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On Characterization of Nash Equilibrium Strategy
of Bi-matrix Games with Fuzzy Payoffs
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Abstract. In this paper, we consider fuzzy bi-matrix games, namely, two-person games
with fuzzy payoff. Based on fuzzy max order, for such games, we define three kinds of
concepts of Nash equilibrium strategies and investigate their properties.
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1 Introduction

Since seminal works by Neumann-Morgenstern([13]) and Nash([11] and [12}), Game theory
has played an important role in the fields of decision making theory such as economics,
management, and operations research, etc. When we apply the game theory to model some
practical problems which we encounter in real situations, we have to know the values of
payoffs exactly. However, it is difficult to know the exact values of payoffs and we could
only know the values of payoffs approximately, or with some imprecise degree. In such
situations, it is useful to model the problems as games with fuzzy payoffs. In this case,
since the expected payoffs of the game should be fuzzy-valued, there are no concepts of
equilibrium strategies to be accepted widely. So, it is an important task to define the
concepts of equilibrium strategies and investigate their properties. Compos([3]) has pro-
posed a methods to solve fuzzy matrix games based on linear programming, but has not
defined explicit concepts of equilibrium strategies. For matrix games with fuzzy payoffs,
Maeda([9]) has defined minimax equilibrium strategies based on fuzzy max order and inves-
tigated their properties. For Bi-matrix games with fuzzy payoffs, Maeda([10}) has defined
Nash equilibrium strategies based on possibility and necessity measures and investigated
its properties. While, Aubin([2]) has considered fuzzy cooperative games.

In this paper, we consider fuzzy bi-matrix games. For such a game, we shall define
three kinds of concepts of Nash equilibrium strategies and investigate their properties.

For that purpose, this paper is organized as follows. In Section 2, we shall give some
basic definitions and notations on fuzzy numbers. In Section 3, we shall define fuzzy bi-
matrix game with fuzzy payoffs and three kinds of concepts of Nash equilibrium strategies
and investigate their properties. In Section 4, we investigate the properties of values of
fuzzy matrix games by means of possibility and necessity measures.




2 Preliminary

In this section, we shall give some definitions and notations on fuzzy numbers, which are
used throughout the paper.

Let R™ be n-dimensional Euclidean space, and z = (z1,22,--,Zn)" € R™ be any
vector, where z; € R, i = 1,2,---,n and T denotes the transpose of the vector. For any
two vectors z,y € R*, we writez 2 yiff x; 2 y;, 1= 1,2,---,n,z > yiffz 2 yand z # y,
andz >y iff z; >y, i =1,2,---,n, respectively.

Definition 2.1 A fuzzy number G is defined as a fuzzy set on the space of real number R,
whose membership function p; : R — [0, 1] satisfies the following conditions:

(i) there ezists a unique real number c, called center of a, such that ps(c) = 1,
(i1) pa is upper semi-continuous,

(iii) pg is quasi concave,

(vi) supp(a) is compact, where supp(a) denotes the support of a.

We denote the set of all fuzzy numbers by F.

Let &, b be any fuzzy numbers and let A € R be any real number. Then the sum of two
fuzzy numbers and scalar product of A and @ are defined by membership functions

Hayp(t) = sup min {pa(u), pg(v)},  paa(t) = max{0, sup pa(u)}, (1)
where we set sup{0} = —oo.

Definition 2.2 Let m be any real number and let h be any positive number. A fuzzy
number & whose membership function is given by

pa(r) = { -

is called a symmetric triangular fuzzy number, and we denote the set of all symmetric
triangular fuzzy numbers by Fr.

r—m

h
0 otherwise

’ for z€[m—h,m+h] @)

Real numbers m and h in (2) are called the center and the deviation parameter of a,
respectively. Since any symmetric triangular fuzzy number a is characterized by the center
m and the deviation parameter h of @, we denote the symmetric triangular fuzzy number
a by a = (m,h)r.

Let @ be any fuzzy number and let a € (0,1] be any real number. The set [a]* = {z €
R | pa(z) = a} is called the a-level set of G. For o = 0, we set [@]° = cl {z € R | pa(z) > 0},
where cl denotes the closure of sets. Since the set [@]* is a closed interval for each a € [0, 1],
we denote the a-level set of @ by [a%, af], where a% = inf[a]* and o = sup(a]®. -

For any two fuzzy numbers a,b € Fr, we introduce three kinds of binary relations.
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Definition 2.3 For any symmetric triangular fuzzy numbers @, b € Fr, we write

axzb iff (at,a®)T = 0L 0F)T, Vae[0,1], (3)
axb iff (at,a®)T > (b5,6%)T, Va € (0,1], (4)
a>b iff (ak,a®)T > (L, 0BT, Vae€|0,1]. (5)

We call binary relations =, > and > a fuzzy maz order, a strict fuzzy max order and a
strong fuzzy mazx order, respectwely

From the definition, the fuzzy max order = defines a partial order on Fr. On the other
hand, binary relations > and > are not partial orders on Fr.

