except for a $\mathrm{G}$-negligible set.

Alower semi-continuous function $u$ on $X$ is said to be $\mathrm{G}$-Superharmonic when
$0\leq u(x)<+\infty$ G-n.e. on $X$ and for any $\mu\in E_{0}(G)$ , the inequality $G\mu(x)\leq u(x)$ G-n.e.
on $S\mu$ implies the same inequality on the whole space $X$ .

We denote by $S(G)$ the totality of $\mathrm{G}$-superharmonic functions on $X$ .

For afunction $u\in S(G)$ and aclosed set $F\subset X$ , apositive measure $\mu’$ supported by
$F$ satisfying the following conditions is called abalayaged mesure of $u$ on $F$ , if it
exists,

Gfi(x) $=u(x)$ G-n.e. on $F$ ,

$G\mu’(x)\leq u(x)$ on $X$ .

We denote by $S_{bal}(F, G)$ the totality of $\mathrm{G}$-superharmonic functions for which the bal-
ayaged mesure on $F$ exists and write simply $S_{bal}(G)$ instead of $S_{bal}(X, G)$ .

Potential theoretic principles are stated as follows:

(i) We say that G satisfies the domination principle and write simply G $\prec G$

when $P_{M_{0}}(G)\subset S(G)$ .

(ii) We say that G satisfies the complete maximum principle and write simply
G $\prec G+1$ when we have $P_{M_{0}}(G)\cup\{c\}\subset S(G)$ for $\forall c\geq 0$ .
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(iii) We say that $G$ satisfies the balayage principle if we have

$P_{M_{0}}(G)\subset\cap k_{j}\mathrm{c}ompact\subset X$Sbal $(K, G)$ .

(iv) We say that $G$ is balayable when we have $P_{M_{0}}(G)\subset S_{bal}(G)$ .

(v) We say that $G$ satisfies the continuity principle if, for any $\mu\in M\mathrm{o}$ , the finite
continuity of the restriction of $G\mu(x)$ to $S\mu$ implies the finite continuity of $G\mu(x)$ on
the whole space $X$ .

For anon-negative Borel function $u$ and aclosed set $F$ , the $\mathrm{G}$-reduced function
of u on F and the $\mathrm{G}$-reduced function of u on F at infinity $\delta$ , are
defined respectively by

$R_{G}^{F}(u)(x)= \inf$ { $v(x)$ ; $v\in S(G)$ , $v(x)\geq u(x)G-n.e$ . on $F$ },

$R_{G}^{F,\delta}(u)(x)= \inf_{\omega\in\Omega_{0}}R_{G}^{F\cap C\omega}(u)(x)$ ,

where $\Omega_{0}$ denotes the totality of all relatively compact open sets in $X$ .

And we write simply $R_{G}^{\delta}(u)(x)$ instead of $R_{G}^{X,\delta}(u)(x)$ .

Put, for aclosed set $F$ ,

$S_{0}(F, G)=$ { $u\in S(G)$ ; $R_{G}^{F,\delta}(u)(x)=0$ G-n.e. on $X$ }.

And write simply $S_{0}(G)$ instead of $S_{0}(X, G)$ .

Remark 2. When $G$ satisfies the domination principle, the following (1) and (2)
hold:

(1) We have $R_{G}^{F}(u)\in S(G)$ for any closed set $F$ and for any $u\in \mathrm{S}(\mathrm{G})$ .

(2) We have $\hat{R}_{G}^{\delta}(u)\in S(G)$ for any $u\in S(G)$ , where $\hat{R}_{G}^{\delta}(u)(x)$ denotes the lower
regularization of $R_{G}^{\delta}(u)(x)$ .

Further we put, for aclosed set $F$ ,

$S_{0}(F, G)=$ { $u\in S(G)$ ; $R_{G}^{F,\delta}(u)(x)=0$ G-n.e. on $X$ },

and write simply $S_{0}(G)$ instead of $S_{0}(X, G)$ .

