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1. Introduction

We studied some bifurcation problems in nonlinear vibrations ([K1-3]). In this
article, we will explain mainly how we use computer algebra in establishing our results.
In [K1-3] we did not explain it in detail. The computer algebra actually plays, however,
avery important role in our study. We show that we can obtain quickly the computation
results with good precision if we appropriately use the computer algebra. Though we
mainly mention abifurcation problem in forced vibration, our method works well for
the problem in self-excited vibration (see Section 5).

We design our article in the following way. In Section 2we summarize our problem
and result in nonlinear forced vibration. In Section 3we mention how to use the
computer algebra in our computer simulations. In Section 4, we explain our numerical
verification method with the computer algebra. In Section 5we consider the self-excited
vibration. This study is now in progress. We explain that we can prove the existence of
period doubling bifurcation points essentially in the same way as in the forced vibration
case. Therefore, for this case we can use the computer algebra extensively.

2. Our problem and result

Let $f(\lambda, u):=u_{tt}-c^{2}u_{xx}+\mu u_{t}+u^{3}-\lambda\cos t\sin x$ . Here, $c$ , $\mu>0$ are constants
and $\lambda>0$ is aparameter. We consider the bifurcation phenomena of periodic solutions
for the following dissipative semilinear wave equation:

(W) $\{$

$f(\lambda, u)=0$ in $(0, \pi)$ $\cross \mathrm{R}^{+}$ ,

$u(0, \mathrm{t})=u(\pi, \mathrm{t})=0$ for $t\geq 0$ .
This problem has some deep relations to the ordinary differential equation called the
Duffing equation:

(D) $g( \lambda, y):=\frac{d^{2}y}{dt^{2}}+\mu\frac{dy}{dt}+y^{3}-\lambda\cos t$ $=0$ .

By some numerical simulations (see Section 3) we can observe rich bifurcation
phenomena (such as the existence of turning points, symmetry-breaking bifurcation
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chaos) for our problem (W) and (D). The system (W) has some symmetry. Let $S$ be
the transformation defined by

(2.1) $S$ : $u(x, t)–u(x, t+\pi)$ .

Then we have $f(\lambda, Su)=Sf(\lambda, u)$ . The symmetric periodic solution (resp. the
asymmetric periodic solution) is asolution satisfying $Su=u$ (resp. $Su\neq u$).

In what follows, we will consider (W) with $c:=1.5$ , $\mu:=0.05$ . (The values of
these constants have no special meaning.) Let us move the value of Agradually larger
from 0. Then we can observe by numerical simulations that abranch of asymmetric
$2\pi$-periodic solutions bifurcates from abranch of symmetric $2\pi$-periodic solutions at a
certain value $\lambda=\Lambda_{0}\in(2.1)$ $2.9)$ . We can give amathematically rigorous proof to this
observation.

Proposition 2.1. Let $c=1.5$ , $\mu=0.05$ . Then, (W) has asymmetry-breaking
bifurcation point $(\Lambda_{0}, U_{0})$ where abranch of $2\pi$-symmetric solutions and abranch of $2\pi-$

asymmetric solutions intersect with each other. The bifurcation point $(\Lambda_{0}, U_{0})$ satisfies

$|\Lambda_{0}-\lambda_{0}|^{2}+||U_{0}-u_{0}$ ; $H^{1}(D)||^{2}\leq(0.000708)^{2}$ .

Here, $D:=(0, \pi)\cross(0,2\pi)$ , $\lambda_{0}:=2.8828613$ and $u_{0}:=1.2897865$ $\cos t$ $\sin x+\cdots+$

$0.14470778$ $\cross 10^{-7}\sin 5t\sin 9x$ has the form of afinite Fourier expansion consisting of
55 terms. We omit here the complete form of $u_{0}$ .

In what follows, we give the outline of the proof. We refer [K1-3] for the details. Let
$X$ be aclosed linear subspace in $H^{1}(D)$ defined by

$X:=$
$\{ n\in 2\mathrm{N}-, 1\sum_{m\in \mathrm{z}}a_{mn}\phi_{mn} ; n\in 2\mathrm{N}-1\sum_{m\in \mathrm{Z}}(m^{2}+n^{2}+1)|a_{mn}|^{2}<\infty\}$

.