Theorem 2.1 ([6]) Let @ = (a,a)r and b = (b, S)r be any symmetric triangular fuzzy
numbers. Then, it holds that

azb iff a—b=l|a-4, (6)
a-b iff a—b>|a—4. )

Definition 2.4 Let @, b be any fuzzy numbers. We define the inequality relations as fol-
lows: -

(i) Pos (@2 5) = sup{min(ua(2), 15(¥)) | = 2 v},
(ii) Nes (@ 2 b) = inf, {sup, {max(1 — pa(z), 13(v)) | = 2 ¥} },
Theorem 2.2 ([15]) Let &, b be any symmetric triangular fuzzy numbers and let o € (0, 1]
be any real number. Then we have the following relationships:
(i) Pos(@a 2 b) = a iff of =L,
(ii) Pos(@a 2 b) < a iff a? < b,
(iii) Nes(@ 2 b) 2 a iff al_, = bE,

(iv) Nes(a 2 b) € o iff af , < L.

3 Bi-matrix Game with Fuzzy Payoffs and Its Equi-
librium Strategy

Let I, J denote players and let M = {1,2,---,m} and N = {1,2,---,n} be the sets of all
pure strategies available for player I and J, respectively. We denote the sets of all mixed
strategies available for players I and J by

m
SI = {(xlyx%"';mm)‘e RT lxi 2()’ i=1)27"'7ma Exiz 1}’

i=1

n

Sr={(ynyn-,¥n) ERL|y; 20, j=1,2,---,n, 3y; =1}
i=1
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By a;; = (a4, hij)T, Eij = (b, kij)T € Fr, we denote the payoffs that player I receives and
J receives when player I plays the pure strategy 7 and player J plays the pure strategy 7,
respectively. Now we define fuzzy bi-matrix game by

(@11,b11)  (@az, bia) -+ (Gum, bin)
= (821,b21)  (G22,b22) -+ (@2n,b2n)
(a"‘ml) 57)11) (6‘7712) Bm2) e (amny an)

We define two matrix with fuzzy elements by A = (A, H) = (@;;) and B=(B,K)= (biz)-

Definition 3.1 A point (z*,y*) € S; x Sy is said to be a Nash eguilibrium strategy to
Game T if it holds that

(i) zTAy* 2 o*TAy*, Vz €S,
(i) z*TBy 2 z*TBy*, Vy€S,.
Then a point z* Ay* is said to be the value of Game T

Definition 3.2 A point (z*,y*) € Sy x Sy is said to be a non-dominated Nash equilibrium
strategy to Game T if

(i) there ezist no z € Sy such that z*T Ay* < zT Ay*,
(ii) there exist no y € Sy such that z*TBy* < 2*TBy

hold.

Definition 3.3 A point (z*,y*) € Sy x Sy s said to be a weak non-dominated Nash
equilibrium strategy to Game I if

(i) there ezist no z € Sy such that z*T Ay* < zT Ay,
(ii) there ezist no y € Sy such that z*T By* < z*T By
hold.
By Definition, it is obvious that the following relationship holds among these definitions.

(1) If a strategy (z*,y*) € Sr x Sy is a Nash equilibrium strategy to Game T, it is a
non-dominated Nash strategy.

(2) If a strategy (z*,y*) € Sr X S} is a non-dominated Nash equilibrium strategy to
Game T, it is a weak non-dominated Nash strategy.



When all elements a;;s are crisp numbers, these definitions coincide with that of bi-matrix
games([13]). Therefore, these definitions are natural extensions of Nash equilibrium strat-
egy in bi-matrix to fuzzy bi-matrix game.

From Theorem 2.1, we could derive the following theorems.

Theorem 3.1 In order that a strategy (z*,y*) € Sy x S; be a Nash equilibrium strategy
to Game I, it is necessary and sufficient that, for allx € S;, y € S,

(i) 2T Ay < 2*T Ay,
(i) z*TBy < z*TBy*
hold, where zT Ay = (T AYy, 2T Afy)T, 2TBy = (2T Ayy, 2T Afy)T hold.
Theorem 3.1 shows that players I, J face a pair of bi-matrix sum games with crisp payoffs
Ty =({I,J},S5,8S;,AL, Bt Y and Ty, = ( {I,J}, S1, 5, A%, BE ).

Next we shall characterize non-dominated and weak non-dominated Nash equilibrium
strategies.

