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Motivation and Examples

Vector fields with an isolated singular point

Let us consider the following vector field with an isolated singular point
at the origin

(3) $\mathcal{X}(x)=\sum_{j=1}^{n}a_{j}(x)\frac{\partial}{\partial x_{j}}$ ,

where $x=$ $(x_{1}, \ldots, x_{n})\in \mathbb{R}^{n}$ or $\mathbb{C}^{n}$ , and $a_{j}(x)$ is smooth in $x$ . Namely
we assume

(4) $\mathcal{X}(0)=0$ ,

and $\mathcal{X}$ does not vanish in some neighborhood of $x=0$ except for the
ongm.

Linearization and Homology Equation

We want to linearize $\mathcal{X}(x)$ by achange of variables

(5) $x=y+v(y)$ , $v=O(|y|^{2})$ .

We write $\mathcal{X}(x)$ in the form

(6) $\mathcal{X}(x)=x\Lambda\frac{\partial}{\partial x}+R(x)\frac{\partial}{\partial x}\equiv X(x)\frac{\partial}{\partial x}$,
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$\frac{\partial}{\partial x}=(\frac{\partial}{\partial x_{1}}$ , $\ldots$ , $\frac{\partial}{\partial x_{n}}$),
(7) $X(x)=x\Lambda+R(x)$ ,

where

(8) $R(x)=(R_{1}(x)$ , $\ldots$ , $\mathrm{R}(\mathrm{x}),$ , $\mathrm{R}(\mathrm{x})=O(|x|^{2})$ ,

and Ais an $n\cross n$ constant matrix.
Noting that

$X(x) \frac{\partial}{\partial x}=X(y+v(y))\frac{\partial y}{\partial x}\frac{\partial}{\partial y}$

$=X(y+v(y))( \frac{\partial x}{\partial y})^{-1}\frac{\partial}{\partial y}$,

the linearization condition can be written in the folowing form

$X(y+v)(1+\partial_{y}v)^{-1}=y\Lambda$.

Therefore

(9) $(y+v)\Lambda+R(y+v)=y\Lambda(1+\partial_{y}v)=y\Lambda+y\Lambda\partial_{y}v$ .

Hence $v$ satisfies the s0-called homology equation

$(*)$ $\mathcal{L}v\equiv yAdyv-v\Lambda=R(y+v(y))$ , $v=(v_{1}, \ldots,v_{n})$ .

Summing up we obtain

The necessary and sufficient condition for that $(*)$ has asolution $v$ is that
$\mathcal{X}$ is linearized by the change of substitution $x=y+v(y)$ .
Expression of ahomology equation

We assume that Ais in adiagonal matrix, namely

(10) $\Lambda=(\begin{array}{lll}\lambda_{1} 0 \ddots 0 \lambda_{n}\end{array})$ .

Noting that

$y \Lambda\partial_{y}=\sum_{k=1}^{n}\lambda_{k}y_{k^{\frac{\partial}{\partial y_{k}}}}$
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we obtain
$\mathcal{L}v$

(11) $=(\begin{array}{lll}\Sigma\lambda_{k}y_{k}\frac{\partial}{\partial y_{k}}-\lambda_{1} 0 \ddots 0 \Sigma\lambda_{k}y_{k}\frac{\partial}{\partial y_{k}}-\lambda_{n}\end{array})(\begin{array}{l}v_{1}\vdots v_{n}\end{array})$ .

In the following, for the sake of simplicity we always assume that ah0-
mology equation has the above expression.

Non-resonant condition

The indicial polynomial of $\mathcal{L}$ is given by

(12) $\sum_{k=1}^{n}\lambda_{k}\zeta_{k}-\lambda_{j}$ , $(j=1, \ldots, n)$ .

$\mathcal{L}$ is said to be non-resonant if

(13) $\sum_{k=1}^{n}\lambda_{k}\alpha_{k}-\lambda_{j}\neq 0$

for Vo $\in$ $(\alpha_{1}, \ldots, \alpha_{n})\in \mathrm{Z}_{+}^{n}$ , $|\alpha|\geq 2$ , and $j=1$ , $\ldots$ , $n$ .
If (13) does not hold we say that $\mathcal{L}$ is resonant. The set of $y^{\alpha}$ with $\alpha$

not satisfying (13) for some $j$ is called aresonance. We have
Under non-resonant condition there exists aformal power series solu-

tion.
Indeed, $\mathcal{L}v=f$ is written in

$\mathcal{L}(\sum_{\alpha}v_{\alpha}y^{\alpha})=\sum_{\alpha}(\sum_{k=1}^{n}\lambda_{k}\alpha_{k}-\Lambda)v_{\alpha}y^{\alpha}=\sum_{\alpha}f_{\alpha}y^{\alpha}$.