The kernel $G$ is said to be regular when we have $P_{M_{0}}(G)\subset S_{0}(G)$ .

Remark 3. Suppose that $G$ satisfies the complete maximum principle and that,
for $\forall\mu\in M_{0}$ , $G\mu(x)$ converges uniformly to 0at infinity $\delta$ , that is, for $\forall\epsilon>0$ and for
$\forall\mu\in M_{0},\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ exists an $\omega$ $\in\Omega_{0}$ satisfying $G\mu(x)<\epsilon$ on $C\omega$ . Then $G$ becomes regular.
Therefore, regularity means akind of vanishing property of potentials at infinity $\delta$ .
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Remark 4 (cf. I.Higuchi[6] and M.It\^o[13]). Whwn G satisfies the domination prin-

ciple, the following statements are equivalent:

(1) $G$ is regular.

(2) $P_{E_{0}}(G)\subset S_{0}(G)$ .

(3) $P_{F_{0}}(G)\subset S_{0}(G)$ .

(4) $P_{D_{0}}(G)\subset S_{0}(G)$ .

(5) $\check{G}$ is regular.

Therefore, it suffices to obtain the weakest condition (3) when we show the regulariry

of $G$ and we may use the strongest condition (4) when we apPly the regularity of $G$ .

And the duality of regularity follows from the equivalence of (1) and (5).

Remark 5(cf. Theorem 1 and Corollary 1).

(1) When $G$ satisfies the domination principle, we have $S_{0}(G)\subset S_{bal}(G)$ .

(2) If $G$ satisfies the domination principle and is regular, then $G$ is balayable.

Remark 6. The inverse of (2) in Remark 5does not necessarily hold in general.

In fact, there exists an example of continuous function-kernel $G$ such that $G$ is balayabble

but not regular (cf. I.Higuchi[6]).

Three notions of the thinness of aclosed set $F$ are defined as follows:

(i) $F$ is said to be $G$-thin at infinity $\delta$ , if $P_{M_{0}}(G)\subset S_{0}(F, G)$ holds.

(ii) $F$ is said to be $G-1$-thin at $\delta$ , if $1\in S_{0}(F, G)$ holds.

(iii) $F$ is said to be $G-\mathrm{c}\mathrm{a}\mathrm{p}$-thin at $\delta$ , if $\inf_{\omega\in\Omega_{0}}cap_{G}^{i}(F\cap C\omega)$ $=0$ holds.

Remark 7. When both G and adjoint $\check{G}$ satisfy the complete maximum principle,

the implications (iii) $\Rightarrow(\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i})$ can be shown (cf. Theorem 3and Theorem 4).

In the rest of this paper, we always assume that every non-empty open set
in X is of positive $\mathrm{G}$-inner capacity
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3. Thinness and balayability
By using the equivalence of the relative domination principle and the relative balayage

principle obtained by M.Kishi[15], we can prove the following

Theorem 1. If $G$ satisfies the domination principle, we have

$S_{0}(F, G)\subset S_{bal}(F, G)$ .

Remark 8. The inverse inclusion relation of Theorem 1does not necessarily hold
in general. But if we suppose that $G$ satisfies the domination principle and that $G$ is
regular, then we have $S_{0}(G)=S_{bal}(G)$ Further, the following (1) $\sim(4)$ are equivalent:

(1) $u\in S_{0}(G)$ .

(2) $u\in S_{bal}(G)$ .

(3) $\hat{R}_{G}^{\delta}(u)\in S_{0}(G)$ .

(4) $\hat{R}_{G}^{\delta}(u)\in S_{bal}(G)$ .

Corollary 1 (cf. I.Higuchi[6]). Suppose that $G\prec G$ . Then $G$ is balayable if $G$ is
regular.