Theorem 3.2 In order that a strategy (z*,y*) € Sy x S; be a non-dominated minimazg
equilibrium strategy to Game T, it is necessary and sufficient that the following conditions
hold:

(i) there is no = € St such that z*T Ay* < 2T Ay* holds,
(ii) there is no y € Sy such that z*T Ay < z*TBy* holds.
By a similar way, we have the following theorem.

Theorem 3.3 In order that a strategy (z*,y*) € S; x S be a weak non-dominated Nash
equilibrium strategy to Game T, it is necessary and sufficient that the following conditions
hold:

(i) there is no x € Sy such that z*T Ay* < z*T Ay holds,
(ii) there is no y € Sy such that z*TBy < z*TBy* holds.

Theorem 3.1, 3.2 and 3.3 show that fuzzy bi-matrix game I is equivalent to a pair of
bi-matrix games with crisp payoffs {I'y,I'2}. 3

For further discussions, associated with fuzzy bi-matrix game I', we shall define para-
metric bi-matrix games with crisp payoffs, namely, bi-matrix games whose payoffs are
parameterized.

Let A\,u € [0,1] be any real numbers and we set A(A\) = A+ (1 — 2\)H, B(p) =
B+ (1 — 2u)K. We consider the following bi-matrix game with parameters A, u:

F()\,[J,) = ({17 ‘]}’ SI: SJ: A()‘)’ B(N’)))
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Noting that

<{11J} Sr, SJ, A2,\7 BZ ) if A,p€(0,1/2],
P()\ “): ({]’J} SI; SJ: AZ,\a > if }‘76(071/2]’ ME(l/Q,l],
’ ({17}, Sr. S5, Ak, BE) i Ve (1/2,1], pe (0,1/2],
({I.J}, 5, S, AL, BLY if A pe(1/2,]]

holds.

Definition 3.4 ([12]) Let A, 1 € [0, 1] be any real numbers. A strategy (z*,y*) € Sy x S;
is said to be a Nash equilibrium strategy to Game T'(\, p) if it holds that

T ANy £ *TAN)y', Vz e S (8)
z*TB(u)y < z*TB(u)y*, Yy € S;. (9)

The following theorems give relationships between Game I' and Game T'(), p).

Theorem 3.4 In order that a strategy (z*,y*) € Sy xS be a non-dominated Nash strategy
to Game T, it is necessary and sufficient that there exist positive real numbers A, p € (0,1)
such that (z*,y*) be a Nash equilibrium strategy to bi-matriz Game I'(A, ).

By a similar way, we have the following theorem.

Theorem 3.5 In order that a strategy (z*,y*) € S; X S; be a weak non-dominated Nash
equilibrium strategy to Game T, it is necessary and sufficient that there ezist positive real
numbers A, p € [0,1] such that (z*,y*) be a Nash equilibrium strategy to bi-matriz Game

INOWNE

From Theorem 3.4 and 3.5, in order to find non-dominated or weak non-dominated
Nash equilibrium strategy to Game T, it suffices to find Nash equilibrium strategy to Game
I'(A, ). In this sense, Game T is equivalent to a family of bi-matrix games {T'(X, 1)}, "

For any real numbers A, u € [0,1], it is well known that there exists at least one Nash
equilibrium strategy to Game (A, 1)([1]). Therefore, from Theorem 3.4 and 3.5, we have
the following theorem.

Theorem 3.6 In Game T, the following holds:
(i) There exists at least one non-dominated Nash equilibrium strategy.

(ii) There exists at least one weak non-dominated Nash equilibrium strategy.
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4 Properties of Values of Fuzzy Matrix Games

In the previous section, we have shown that a fuzzy bi-matrix game is equivalent to a
family of parametric bi-matrix games. However, this implies that there are infinite number
of non-dominated Nash equilibrium strategies. In this section, we investigate the properties
of the value of Game I.

Let (z*,y*) € S; x Sy be any non-dominated Nash equilibrium strategy to Game T".
Then from Theorem 3.4, there exist real numbers A, u € (0, 1) such that

rT(A+ (1 -22)H)y* 2z2T(A+ (1 -2\)H)y*, Vz €S, (10)
2T(B+(1-2w)K)y* 22" (B+(1-2uwK)y, VyeS,. (11)

Now we set v* = 2*T(A + (1 — 2))H)y* and w* = *T(B + (1 — 2u)K)y*. In case that
A p € (0,1/2], from Theorem 2.2, (10) and (11) imply that

2) = Pos(z*TAy* 2 v*) 2 Pos(zTAy* 2 v*), Vz €S, (12)
2u = Pos(z*TBy* 2 w*) 2 Pos(z*TBy 2 w*), Vye Sy (13)

On the other hand, in case that A\, u € (1/2, 1), we have

2\ — 1 = Nes(z*TAy* 2 v*) = Nes(zTAy* = v*), Vz € S, (14)
2p — 1 = Nes(z*TBy* 2 w*) 2 Nes(z*TBy 2 w*), VyeS,. (15)

Namely, the strategy z* maximizes the possibility(or necessity) that fuzzy expected payoff
2T Ay* is greater than or equal to v*, given player J's strategy ¥* and maximum value of
the possibility(or necessity) is 2A (or 2A—1). On the other hand, the strategy y* maximizes
the possibility(or necessity) that fuzzy expected payoff z*TBy is greater than or equal to
w*, given player I’s strategy y* and maximum value of the possibility(or necessity) is 2u
(or 2p — 1). These facts induce us to define another types of games.

