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1Introduction
Since seminal works by Neumann-Morgenstern([13]) and Nash([ll] and [12]), Game theory
has played an important role in the fields of decision making theory such as economics,
management, and operations research, etc. When we apply the game theory to model some
practical problems which we encounter in real situations, we have to know the values of
payoffs exactly. However, it is difficult to know the exact values of payoffs and we could
only know the values of payoffs approximately, or with some imprecise degree. In such
situations, it is useful to model the problems as games with fuzzy payoffs. In this case,
since the expected payoffs of the game should be fuzzy-valued, there are no concepts of
equilibrium strategies to be accepted widely. So, it is an important task to define the
concepts of equilibrium strategies and investigate their properties. Compos([3]) has pr0-
posed amethods to solve fuzzy matrix games based on linear programming, but has not
defined explicit concepts of equilibrium strategies. For matrix games with fuzzy payoffs,
Maeda([9]) has defined minimax equilibrium strategies based on fuzzy $\max$ order and inves-
tigated their properties. For Bi-matrix games with fuzzy payoffs, Maeda([10]) has defined
Nash equilibrium strategies based on possibility and necessity measures and investigated
its properties. While, Aubin([2]) has considered fuzzy cooperative games.

In this paper, we consider fuzzy $\mathrm{b}\mathrm{i}$-matrix games. For such agame, we shall define
three kinds of concepts of Nash equilibrium strategies and investigate their properties.

For that purpose, this paper is organized as follows. In Section 2, we shall give some
basic definitions and notations on fuzzy numbers. In Section 3, we shall define fuzzy bi-
matrix game with fuzzy payoffs and three kinds of concepts of Nash equilibrium strategies
and investigate their properties. In Section 4, we investigate the properties of values of
fuzzy matrix games by means of possibility and necessity measures
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2Preliminary
In this section, we shall give some definitions and notations on fuzzy numbers, which are
used throughout the paper.

Let $R^{n}$ be $n$-dimensional Euclidean space, and $x\equiv$ $(x_{1}, x_{2}, \cdots, x_{n})^{\mathrm{T}}\in R^{n}$ be any
vector, where $x_{i}\in R$ , $i=1,2$ , $\cdots$ , $n$ and $T$ denotes the transpose of the vector. For any
two vectors $x$ , $y\in R^{n}$ , we write $x\geqq y$ iff $x_{i}\geqq y_{i}$ , $i=1,2$ , $\cdot\cdot.\cdot$ , $n$ , $x\geq y$ iff $x\geqq y$ and $x\neq y$ ,
and $x>y$ iff $x_{i}>y_{i}$ , $i=1,2$ , $\cdots$ , $n$ , respectively.

Definition 2.1 A fuzzy number $\tilde{a}$ is defined as a fuzzy set on the space of real number $R$ ,
whose membership function $\mu_{\overline{a}}$ : $Rarrow[0, 1]$ satisfies the following conditions:

(i) there eists a unique real number $c$ , called center of $\tilde{a}$ , such that $\mu_{\overline{a}}(c)=1$ ,

(ii) $\mu_{\overline{a}}$ is upper semi-continuous,

(iii) $\mu_{\overline{a}}$ is quasi concave,

(vi) $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\tilde{a})$ is compact, where $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\tilde{a})$ denotes the suppori of $\overline{a}$ .

We denote the set of all fuzzy numbers by $\mathcal{F}$ .

Let $\tilde{a},\tilde{b}$ be any fuzzy numbers and let $\lambda\in R$ be any real number. Then the sum of two
fuzzy numbers and scalar product of Aand $\tilde{a}$ are defined by membership functions

$\mu_{\overline{a}+\overline{b}}(t)=\sup\min_{t=u+v}\{\mu_{\overline{a}}(u), \mu_{\overline{b}}(v)\}$ , $\mu_{\lambda\overline{a}}(t)=\max\{0,\sup_{\mathrm{t}=\lambda u}\mu_{\overline{a}}(u)\}$, (1)

where we set $\sup\{\emptyset\}=-\infty$ .

