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1 Introduction

This article is just to explain the main results of the master thesis by
Hiroyuki MANABE ([1]).

The study of Whittaker models of algebraic groups over local fields has
already some history. The Jacquet integral is named after the investigation
of H.Jaquet. Multiplicity free theorem by J.Shalika for quasi-split groups,
was later enhanced for the case of real fields by N.Wallach. For redutive
groups over the real field, this theme was investigated by M.Hashizume,

B.Kostant, D. Vogan, H.Matsumoto, and the joint work of R.Goodmann

and N.Wallach.

More specifically GL(n,R), explicit expressions for class 1 Whittaker
functions are obtained, firstly for n = 3 by D.Bump [2]. The main con-
tributor for the case of general n seems to be E.Stade. Other related results
will be find in the references of the papers of him ([7],[8]).

The purpose of the master thesis [1] is to discuss the Whittaker functions
belonging to the non-spherical principal series representations of SL(3, R).
The minimal K-type of such representations is 3-dimensional. So we have
to consider vector-valued functions. The main reults are, firstly, to ob-
tain the holonomic system of the A-radial part of such Whittaker functions
with minimal K-type explicitly, and secondly to have 6 formal solutions,
which are consider as examples of conflunent hypergeometric series of two

variables.

2 Whittaker model

Given an irreducible admissible representation (7, H) of G = SL(3,R),
we consider its model or realization in the space of Whittaker functions.
This means, for a non-degenerate unitary character 4 of a maximal unipo-
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. 1 =
tent subgroup N ={{ 0 1
0 0

*

x | € G} of G defined by
1
1 x5 x3

% 1 3 |) = exp{27V~1(c1212 + c2%23)}
1

with ¢;, ¢z € R being non-zero, we consider a smooth induction C°—Ind$ ()

to G, and the space of intertwining operators of smooth G-modules
Homg (H®, C®—Ind% (1))

Or more algebraically speaking, we might consider the corresponding space
in the context of (g, K)-modules (with g = Lie(G), K = SO(3)):

Homg ) (H, C>®°-Ind$ (1/)))

3 Principal series representations

Let P be a minimal parabolic subgroup of G given by the upper triangular
matrices in G, and P = M AN be a Langlands decomposition of P with
M = K N { diagonals in G}, A = expa, with

a = {diag(ai, a2,a3)}a; € R,a1 + a2 + a3z =0}.

In order to define a principal series representation with respect to the
minimal parabolic subgroup P of G, we firstly fix a character o of the finite
abelian group M of type (2,2) and a linear form v € a*®gr C = Homg(a, C).
For such data, we can define a representation o @ e¥ of M A, and extend
this to P by the identification P/N = M A. Then we set

Tow = L2-IndS(c @ e"7° @ 1N).

Here p is the half-sum of positive roots of (g,a) for P.

Fact 1 (i) If ¢ is the trivial character of M, the representation @, is
spherical or class 1, i.e. it has a (unique) K-invariant vector in the repre-
sentation space H, ,,.

(ii) If o is not trivial, then the minimal K-type of the restriction 7,,|K to
K is a 3-dimensional representation of K = SO(3), which is isomorphic to
the unique standard one (73, V2). The multiplicity of this minimal K-type
is one, i.e.

- dimc Homk (12, Hop) = 1,

93



94

1.e. there is a unique non-zero K-homomorphism
t:(m,V2) — (WO_V‘K,HG,;,)

up to constant multiple.

4 Standard basis of (7, V3)

In order to specify a basis {wo,v1,v2} in V2, which we call standard, firstly
we define generators of the Lie algbera ¢ = Lie(K) by

-1 0 0 0 -1 00 O

0
~Ki=1}1 0 0}|,K:2=10 0 0 },Kz3=10 0 -1} €t
0 0 06/ 1 0 0 01 0

Fact 1 There is a basis {vo,'vi,vg} of V4 such that
Kiyvj = (1-4)v-1v; (j=0,1,2),
1 1
Kav; = —5dvi-1+ (1- 5.7)'01'+1,
1. 1.
Kg’l)j'= —5]\/ —1‘!)_,'__1 — (1 - 5_’))\/ ——1’Uj+1.
Or in other words, '
X+?)j = (2 - j)’l)j..;.l,X_?}j = —j’l)j_l.
For non-trivail o, there exists a unique non-zero K-homomorphism
LiTy = Mow

up to constant multiple.

5 Standard Whittaker functions and the holo-
nomic system for their A-radial parts
Given a Whittaker functional |
e (Mo, Heg,) = C®—IndR(3),

we can consider the images ¢i(g) = W(L('v,)) of eé,ch v;. For each 1 it
satisfies ;(29) = ¥(x)p(g) for any € N and g € G. Since both + and W
are K-homomorphisms, we have an intertwinig property '

“(wolgk), p1(gk), p2(gk)) = T3 (k) (o(9), ¥1(9), p2(g))



for ke K and g € G.
Therefore to specifty the functions ¢;(g) on G it sufficies to investigate
their A-radial parts F; = @;|A.

