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§ 1. Formulation of the problem

Let G be a real linear reductive Lie group and let G¢ its complexification. We denote by go
(resp. g) the Lie algebra of G (resp. G¢) and denote by o the complex conjugation on g with
respect to go. We fix a maximal compact subgroup K of G and denote by # the corresponding
Cartan involution. We denote by & the complexified Lie algebra of K.

We fix a prabolic subgroup P of G with #-stable Levi part M. We denote by N the
nilradical of P. We denote by p, m, and n the complexified Lie algebras of P, M, and N,
respectively. We denote by P, Mc, and N¢ the analytic subgroups in G¢ with respect to p,
m, and n, respectively.

For X € m, we define

5(X) = 2tr (adg (X)ln).

Then, & is a one-dimesional representation of m. We see that 24 lifts to a holomorphic group
homomorphism &5 : Mc — C*. Defining &25|n, trivial, we may extend &5 to Pc. We put
X = Gg¢/Pc. Let £ be the holomorphic line bundle on X corresponding to the canonical
divisor. Namely, £ is the Gc-homogeneous line bundle on X associated to the character &35
on Fc. We denote the restriction of £35 to P by the same letter.

For a character 7 : P — C%, we consider the unnormalized parabolic induction *Ind§ ().
Namely, “Ind§(n) is the K-finite part of the space of the C®-sections of the G-homogeneous
line bundle on G/P associated to 7. *Indg(n) is a Harish-Chandra (g, K)-module.

If G/P is orientable, then the trivial G-representation is the unique irreducible quotient
of “Ind%(&25). If G/P is not orientable, there is a character w on P such that w is trivial
on the identical componnent of P and the trivial G-representatxon is the unique irreducible
quotient of “lndG(§25 Q w).

Let O be an open G-orbit on X. We put the following assumption:
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Assumption 1.1  There is a 6-stable parabolic subalgebra q of g such that g € O.

Under the above assumption, q has a Levi decompsition q = [+ u such that [is a § and
o-stable Levi part. In fact [ is unique, since we have [ = o(q) N g.

For each open G-orbit O on X, we put

-AO — Hdimum!(O’E)K-ﬁnite'

Namely, in the termilogy in [Vogan-Zuckerman 1984], we have Ap = Aq = Aq(0).
We consider the following problem: .
Problem 1.2 Is there an embedding: Ao < “Ind$(£25) or Ao < *Ind$ (€25 @ w)?

§ 2. Complex groups

Let G be a connected real split reductive linear Lie group. Here, we consider Problem 1.2 for
the complexification G¢ rather than G itself. Embedding G¢ into G¢ x G¢ via g ~ (g,0(g)),
we may regard G¢c x G¢ as a complexification of G¢. Each parabolic subgroup of Gg is
the complexification of a parabolic subgroup of G. Let P be a parabolic subgroup of G.
Then, the complexification of P¢ can be identified with Pc x Pg via the above embedding
Gc < G¢ x G¢. Hence, the complex generalized flag variety for G¢ is X x X. We fix a 8 and
o-stable Cartan subalgebra b of g such that h C p. We denote by wp (resp. wp) the longest
element of the Weyl group with respect to (g,h) (resp. (m,b)).
We easily have:

Proposition 2.1. X x X has a unique Gg-orbit (say Op). Oc satisfies the Assumption 1.1
if and only if wowy = wywo.

We consider “€55” for G. Then the character &5 ® £,5 on Po x Pg is the “£55” for Ge.
For characters p and v of P, we denote the restriction of u® v to Pg realized as a real form
of Pc x Pg as above by the same letter.

For the complex case, we have :

Theorem 2.2. ([Vogan-Zuckerman 1984])
Ao, 2 “IndFE (€25 B 1) 2 “IndFE (1 B &55).

Therefore, Problem 1.2 reduced to the problem of the existence of intertwining operators.
For t € C, we define the following generalized Verma module:

M, (t6) = U(a) ®uqp) &ts-

The following result is well-known.

Proposition 2.3. For ty,t, € 2Z,

“IndBE (€xy5 B €1,5) 2 (Mp(—16) ® My(=128)) Ko fimite

So, our Problem 1.2 is seriouly related to the existence of homomorphisms between gen-
eralized Verma modules. In fact, the following result is known.
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Theorem 2.4. ([Matumoto 1993])
Let t be a non-negative even integer. Then we have

My(—(t+2)6) <> My (25)
if and only if wowy is a Duflo involution in the Weyl group for (g,bh).

If wowy is a Duflo involution, using Propostion 2.2 we have:

“UndFE(1®1)  —  “IndFE(1 8 &)

| e

“IndGS (€25 @1) —  Ind§T (€25 B £rs).
In fact, we have :

Theorem 2.5. Ap, — “Indgg(&; & &25) if and only if wowy is a Duflo involution in the
Weyl group for (g,h).

§ 3. Type A case

As we seen in the case of complex groups, the statement in Problem 1.2 is not correct in
general. However, for type A groups, we have affirmative answers.

3.1 GL(n,C)

We retain the notation in §2. We fix a Borel subalgebra b such that §h C b C p. We denote
by II the basis of the root system with respect to (g, ) corresponding to b. We denote by S
the subset of II corresponding to p. Assumption 1.1 holds if and only if S is compatible with
the symmetry of the Dynkin diagram. For a Weyl group of the type A, each involution is a
Duflo involution. Hence, we have:

Theorem 3.6. Under Assumption 1.1, we have Ao, — “IndIG,§(§25 R £25).

3.2 GL(n,R)

Speh proved any derived functor module of GL(n,R) is parabolically induced from the ex-
ternal tensor product of some so-called Speh representations and possibly a one-dimensional
representation. Using this fact, we can reduce Problem 1.2 to embedding Speh representa-
tions into degenerate principal series. More pricisely, we consider G = GL(2n,R) and let P be
a maximal parabolc subgroup whose Levi part is isomorphic to GL(n,R) x GL(n,R). Then,
X = G¢/Pc contains a unique open G-orbit (say ). In this setting, Assuption 1.1 holds.
The fine structure of degenerate principal series for P has already been studied precisely.
([Sahi 1995], [Zhang 1995], [Howe-Lee 1999],[Barbasch-Sahi-Speh 1988] ) From their results,

we have:

Ao < “Ind§(&25) ~ if nis odd,
Ao < “Ind§ (€25 @ w) if n is even.

We can deduce an affirtive answer to Problem 1.2 from this.
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3.3 GL(n,H)

In this case, we also have an affirmative answer to Problem 1.2. The argument is similar to
(and easier than) the case of GL(n,R).

3.4 U(m,n)

Let G = U(m, n) and let P be an arbitrary prarabolic subgroup of G. In this case, Assumption
1.1 automatically holds. We denote by V the set of open G-orbits on X = G¢/Pc. In fact,
we have:

Socle(*Ind§ (£35)) = @‘Ao.
OeVv
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