Definition 2.2 Let $m$ be any real number and let $h$ be any positive number. A fuzzy
number $\tilde{a}$ whose membership function is given by

$\mu_{\overline{a}}(x)\equiv\{$

$1-| \frac{x-m}{h}|$ for $x\in[m-h, m+h]$

0otherwise
(2)

is called a symmetr$r\cdot c$ triangular fuzzy number, and we denote the set of all symmetr$r\cdot c$

triangular fuzzy numbers by $\mathcal{F}_{\mathrm{T}}$ .

Real numbers $m$ and $h$ in (2) are called the center and the deviation parameter of $\tilde{a}$ ,
respectively. Since any symmetric triangular fuzzy number $\tilde{a}$ is characterized by the center
$m$ and the deviation parameter $h$ of $\tilde{a}$ , we denote the symmetric triangular fuzzy number
$\tilde{a}$ by $\tilde{a}\equiv(m, h)_{\mathrm{T}}$ .

Let $\tilde{a}$ be any fuzzy number and let $\alpha\in(0,1]$ be any real number. The set $[\tilde{a}]^{\alpha}\equiv\{x\in$

$R|\mu_{\overline{a}}(x)\geqq\alpha\}$ is called the $\alpha$-level set of $\tilde{a}$ . For $\alpha=0$ , we set $[\overline{a}]^{0}\equiv \mathrm{c}1\{x\in R|\mu_{\overline{a}}(x)>0\}$ ,
where cl denotes the closure of sets. Since the set $[\tilde{a}]^{\alpha}$ is aclosed interval for each $\alpha\in[0,1]$ ,
we denote the $\alpha$-level set of $\overline{a}$ by $\lfloor a_{\alpha}^{L}$ , $a_{\alpha}^{R}$], where $a_{\alpha}^{L} \equiv\inf[\tilde{a}]^{\alpha}$ and $a_{\alpha}^{R} \equiv\sup[\tilde{a}]^{\alpha}$ .

For any two fuzzy numbers $\tilde{a}$ , $b\in \mathcal{F}_{\mathrm{T}}$ , we introduce three kinds of binary relations
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Definition 2.3 For any symmetric triangular fuzzy numbers $\mathrm{a},\tilde{b}\in \mathcal{F}_{\mathrm{T}}$ , ette write
$\tilde{a}\underline{[succeq]}\overline{b}$ iff $(a_{\alpha}^{L}, a_{\alpha}^{R})^{\mathrm{T}}\geqq(b_{\alpha}^{L}, b_{\alpha}^{R})^{\mathrm{T}}$, Vo 6 $[0, 1]$ , (3)
$\tilde{a}[succeq]\tilde{b}$ iff $(a_{\alpha}^{L}, a_{\alpha}^{R})^{\mathrm{T}}\geq(b_{\alpha}^{L}, b_{\alpha}^{R})^{\mathrm{T}}$ , $\forall\alpha\in[0,1]$ , (4)
$\overline{a}\succ\overline{b}$ iff $(a_{\alpha}^{L}, a_{\alpha}^{R})^{\mathrm{T}}>(b_{\alpha}^{L}, b_{\alpha}^{R})^{\mathrm{T}}$ , Va $\in[0,1]$ . (5)

We call binary relations $\underline{[succeq]}$ , $[succeq] and\succ$ a fuzzy $\max$ order, a strict fuzzy $\max$ order and $a$

strong fuzzy $\max$ order, respectively.

From the definition, the fuzzy $\max$ order $\underline{[succeq]}$ defines apartial order on $\mathcal{F}_{\mathrm{T}}$ . On the other
hand, binary relations $[succeq] \mathrm{a}\mathrm{n}\mathrm{d}\succ \mathrm{a}\mathrm{r}\mathrm{e}$ not partial orders on $\mathcal{F}_{\mathrm{T}}$ .
Theorem 2.1 ([6]) Let $\tilde{a}\equiv(a, \alpha)_{\mathrm{T}}$ and $\tilde{b}\equiv(b,\beta)_{\mathrm{T}}$ be any symmetric triangular fuzzy
numbers. Then, it holds that

$\tilde{a}\underline{[succeq]}\tilde{b}$ iff $a-b\geqq|\alpha-\beta|$ , (6)
$\tilde{a}\succ\tilde{b}$ iff $a-b>|\alpha-\beta|$ . (7)