Now we can state our 1-st main result.

Theorem A Let F(a) = {(Fy(a), Fi(a), F2(a)) be the vector of the A-
radial part of the standard Whittaker functions with minimal K-type of
the principal series representation 7o, with non-trivial . Then it satisfies
the following partial differential equations:

) _
—(O+3)+3 6v—1Im(a) 3(01 —B)—6v~1m(a) -3
—3v=1m(e) 201 +02)— 6 —3v/~1mp(a)
3(8, — 82) + 6v/—1m(a) —3  6+/~1m(a) —(01 +83) +3
Fo(a)
= )\i Fl(a)
Fy(a)
Fo(a)
)  {8% + 82 — 3,8y — 30, + 3(m(a)® + m(a))} | Fi(a)
F2 (a)
Fo(a) Fl(a) F()(a.)
+3v/=Im(a) | 0 |-3v-Im(a)| j(Fole) + Fa(a)) | = | Fi(a)
—Fs(a) Fi(a) Fy(a)

Here we set 0; = ajb%—(j =1,2) and
J

m(e) = 2rv—1lciara; ', me(a) = 2nv/—1lcoarad.

Moreover the eigenvalues \; and u depending on the representation s,

are given by

A =—2(21) —12) (0 =01)
Ay = 2(1n — 212) (0=09) andp= vf + u§ — .
A3 =2(v; +1») (6 =03)
Here the characters o; of M is identified as follows.
The group M consisting of 4 elements is a finite abelian group of (2,2)
type, and its elements except for the unity is given by the matrices

1 0 0 -1 0 0 -1 0 0
m=|0 -1 0},m=}0 1 0 ]|,m= 0 -1 0
0 0 -1 0 0 —1 0o 0 1

Fo(a)
Fl (a)
Fs(a)
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Since M is commutative, all the irreducible unitary representations of it
is 1-dimensional. For any o € M , we have 02 = 1. Therefore the set M
consisting of 4 characters {o; : j = 0,1,2,3}, where each o}, except for
the tirivial character oy, is specified by the following table of values at the
elements m;.

01 1 -1 -1
ag2 -1 1 -1
o3| -1} -1 1

Remark We can write the differential equations (i) and (ii) of Theorem A
as
(i): DF=NF (ii): DoF = pF,
with D; (i = 1,2) 3 by 3 matrix-valued differential operators. Then we have
Dy-Dy—Dy-Dy =0.

This is natural, because our system of equations is holonomic, hence invo-
Iutive.We can use this computation for error check of calculation.

6 Solutions
6.1 Variable change

The holonomic system obtained in Theorem A has regular singularities
at the point (a;,a2) = (0,0). The rank of this system is 6, i.e. the order of
the Weyl group of SL(3,R), for generic values of parameter ». We want to
determine the characteristic indices and the convergent formal power series
solutions at (a1,a2) = 0.

Before to do so, it is more convenient to rewrite the system in new vari-
ables (1,y2) correponding to positive roots, given by

Yy = alag') 2= ala’;l-
The reason to name the variales as y, is to make it easier to compare with
the results and formulae, say, of Bump ([2].

Also after some computation, by inspection, we find that it is convenient
to introduce scalar functions ®;(y1,y2) (¢ =0,1,2) by

0 1 1
Fly)=®@ 1]+ |0] +3:20)| 0
0 1 -1
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Here to abbridge the notation, we write the set of variales (y1,y2) as y

collectively.

6.2 Characteristic indices

Now we can determine the 6 pairs (p;, p2) of characteristic indices, and
the corresponding initial values conditions for F' or ®;.

Lemma B.1 When o =o0; for i = 1, 2 or 3, we have the following:
(i) If (pl,pa) = (éAz +1, —%Ak +1) (k # 1),

o

F(0,0)= | 1] ie y; "y 7P0(0,0) =1, and y; "'y, #*$;(0) =0 for other j.

o

(i) If (rhoy, p2) = (A +1, 3N +1) (K #£i,l #i,k #1),

1 .
F(0,0)= | 0] ie w *y, 2®1(0,0) =1, and y; "'y, *2®;(0) = 0 for other j.
1

(lll) If (P11p2) = (%Ak + 11 "%‘AQ + 1) (k 7é 'L),

1
F(0,0)=1] 0 | ie y1 Py, 7P2(0,0) =1, and y; 'y; 7 ®;(0) = 0 for other j.
-1

6.3 The holonomic system for ®;(y)

Proposition A.2 The holonomic system in Theorem A is equivalent to
the following system for ®(y1,%2)(k =0,1,2,).