Here, we set $\phi_{mn}:=e^{imt}$ $\sin$ $\mathrm{v}\mathrm{r}x$ . Let $S$ be atransformation defined by (2.1). We define
the symmetric subspace $X_{s}$ and the anti-symmetric subspace $X_{a}$ :

$X_{s}:=\{u\in X;Su=u\}=$
$\{m n\in 2\mathrm{N}-1\sum_{\in 2\mathrm{Z}-1}, a_{mn}\phi_{mn} ; m\in 2\mathrm{z}-1\sum_{n\in 2\mathrm{N}-1}(m^{2}+n^{2}+1)|a_{mn}|^{2}<\infty\}$

,

$X_{a}:=\{u\in X;Su=-u\}=$
$\{ n\in 2\mathrm{N}-,1\sum_{m\in 2\mathrm{Z}}a_{mn}\phi_{mn} ; n\in 2\mathrm{N}-1\sum_{m\in 2\mathrm{Z}}(m^{2}+n^{2}+1)|a_{mn}|^{2}<\infty\}$

.

Then, we have $X=X_{s}\oplus X_{a}$ . We also define

$\mathrm{Y}:=\overline{X}^{L^{2}(D)}=$

$\{ n\in 2\mathrm{N}-, 1\sum_{m\in \mathrm{z}}a_{mn}\phi_{mn} ; n\in 2\mathrm{N}-1\sum_{m\in \mathrm{z}}|a_{mn}|^{2}<\infty\}$
,

138



$\mathrm{Y}_{s}:=\overline{X_{s}}^{L^{2}(D)}$ and $\mathrm{Y}_{a}:=\overline{X_{a}}^{L^{2}(D)}$ . We define two Hilbert spaces $\mathcal{V}:=\mathrm{R}\cross X_{s}\cross X_{a}$ and
$\mathcal{W}:=\mathrm{R}\cross \mathrm{Y}_{s}\cross \mathrm{Y}_{a}$ . Let $D_{0}:=\{h\in X;h_{tt}-c^{2}h_{xx}\in L^{2}(D)\}$ . We define an extended
system:

$F$ $(\begin{array}{l}\lambda u\phi\end{array})$ $:=$ $(\begin{array}{ll}l\phi -1f(\lambda u)D_{u}f(\lambda u)\phi\end{array})=0$.

Here, $F$ : $\mathcal{V}arrow \mathcal{W}$ with $D(F):=\mathrm{R}\cross D_{0}$ and $l\in X_{a}^{*}$ is afunctional defined by

$l \phi:=\frac{2}{\pi^{2}}$ $(\phi, \sin 2t \sin x)$ for $\phi\in X_{a}$ ,

i.e. $l$ . is Fourier coefficient of $\sin 2t$ $\sin x$ . To obtain Proposition 2.1 it suffices to prove
the following (2.2) and (2.3) in view of our bifurcation theorem [K2, Theorem 3.1].

(2.2) $F(\lambda, u, \phi)=0$ has an isolated solution $(\Lambda_{0}, U_{0}, \Phi_{0})$ in aneighborhood of
$(\lambda_{0}, u_{0}, \phi_{0})$ ,

(2.3) $f_{\mathrm{u}}(\Lambda_{0}, U_{0})(D_{0}\cap X_{s})=\mathrm{Y}_{s}$ .

Here, $\phi_{0}\in X_{a}$ is afunction satisfying $l\phi_{0}=1$ and approximately $D_{u}f(\lambda_{0}, u_{0})\phi_{0}=0$ .
We can apply the convergence theorem of Newton’s method ([K2, Theorem 1.1]) to
obtain (2.2). For this purpose, we show the existence of $DF(\Lambda_{0}, U_{0}, \Phi_{0})^{-1}$ and estimate
its operator norm. To obtain (2.3) we show the existence of $f_{u}(\Lambda_{0}, U_{0})^{-1}$ .