Definition 2.4 $Lei$ $\tilde{a},\tilde{b}$ be any fuzzy numbers. We define the inequality relations as fol-
loetts:

(i) Pos $( \tilde{a}\geqq\tilde{b})\equiv\sup\{\min(\mu_{\overline{a}}(x), \mu_{\overline{b}}(y))|x\geqq y\}$ ,

(ii) Nes $( \tilde{a}\geqq\tilde{b})\equiv\inf_{x}\{\sup_{y}\{\max(1-\mu_{\overline{a}}(x), \mu_{\overline{b}}(y))|x\geqq y\}\}$ ,

Theorem 2.2 ([15]) Let $\tilde{a},\tilde{b}$ be any symmetric triangular fuzzy numbers and let $\alpha\in(0,$ 1]
be any real number. Then we have the following relationships:

(i) $\mathrm{P}\mathrm{o}\mathrm{s}(\tilde{a}\geqq\tilde{b})\geqq\alpha$ iff $a_{\alpha}^{R}\geqq b_{\alpha}^{L}$ ,

(ii) Pos $(\overline{a}\geqq\tilde{b})\leqq\alpha$ iff $a_{\alpha}^{R}\leqq b_{\alpha}^{L}$ ,

(ii) Nes $(\tilde{a}\geqq\tilde{b})\geqq\alpha$ iff $a_{1-\alpha}^{L}\geqq b_{\alpha}^{L}$ ,

(iv) Nes $(\tilde{a}\geqq\tilde{b})\leqq\alpha$ iff $a_{1-\alpha}^{L}\leqq b_{\alpha}^{L}$ .

3Bi-matrix Game with Fuzzy Payoffs and Its Equi-
librium Strategy

Let $I$ , $J$ denote players and let $M\equiv\{1,2, \cdots, m\}$ and $N\equiv\{1,2, \cdots, n\}$ be the sets of all
pure strategies available for player I and $J$ , respectively. We denote the sets of all mixed
strategies available for players I and $J$ by

$S_{I} \equiv\{(x_{1}, x_{2}, \cdots, x_{m})\in R_{+}^{m}|x_{i}\geqq 0, i=1,2, \cdots, m, \sum_{\dot{|}=1}^{m}x_{\dot{*}}=1\}$,

$S_{J} \equiv\{(y_{1},y_{2}, \cdots, y_{n})\in R_{+}^{n}|y_{j}\geqq 0, j=1,2, \cdots, n,\sum_{j=1}^{n}y_{j}=1\}$ .
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By $\tilde{a}_{ij}\equiv(a_{ij}, h_{ij})_{\mathrm{T}},\tilde{b}_{ij}\equiv(b_{ij}, k_{ij})_{\mathrm{T}}\in \mathcal{F}_{\mathrm{T}}$ , we denote the payoffs that player I receives and
J receives when player I plays the pure strategy i and player J plays the pure strategy j,

respectively Now we define fuzzy $\mathrm{b}\mathrm{i}$-matrix game by

$\tilde{\Gamma}\equiv\{$

$(\tilde{a}_{21},\tilde{b}_{21})$ $(\tilde{a}_{22},\tilde{b}_{22})$$(\tilde{a}_{11},...\tilde{b}_{11})$ $(\tilde{a}_{12},...\tilde{b}_{12})$ ... $(\tilde{a}_{mn},\cdot.\cdot\tilde{b}_{mn})(\tilde{a}_{1n},\tilde{b}_{1n})(\tilde{a}_{2n},\tilde{b}_{2n}))$ .

$(\overline{a}_{m1},\tilde{b}_{m1})$ $(\overline{a}_{m2},\tilde{b}_{m2})$

We define two matrix with fuzzy elements by $\tilde{A}=(A, H)=(\tilde{a}_{\dot{\iota}j})$ and $\tilde{B}=(B, K)=(\tilde{b}_{ij})$ .