Remark 9. The inverse of Corollary 1does not correct in general.
In fact, We denote by $N=N(x, y)$ the Newton kernel on $R^{n}(n\geq 3)$ and by 4a

positive measure such that $N\xi(x)$ is finite continuous on $X$ and that $\int d\xi<+\infty$ . The
the continuous function-kernel defined by

$G(x, y)=N(x, y)+N\xi(x)$

satisfies the domination principle. And we can prove $G$ is balayable but not regular (cf.
I.Higuchi[6] $)$ . Therefore, the regularity is astronger property than the balayability.

Remark 10. Similarly we can prove the following propositions concerning the
thinness of aclosed set at infinity $\delta$ :

(1) Let $G$ satisfy the domination principle and $F$ be $G$-thin at $\delta$ Then, for aG-
potential $G\mu(x)$ of any $\mu\in M_{0}(G)$ , there exists abalayaged mesure of $G\mu$ on every closed
set contained in $F$ .

(2) Let $G$ satisfy the complete maximum principle and $F$ be G-l-thin at $\delta$ . Then there
exists the equilibrium measure of every closed set contained in $F$ .

(3) Let $G$ satisfy the maximum principle and $F$ be G-cap-thin at $\delta$ . Then we have
$cap_{G}^{i}(F)<+\infty$ .
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4. Thinness and strong balayability
Let $G$ be acontinuous function kernel on $X$ and $F$ be aclosed set in $X$ . We say that

$G$ is strongly balayable on $F$ , if, for every $G$-superharmonic function dominated
by some $G$-potential in $P_{M0}(G)$ , there exists abalayaged measure on every closed set
contained in $F$ .

Acontinuous function-kernel $G=G(x, y)$ is said to be non-degenerate when for
any $y_{1}$ , $y_{2}\in X$ , $G(x, y_{1})$ and $G(x, y_{2})$ are not proportional each other.

The following theorem is acharacterization of $G$-thinness of aclosed set at infinity $\delta$

and is an answer to the inverse problem of (1) in Remark 10.

Theorem 2. Suppose that $G$ satisfies the domination principle and that $G$ is non-
degenerate. Then, for any compact set $F$ , the following statements are equivalent:

(1) F is $G$-thin at infinity $\delta$ .

(2) The following (a) and (b) hold:

(a) $G$ is strongly balayable on $F$ .

(b) $\check{G}$ is balayable on $F$ .

(3) Both $G$ and $\check{G}$ are strongly balayable on $F$ .

The next result is acharacterization of G-l-thinness of $F$ at $\delta$ and is an answer to the
inverse problem of (2) in Remark 10. This theorem asserts that the G-l-thinness at $\delta$ is
astronger property than the $G$-thinness at $\delta$ .

Theorem 3. Suppose that $G$ and $\check{G}$ satisfy the complete maximum principle.
Then, for any closed set $F$ , the following statements are equivalent each other:

(1) F is G-l-thin at infinity $\delta$ .

(2) Next (a) and (b) hold:

(a) F is $G$-thin at $\delta$ .

(b) The equilibrium measure $\gamma F$ of F exists.

And further, if both $G$ and $\check{G}$ are $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$, then (1) or (2) is equivalent to
the following (3).

(3) Next (c) and (d) hold:

(c) For any bounded $G$-superharmonic function $u$ , there exists aG-balayaged
measure of $u$ on every closed set contained in $F$ .

(d)$)$ For any bounded $\check{G}$-superharmonic function $u$ , there exists a $G\vee$ balayaged
measure of $u$ on every closed set contained in $F$ .
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The following theorem is acharacterization of G-cap-thinness at infinity $\delta$ of aclosed
set and is an answer to the inverse problem of (3) in Remark 10. And, by this result, we
can assert that the G-cap-thinness is astronger property than the G-l-thinness.

Theorem 4. Suppose that both $G$ and $\check{G}$ satisfy the complete maximum principle.
Then the Slowing (1) and (2) are equivalent:

(1) F is G-cap-thin at infinity $\delta$ .

(2) The following 3statement hold:

(a) $cap_{G}^{i}(F)<+\infty$ .

(b) F is G-l-thin at infinity C5.

(c) F is G-l-thin at infinity $\delta$ .