(i)
(i-i) {(3/153‘1‘ -1)- %Ai} Lo(y1,92) + 2751 21(y1,92) =0
6 { g~ D= G ~ 1+ g} 91 )

—2my, @0 (31, 30) — 27282 (3, 92) = 0
v vee a 1
(i-iii) {(yz— -1)+ —Ae} Do(y1,92) — 27y2®1(y1,72) =0
Oy2 6 |
(ii)
e . 1
(ii-i) (A - gﬂ)q’o(yl,yﬂ + 27y, B1(1,92) = 0

. 1
(ii-ii) (A - §u)<1>1 (y1,%2) + 27y, Bo(¥1, ¥2) — 27y2P2(21,%2) =0
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Here we set

2 0° 2 07 o 20,2 4 2
A= yla 2 +yi a2 Y 5.0m — 47 (yy + 43)-

7 Power series solutions

Let

(e ] ©0
1 o
Px(y1, yz) ¥y D T D ko ()™ ()™
n1=0ng9=0
be the power series solution at (y;,y;) = (0,0) for each k. Then Propostion
(A.2) is equivalent to some recurrence relations among the coefficients.
Before to describe the solutions of these recurrence relations, we have to

introduce certain multinomial coefficients.

Definition Given 3 complex numbers o, 3,7 with a+ 8+ = 0, and let
(m1,m2) be a pair of non-negative integers. _
(i) If neither of -;(a —-B+1), % (v—8+2), %(a— ~+1) is non-postive integer,
we put
Ao, 3,7, M1, m2)
{3(e = B +1)}mtma)
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~ mimat{3(a— y +1)}m {5 (’7 B+2)}m2{3(a— B+ Hm{F (e~ B+ 1)}ma)]
(ii) If neither of = (a B+ 2), ——('y B+1), ;(a v + 1) is non-positive
integer, we put
B(a, B,y;m1, ms)
{(a— A+ 2))tmtma
~ mimy!{3(a - 7 + 1) {3 (’r B+ 1)}(""){ (@—B+2)}m{3(a - B+2)}m2)’
(1ii) If neither of — (a B+1), —(’y B+1),= (a v + 2) is non-positive
integer, we put
C(a, B,7;m1,m2)
{3(a— B+ 1)}mtma)
~ mim {3 (e — v+ ) {3 (v - B+ DI {L(a— B+ D} {L(a— B+ )}

We might drop the last parameter in the symbol A B, C to save space.

There are obvious relations:

A(“ﬂ} —Q, 7, M2,m1) = C(a’ ,3;7;""1»’"7'2), B(_ﬂ) —Q@, =7, my, ml) = B(O!,ﬂ, Y mhm?)'

Theorem B.2 Under the same notations as Lemma (B.1),; we have the
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(i) If (p1,p2) = (A2 +1,—g A +1) (k5 ), then the solution is given by

a set of power series:

A 1y, 4+1 ny n n n
Po(y) _y:—G T > A( Az, = )\k, 21 ;)(Mh) H(my2)"?,
n;,n2>0
3 +§A2+1 3Ak+l n m + 1 ny 2
1(y) = -1 >, A =, = /\k, 5 2. (my1)™ (mys)
ny,nz>0
+ixo+1 31 1 1 n, N9 n +1
)=y T Y A(g)\z, M 513 - ST S VTS S (my1)™ (wy2)™.
nl)“ZZO

e+l —Ex+1 1 1 n n
2.() =ty T Y B~ S )™ (r)™,

1,12 20

And there are similar formulae for ®g, ®3.
(i) IF (b1, p0) = (32 + L, =$da +1)  (k #1),
3)\k+l —3x+1 1 1 ny n2 n n;
Pa(y) = L Z C(E/\k:—gf\m 2°79 - )(my)™ (my2)™,

ny an220

And similar formulae for ®g, ®;.

Note here if %1 in the coefficient A(x,*; 3}, *) is not an integer, the coef-
ficient is regarded as zero. We consider similarly for other entires 22, —1-2'—1
and other coefficients B, C.

Remark 1 The similarity of the form of our formal power series solution
ta that of the class 1 case is clear (¢f Bump [2]). Therefore by a similar
method as that of Stade [7], one can find integral expressions for the above

power series solutions, using I-Bessel functions.

8 Further problems and comments

The solution of the following problem, which is also fundamental, seem
to be in our reach (see [2], [3], [7])-

Problem 1 Write the Jacquet integral as a linear combination of the above
6 solutions.

A hit more delicate problem, but an important one, for it might have
application to Number Theory, is the following.
Problem 2 Invetigate what happens when the characteristic indices become



9 Notation and symbols

Unfortunately some of notational definitions in the original paper [1] is
not adequate. Firstly the author discusses the representation L?—Ind(oc ®
€’ ® 1), not L2—Ind(c ® €7 ® 1) as ours. This shift the parameters v
by *1.

The second point is the numbering of the representations of M is not
adequate. His o, is our o3, and his o3 is our 0;. Accordingly J; is also
changed in the same way. The efffect of the shift of ¥ does not appear in
the symbol J; itself. The readers should be careful for these differences of
notation.
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