Let v € R be any real numbers and we define real-valued functions P, : S; x S; —
[0,1),N,4 : Sy x S; — [0,1,PB : Sy x S; — 10,1] and N,B : 8 x S; — [0,1] by
PA(z,y) = Pos?(zT Ay = v), NA(z,y) = Nes(zTAy = v), P,B(z,y) = Pos®(zTBy = v),
and NB(z,y) = Nes(zTBy = v), respectively. Then we consider the following four kinds
of two-person games:

PPP('U7'w) = <{Ia J};_Sh SJ) PvA('7 ')’ PwB(‘r ))7
PPN(v’w) = ({I: J}’ Sl: SJ: PvA('v ')a NwB('; )),
FNP('U, ’LU) = ({I) J}a SI) SJ) NvA('a ')) PwB('a ))7
PNN('U?w) = ({Iv J}’ SI: SJ, NUA('7 ')’ NwB(': ))1
In each Game, player I chooses a strategy that maximizes possibility or necessity which

the fuzzy expected payoff 27 Ay* is greater than or equal to v, which is a inspiration level
of expected payoff player I claims to get, given player J's strategy. While player J chooses
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a strategy that maximizes possibility or necessity which the fuzzy expected payoft z*T By
is greater than or equal to w, which is a inspiration level of expected value player J accepts
to lose, given player I’s strategy.

From the above discussions, we have the following theorem.

Theorem 4.1 Let a strategy (z*,y*) € S; x S; be any non-dominated Nash equilibrium
strategy to Game I'. Then there exist real numbers v*,w* € R such that (z*,y*) is
a Nash equilibrium strategy to one of Game I'PF(v*,w*),I™N(v*,w*), TNP(v*,w*), and
INN(y* w*).
Theorem 4.1 shows that each player I, J faces one of the games I''F(v,w), I'*N(v, w),
I'NP (v, w), and TNN(v, w).

Next we shall show that converse relationships holds among them. First we investigate
the relationships between I'*P(v,w) and T.

Theorem 4.2 Let v,w € R be any real numbers and let a strategy (z*,y*) € St x Sy be
any Nash equilibrium strategy to Game TP (v, w). If P,A(z",y"), P,%(z*,y*) € (0,1), then
(z*,y*) is a non-dominated Nash equilibrium strategy to Game I'.

In Theorem 4.2, conditions P,(z*,y*), P,(z*,y¥*) € (0,1) are important. In fact, if
parameters v, w are sufficiently small or sufficiently large, all strategies will be Nash equi-
librium strategies to Game I'’P(v,w). In order to exclude such a case, we need these
conditions.

Next we consider the relationships between Game I'"N(v, w) and T.

Theorem 4.3 Let v,w € R be any real numbers and let a strategy (z*,y*) € Sy x Sy
be any Nash equilibrium strategy to Game TN (v,w). If NoA(z*,v*), No®(z*,3%) € (0,1),
then (z*,y*) is a non-dominated Nash equilibrium strategy to Game T'.

By a similar way, we could show that the following theorem hold.

Theorem 4.4 Let v,w € R be any real numbers and let a strategy (z*,y*) € Sy x Sy
be any Nash equilibrium strategy to Game TPN(v,w). If P,A(z*,y*), NB(z*,¥*) € (0,1),
then (z*, y*) is a non-dominated Nash equilibrium strategy to Game T.

Theorem 4.5 Let v,w € R be any real numbers and let a strategy (z*,y*) € Sy x Sy
be any Nash equilibrium strategy to Game I'NP(v,w). If N,A(z*,y*), fwB(m*, y*) € (0,1),
then (z*, y*) is a non-dominated Nash equilibrium strategy to Game I.

5 Conclusion

In this paper, we considered fuzzy bi-matrix games and defined three kinds of concepts of
Nash equilibrium strategies to fuzzy bi-matrix games based on the concepts of fuzzy max
order and investigated their properties. Especially, we have shown that the sets of all these
Nash equilibrium strategies coincide with sets of Nash equilibrium strategies of a family
of parametric bi-matrix games with crisp payoffs. In addition, we have investigated the
properties of values of the fuzzy bi-matrix games based on possibility or necessity measures.
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