3. Numerical simulations

3.1. Derivation of atruncated ordinary differential equation

We set $\phi_{k}(x)=\sin(2k-1)x(k\in \mathrm{N})$ and

$u_{n}(x, t)= \sum_{k=-n}^{n}a_{k}(t)\phi_{k}(x)$ .

We constructed atruncated ordinary differential system of (W) with respect to $a_{k}$

$(k=1, \cdots, n)$ . We use the Galerkin method. By using computer algebra, we can
obtain the Fourier sine expansion of $f(\lambda, u_{n})$ :

$f( \lambda, u_{n})=\sum_{k}A_{k}\phi_{k}(x)$
.

Here, $A_{k}$ is apolynomial of $a:(t)$ , $a_{j}’(t)$ and $a_{k}’(t)(1\leq i,j, k\leq n)$ . We regard the
following system as atruncated system of (W):

(3.1) $A_{k}=0$ $(k=-n, \cdots, n)$ .
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If we set $n=5$ , it is sufficient to observe our symmetry-breaking bifurcation phenomena
in Section 2by using our truncated system. Of course, we can use another method
(e.g. the finite difference method) to observe our bifurcation phenomena. From our
experience, however, our truncation method seems to be better in precision and in
computation time for the simulation of our problem than the other methods.

3.2. Construction of approximate solutions with high precision

By using atruncation method in Section 3.1 and the digital Fourier analysis, we
can obtain an approximate solution of (W) for each A. We explain how to find another
approximate solution with much higher precision. Here, we describe the method for (D)
for simplicity. (For (W) the algorithm is essentially same but is more complicated.) Let
$y_{n}^{0}= \sum_{k=-n}^{n}c_{k}^{0}e^{:kt}$ be an approximate solution of (D). We use the Galerkin method to
obtain another approximate solution $y_{n}$ with much better precision:

(3.2) $y_{n}= \sum_{k=-n}^{n}c_{k}e^{:kt}$ .

Let $g( \lambda, y_{n})=\sum_{k}H_{k}e^{:kt}$ be the Fourier expansion of $g(\lambda, y_{n})$ . Here, $H_{k}(k\in \mathrm{Z})$ are
polynomials of $c_{l}$ $(l=-n, \cdots, n)$ . We have

(3.3) $\frac{\partial g(\lambda,y_{n})}{\partial c_{l}}=\sum_{k}\frac{H_{k}}{\partial \mathrm{c}_{l}}e^{ikt}$ $(-n\leq l\leq n)$ .

We solve the system:

(3.4) $H_{k}=0$ $(k=-n, \cdots, n)$

by the Newton’s method. We set $\mathrm{c}:=$ $(c_{-n}, \cdots, c_{n})$ and $\mathrm{H}:=(H_{-n}, \cdots, H_{n})$ . Then,
we compute

(3.5) $\mathrm{c}_{1}=\mathrm{c}_{0}-\frac{D\mathrm{H}}{D\mathrm{c}}(\mathrm{c}_{0})^{-1}\mathrm{H}(\mathrm{c}_{0})$ .

Here, we simply write $\mathrm{H}(\mathrm{c}_{0}):=\mathrm{H}|_{\mathrm{c}=\mathrm{c}_{0}}$ and so on. We see that (3.2) with $\mathrm{c}=\mathrm{c}_{1}$

is in general our approximate solution with higher precision. We need not find $\mathrm{H}$

explicitly. (It takes too long time!) Actually, it suffices to find $\mathrm{H}(\mathrm{c}_{0})$ and $\frac{D\mathrm{H}}{D\mathrm{c}}(\mathrm{c}_{0})$ .
We easily expand $g(\lambda, y_{n}^{0})$ by computer algebra and find the Fourier coefficients $\mathrm{H}(\mathrm{c}_{0})$ .
In the same way, we easily find $\frac{D\mathrm{H}}{D\mathrm{c}}(\mathrm{c}_{0})$ by using (3.3). It is also possible to find
the approximate Fourier coefficients of $g(\lambda, y_{n}^{0})$ without using computer algebra (e.g.
see [UR] $)$ . However, it needs the complicated procedure and the answers contain the
approximate errors.
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Remark 3.1. We actually use akind of the least square method in finding an
approximate solution with high precision (see [K3]). It is, however, similar to the
Galerkin method case with respect to how to use the computer algebra. Therefore, we
described the latter case to which the readers are familiar. $\square$

4. Numerical verification

In this section we briefly write how to control our numerical computations and to
estimate the norms of functions.