Because $( \sum_{k=1}^{n}\lambda_{k}\alpha_{k}-\Lambda)$ is invertible $\mathcal{L}^{-1}$ exists. Because7?(x) $=O(|x|^{2})$

we can determine aformal power series solution by amethod of indeter-
minate coefficients.

Two theorems for the solvability of ahomology equation
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Poincare introduced afamous Poincare condition

${\rm Re}\lambda_{j}>0$, $j=1$ , $\ldots$ , $n$

and showed the solvability of $(*)$ in aclass of analytic functions.

Solvability of $(*)$ in areal domain

Theorem (Sternberg) Assume the hyperbolic condition

(14) ${\rm Re}\lambda_{k}\neq 0$ , $k=1$ , $\ldots,n$ .

Moreover, suppose the non-resonant condition. Then $(*)$ has asmooth
solution.

If resonance occurs we have

Theorem (Grobman- Hartman) Assume the hyperbolicity. Then
$(*)$ has acontinuous solution.

Remark Acontinuous solution of $(*)$ is defined as aweak solution.
The definition of aweak solution is standard. There are extensions of

this result to the $C^{k}(k\geq 0)$ case by Blitskiy et. al for acertain class of
vector fields with resonances.

Object of Study

We want to solve $(*)$ in the case of resonances in aclass of functions with
a“ $\mathrm{l}\mathrm{o}\mathrm{g}$’type singularity. We also want to solve $(*)$ in aclass of functions
holomorphic in the domain which is aproduct of sectors with vertex at

the origin.

Statement of the results

Singular solutions

Theorem 1. Assume the Poincare condition and

$\forall i,j$ , $k$ , $\lambda_{i}+\lambda_{j}\neq\lambda_{k}$ .

Then F4. $(*)$ has asolution $v$ of the form

$v(y)= \sum_{|\alpha|\geq 2,\alpha\geq\beta}v_{\alpha\beta}y^{\alpha}(\log y)^{\beta}$
,
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where $( \log y)^{\beta}=\prod_{j=1}^{n}(\log y_{j})^{\beta_{j}}$ . $v(y)$ converges in

$\{y\in C^{n};|y|<\exists\epsilon, |y_{j}\log y_{j}|<\epsilon(j=1, \ldots, n)\}$ .

Remark. If there is no resonance the above solution is aclassical solution
constructed by Poincare’.

If we restrict the solution $v$ to the real domain we obtain afinitely
smooth solution of $(*)$ . Hence afinite smoothness occurs because
of the $\log$ type singularity caused by the resonance.

Example Consider the case $n=2$. Let $m\geq 2$ be an integer. Let us
consider

$\mathcal{L}_{1}=x_{1}\partial_{1}+mx_{2}\partial_{2}-1$ , $\mathcal{L}_{2}=x_{1}\partial_{1}+mx_{2}\partial_{2}-m$ .

The only resonance is $(\alpha_{1}, \alpha_{2})=(m, 0)$ . The solution $v$ has singularity
of $\log x_{1}$ type.

Indeed, the resonance $\alpha=(\mathrm{a}\mathrm{i}, \alpha_{2})\in \mathbb{Z}_{+}^{2}$ satisfies $\alpha_{1}+\alpha_{2}\geq 2$ and

$\alpha_{1}+m\alpha_{2}-1=0$, or $\alpha_{1}+m\alpha_{2}=m$ .

Since $\alpha_{1}+m\alpha_{2}-1\neq 0$ by assumption we obtain $\alpha_{1}+m\alpha_{2}=m$ and
$\alpha_{1}+\alpha_{2}\geq 2$ . It folows that $(\alpha_{1}, \alpha_{2})=(m, 0)$ .

Sketch of the proof of Theorem 1. For the sake of simplicity we $\mathrm{w}\mathrm{i}\mathrm{U}$

prove the above example. We will construct aformal solution of $(*)$ in
the following form

$u_{j}(x)= \sum_{\alpha\in \mathrm{Z}_{+}^{2},|\alpha|\geq 2,k}u_{\alpha,k}^{j}x^{\alpha}(\log x_{1})^{k}$

, $j=1,2$ .