And further, if we suppose that both $G$ and $\check{G}$ are $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$, the above (1)
or (2) is equivalent the following (3):

(3) The above (a) and both of the following (c) and (d) hold:

(c) For any bounded $G$-superharmonic function $u$ , there exists aG-balayaged
measure of $u$ on every closed set contained in $F$ .

(d) For any bounded $\check{G}$-superharmonic function $u$ , there exists a $G\vee$-balayaged
measure of $u$ on every closed set contained in $F$ .

5. Thinness and the vanishing property of potentials

Remark 11 (cf. I.Higuchi[7]). In the case that $G$ is symmetric and that $G$

satisfies the complete maximum principle, we have already verified that the following (1)
and (2) are equivalent:

(1) G is regular .

(2) For $\forall c>0$ and for $\forall\mu\in F_{0}(G)$ , we have

$\inf_{\omega\in 0}cap_{G}^{i}\{x\in C\omega ; G\mu(x)\geq c\}=0$ .

Therefore, the regularity is an extension of the property that $G$-potential converges to
0in the neighborhood of the point at infinity.

When $G$ is non-symmetric, that is, $G\neq\check{G}$ , the circumstance is more complicated. In
the rest of this section, We consider the relations between the regularity and the vanishing
property of potentials at infinity $\delta$ , camparing the three notions of thinness at $\delta$ , when
the kernel $G$ is non-symmetric
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Theorem 5. Suppose that both G and $\check{G}$ satisfy the complete maximum principle.

Then, for any closed set F, the following three statements are equivalent:

(1) F is $G$-thin at infinity $\delta$ .

(2) For $\forall c>0$ , and $\forall\mu\in M_{0}$ , the set

$F\cap\{x\in X ; G\mu(x)\geq c\}$

is $G-1$-thin at $\delta$ .

(3) For $\forall c>0$ , $\forall d>0$ and $\forall\mu$ , $\forall\nu\in M_{0}$ , the set

$F\cap\{x\in X ; G\mu(x)\geq c\}\cap\{x\in X ; \check{G}\nu(x)\geq d\}$

is G-cap-thin at $\delta$ .

Putting $F=X$ , we have following main theorem.

Theorem 6. Suppose that both $G$ and $\check{G}$ satisfy the complete maximum principle.

Then the following (1), (2) and (3) are equivqalent one anathor:

(1) G is regular .

(2) For $\forall c>0$ , and for $\forall\mu\in M_{0}$ , the set

$\{x\in X ; G\mu(x)\geq c\}$

is G-l-thin at $\delta$ .

(3) For $\forall c>0$ , $\forall d>0$ and $\forall\mu$ , $\forall\nu\in M_{0}$ , the set

$\{x\in X ; G\mu(x)\geq c\}\cap\{x\in X ; \check{G}\nu(x)\geq d\}$

is G-cap-thin at $\delta$ .

And further, if we suppose that both $G$ and $\check{G}$ are $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$ , then the

above (1) $\sim(3)$ are equivalent to the following (4):

(4) Both (a) and (b) hold:

(a) G is strongly balayable.

(b) $\check{G}$ is strongly balayable.
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Remark 12. Roughly speaking, Theorem 6asserts that, when G and $\check{G}$ satisfy
the complete maximum principle, G is regular if at most one of the $G$-potential and
$\check{G}$-potential converges to 0at infinity $\delta$ .

Example. let $Y=Y(x, y)$ be afunction-kernel on $R^{2}$ defined by

$Y(x, y)=\{$ $e^{-(x-y)}1,$

,
$x\geq yx<y,$

.

This kernel is called the Yukawa kernel. It is not so easyt to prove that yhe
Yukawa kernel is regular. We can prove both $Y$ and $\check{Y}$ satisfy the complete maximum
principle and that the $Y$-potentials converge to 0at infinity $\delta$ but the $\check{Y}$-potentials do not
converge to 0at $\delta$ .

By our Theorem 6, we can assert that both $Y$ and $\check{Y}$ are regular.
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