4.1. Control of numerical computations

We approximate $x\in \mathrm{R}$ by finite decimal numbers in some fashions. First we
approximate anumber by an integer plus $n$-digit decimal number of the decimal form:

$m.a_{1}a_{2}\cdots a_{n}$ ,

Here, $m\in \mathrm{Z}$ and $0\leq a_{j}\leq 9$ is afigure $(1 \leq j\leq n)$ . Let $\mathrm{Z}_{+}:=\mathrm{N}\mathrm{U}\{0\}$ and $n\in \mathrm{Z}_{+}$ .
For $x\geq 0$ we define

ceil(x, $n$ ) $:= \min\{m\in \mathrm{Z}_{+} ; m\geq 10^{n}x\}\cross 10^{-n}$ ,

float$(x, n):= \max\{m\in \mathrm{Z}_{+} ; m\leq 10^{n}x\}\cross 10^{-n}$ ,

round$(x, n):=\{$
floor $(\mathrm{x}, n)$ if $x$ -floor(x, $n$) $<0.5\cross 10^{-n}$ ,

ceil $(\mathrm{x}, n)$ if $x$ -floor $(\mathrm{x}, n)$ $\geq 0.5\cross 10^{-n}$ .
Next, we approximate $x\geq 0$ by $n$-digit floating point form:

$0.a_{1}a_{2}\cdots a_{n}\cross 10^{m}$ with $1\leq a_{1}\leq 9$ ,

i.e. O.aia2 $\cdots a_{n}$ is the mantissa with length $n$ . We set $\epsilon_{0}:=10^{-25}$ . We define

float(x, $n$ ) $:=\{$

$\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}(10^{n-m}x, 0)\cross 10^{m-n}$ if $|x|\geq\epsilon 0$ ,

0if $|x|<\epsilon_{0}$ ,

where $m:= \max\{k\in \mathrm{Z};k>\log_{10}|x|\}$ . We expand the domain of $\mathrm{c}\mathrm{e}\mathrm{i}\mathrm{l}(\cdot, n)$ , $\mathrm{f}\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{r}(\cdot, n)$ ,
$\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}(\cdot, n)$ and $\mathrm{f}\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{t}(\cdot, n)$ so that they are odd functions. We can realize these functions
on the computer without difficulty.

In our proof of Proposition 2.1 we construct big matrices to show the existence of
inverses for linearized operators. For this purpose, we need to show explicitly the way
of unique construction of an approximate inverse matrix for agiven big square matrix.
In [K1] we use classical Gauss-Jordan method with partial pivot selection. We realize
the complete control of numerical computations by using the function float $(\cdot$ , $\cdot$ $)$ .
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4.2. Estimate of norms

Let $h(t, x)$ be a $2\pi$-periodic function with respect to $t$-variable and $x$-variable which
has the form of finite Fourier series:

$h(t, x)=m \in \mathrm{z}\sum_{n\in I}C_{mn}e^{:mt+:}nx$
with $I=2\mathrm{N}-1$ or $I=2\mathrm{N}$ .

Then, by Parseval equality, we have

$||h||_{L^{2}(D)}= \sqrt{2}\pi(\sum_{m\in \mathrm{z},n\in I}, |C_{mn}|^{2})^{1/2}$

.

We define

$|h|_{2,n}:= \sqrt{2}\pi[\sum_{m\in \mathrm{z},n\in I}, \mathrm{c}\mathrm{e}\mathrm{i}1(|C_{mn}|^{2}, n)]^{1/2}$

.

Then, we have $||h||_{L^{2}(D)}\leq|h|_{2,n}$ . By using the computer algebra, we can easily find
the explicit value of $|h|_{2,n}$ . We also define and use $L^{\infty}$-version of $|\cdot|_{2,n}$ .