The equation $(*)$ can be writtten in the following form

$(*)$ $\mathcal{L}_{j}u_{j}=R_{j}(x_{1}+u_{1},x_{2}+u_{2})$ , $j=1,2$ .

We set $u_{\alpha,k}=(u_{\alpha,k}^{1}, u_{\alpha,k}^{2})$ . We determine $u_{\alpha,k}k=0,1,2$ , $\ldots$ inductively.
We determine $u_{\alpha,0}$ . By comparing the coefficients we can determine $u_{\alpha,0}$

for $|\alpha|\leq m$ , $\alpha\neq(m, 0)$ . On the other hand we note

$\mathcal{L}_{2}(x_{1}^{m})=0$ , $\mathcal{L}_{2}(x_{1}^{m}\log x_{1})=x_{1}^{m}$.
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Hence we set $u_{(m,0),0}^{2}=0$ , $u_{(m,0),0}=(u_{(m,0),0}^{1},0)$ . We no$\mathrm{t}\mathrm{e}$ that we can
determine $u_{(m,0),0}^{1}$ and $u_{(m,0),1}^{2}$ by comparing the coefficients of $x_{1}^{m}$ in $(*)$

since $\mathcal{L}_{1}$ has the nonresonance property. It is clear that we can determine
$u_{\alpha,0}$ for $|\alpha|>m$ from $(*)$ because there is no resonance for $|\alpha|>m$ .

We next determine $u_{\alpha,1}$ . We have already determined $u_{(m,0),1}=(0,u_{(m,0),1}^{2})$ .
By the nonresonance property we can determine $u_{\alpha,1}$ for $|\alpha|>m$ . Induc-
tively, $u_{\alpha,2}(|\alpha|=2m)$ can be determined by comparing the coefficients
of $x_{1}^{2m}(\log x_{1})^{2}$ . The terms $u_{\alpha,2}(|\alpha|>2m)$ can be determined induc-
tively by the nonresonance property. Inductively, we can determine $u_{\alpha,k}$

$(k=0,1,2, \ldots)$ . Hence we can determine aformal power series solution.
The convergence can be proved by the method of majorant series. This
ends the proof.

Solvability in the sectorial domain

Let $S_{0}$ be asector in the complex plane, $S_{0}:=\{z;|\arg z|<\theta\}$ , where
$\theta>0$ is agiven small number and the branch of $\arg z$ is taken so that
the argument is zero on the real axis. We define asectorial domain $S$ in
$\mathbb{C}^{n}$ as the product of $n$ copies of So, $S=S_{0}\cross\cdots\cross S_{0}$ . In the following
we consider the solvabilty of the equation $(*)$ in the sectorial domain $S$ .
The typical example of the nonlinear term $R(x)$ is the folowing:

$R(x)=A \prod_{j=1}^{n}\frac{x_{j}^{\alpha_{\mathrm{j}}}}{(x_{j}-c_{j})^{\beta_{j}}}$ ,

where $A$ , $c_{j}\in \mathbb{C}\backslash \overline{S}$ , $0<\alpha_{j}<\beta_{j}$ $(j=1, \ldots, n)$ are constants. We set
$\lambda:=$ $(\lambda_{1}, \ldots, \lambda_{n})$ . Then we have

Theorem 2. Suppose that

$\lambda_{j}\in \mathrm{R}$ $\backslash 0$ $(j=1, \ldots, n)$ .

Let $\Gamma\subset \mathrm{R}^{n}$ be an open set such that $0\in\Gamma$ and

$\Gamma\cap\{\eta;\langle\lambda, \eta\rangle=\lambda_{j}\}=\emptyset$,

for every $=1$ , $\ldots$ , $n$ , where $\langle\lambda, \eta\rangle=\sum_{k=1}^{n}\lambda_{k}\eta_{k}$. Suppose that, for every
$\eta\in\Gamma$ ,

$R(x)=O(x^{-\eta})$ , (when $xarrow \mathrm{O}$ or $xarrow\infty,x\in S$).
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Then there exists $\epsilon$ $>0$ such that if $\sup_{x\in S}|R(x)|<\epsilon$ the equation $(*)$

has asolution u holomorphic in S. Moreover, for every $\eta\in\Gamma$ , u behaves
like $O(x^{-\eta})$ when x $arrow \mathrm{O}$ or x $arrow\infty$ x $\in S$ .

Example. For $R(x)$ in the above example the conditions in the theorem
are fulfilled if $\Gamma$ is asufficiently small neighborhood of the origin and $A$

is sufficiently small.
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