5. Analysis for self-excited vibration

We briefly mention how we can prove the existence of bifurcation points in self-
excited vibrations. Though our method also works well for partial differential systems,
we consider here the following self-excited ordinary differential system for the simplicity
of description:

(5.1) $\dot{\mathrm{y}}=\mathrm{f}(\lambda, \mathrm{y})$ with $\mathrm{y}$ , $\mathrm{f}(\lambda, \mathrm{y})\in \mathrm{R}^{n}$ .

In this case, the period of asolution varies as the value of Achanges. Since we have
the difficulty in treating (5.1) directly, we study the following transformed extended
system: $F(\lambda, \omega, \mathrm{z})=0$ . We define $F$ : $\mathrm{R}\cross Xarrow \mathrm{Y}$ by

(5.2) $F$ : $(\lambda, (\begin{array}{l}\omega\mathrm{z}\end{array}) )\mapsto(\begin{array}{l}l\mathrm{z}\dot{\mathrm{z}}-\omega \mathrm{f}(\lambda,\mathrm{z})\end{array})$ .

Here, we set $X:=\mathrm{R}\cross \mathrm{H}_{\mathrm{p}\mathrm{e}\mathrm{r}}^{1}(0,2\pi)$ and $\mathrm{Y}:=\mathrm{R}\cross \mathrm{L}^{2}(0,2\pi)$ , and assume that
1: $\mathrm{H}_{\mathrm{p}\mathrm{e}\mathrm{r}}^{1}(0,2\pi)arrow \mathrm{R}$ is an appropriate functional. We need 1to normalize $\mathrm{z}$ .
Indeed, if $\mathrm{z}(t)$ is asolution of $\dot{\mathrm{z}}-\omega \mathrm{f}(\lambda, \mathrm{z})=0$ then $\mathrm{z}(t+\tau)$ also satisfies the
same equation for afixed $\tau\in \mathrm{R}$ . We verify that $(\lambda, \omega, \mathrm{z})$ is asolution of $F=0$ if
and only if $(\lambda, \mathrm{y})$ with $\mathrm{y}(t)=\mathrm{z}(t/\omega)$ is aperiodic solution of (5.1) with the period
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$2\pi\omega$ . As an important case, we will consider the period doubling bifurcation. We set
1: $\mathrm{z}=$ $(z_{1}, \cdots, z_{n})-t(z_{1}, \cos 2t)_{L^{2}(0,2\pi)}$ . Then, $F$ has the following symmetry:

(5.1) $F(\lambda, S(\begin{array}{l}\omega\mathrm{z}\end{array}))=SF(\lambda, (\begin{array}{l}\omega\mathrm{z}\end{array}) )$ with $S(_{\mathrm{z}(t)}^{\omega}):=(_{\mathrm{z}(t+\pi)}^{\omega})$ .

Aperiod doubling bifurcation point of (5.1) corresponds to asymmetry-breaking
bifurcation point of $F=0$ . We can find the latter in the same way as in Section
2. As an application to aconcrete example, our method guarantees the existence of
aperiod doubling bifurcation point in self-excited vibration described by atruncated
Navier-Stokes system in [BF]. We will write the details in anear future work ([K4]).

References

[BF] C. Boldrighini and V. Franceschini, Afive-dimensional truncation of the plane
incompressible Navier-Stokes equations, Commun. Math. Phys. 64 (1979) 159-170.

[K1] T. Kawanago, Computer assisted proof to symmetry-breaking bifurcation
phenomena in nonlinear vibration, Preprint.

[K2] T. Kawanago, Generalized bifurcation theorems and related theorems for
applications to semilinear wave equations, Preprint.

[K3] T. Kawanago, Analysis for bifurcation phenomena of nonlinear vibrations,
in Numerical solution of Partial differential equations and related topics II, RIMS
Kokyuroku 1198, p13-20, April, 2001.

[K4] T. Kawanago, in preparation.

[UR] M. Urabe and A. Reiter, Numerical computation of nonlinear forced oscillations
by Galerkin’s procedure, J. Math. Anal. Appl. 14 (1966) 107-140

143