Definition 3.1 A point $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is said to be a Nash equilibrium strategy to
Game $\tilde{\Gamma}$ if it holds that

(i) $x^{\mathrm{T}}\tilde{A}y^{*}\underline{\preceq}x^{*\mathrm{T}}\tilde{A}y^{*}$ , $\forall x\in S_{I}$ ,

(ii) $x^{*\mathrm{T}}\tilde{B}y\underline{\preceq}x^{*\mathrm{T}}\tilde{B}y^{*}$ , $\forall y\in S_{J}$ .

Then a point $x^{*}\tilde{A}y^{*}$ is said to be the value of Game $\overline{\Gamma}$

Definition 3.2 $A_{\sim}point$ $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is said to be a non-dominated Nash equilibrium
strategy to Game $\Gamma$ if

(i) there eist no x $\in S_{I}$ such that $x^{*\mathrm{T}}\tilde{A}y^{*}\preceq x^{\mathrm{T}}\tilde{A}y^{*}$ ,

(ii) there exist no y $\in S_{J}$ such that $x^{*\mathrm{T}}\tilde{B}y^{*}\preceq x^{*\mathrm{T}}\overline{B}y$

hold.

Definition 3.3 A point $(x^{*},\underline{y}^{*})\in S_{I}\cross S_{J}$ is said to be a weak non-dominated Nash
equilibrium strategy to Game $\Gamma$ if

(i) there exist no $x\in S_{I}$ such that $x^{*\mathrm{T}}\tilde{A}y^{*}\prec x^{\mathrm{T}}\tilde{A}y^{*}$ ,

(ii) there eist no $y\in S_{J}$ such that $x^{*\mathrm{T}}By’\prec x^{*\mathrm{T}}\tilde{B}y$

hold.

By Definition, it is obvious that the following relationship holds among these definitions.

(1) If astrategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is aNash equilibrium strategy to Game $\tilde{\Gamma}$ , it is a
non-dominated Nash strategy.

(2) If astrategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is anon-dominated Nash equilibrium strategy to
Game $\tilde{\Gamma}$ , it is aweak non-dominated Nash strategy.
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When all elements $\tilde{a}_{ij}s$ are crisp numbers, these definitions coincide with that of bi-matrix
games([13]). Therefore, these definitions are natural extensions of Nash equilibrium strat-
egy in $\mathrm{b}\mathrm{i}$-matrix to fuzzy $\mathrm{b}\mathrm{i}$-matrix game.

From Theorem 2.1, we could derive the following theorems.

Theorem 3.1 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a Nash equilibrium strategy
to Game $\tilde{\Gamma}$ , it is necessary and sufficient that, for all $x\in S_{I}$ , $y\in S_{J}$ ,

(i) $x^{\mathrm{T}}Ay^{*}\leqq x^{*\mathrm{T}}Ay^{*}$ ,

(ii) $x^{*\mathrm{T}}\mathcal{B}y\leqq x^{*\mathrm{T}}By^{*}$

hold, where $x^{\mathrm{T}}Ay\equiv(x^{\mathrm{T}}A_{0}^{L}y, x^{\mathrm{T}}A_{0}^{R}y)^{\mathrm{T}}$ , $x^{\mathrm{T}}By\equiv(x^{\mathrm{T}}A_{0}^{L}y, x^{\mathrm{T}}A_{0}^{R}y)^{\mathrm{T}}$ hold.

Theorem 3.1 shows that players $I$ , $J$ face apair of $\mathrm{b}\mathrm{i}$-matrix sum games with crisp payoffs

$\Gamma_{1}\equiv\langle\{I, J\}, S_{I}, S_{J}, A_{0}^{L}, B_{0}^{L}\rangle$ and $\Gamma_{2}\equiv\langle\{I, J\}, S_{I}, S_{J}, A_{0}^{R}, B_{0}^{R}\rangle$.

Next we shall characterize non-dominated and weak non-dominated Nash equilibrium
strategies.

Theorem 3.2 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a non-dominated minimax
equilibrium strategy to Game $\tilde{\Gamma}$ , it is necessary and sufficient that the following conditions
hold:

(i) there is no $x\in S_{I}$ such that $x^{*\mathrm{T}}Ay^{*}\leq x^{\mathrm{T}}Ay^{*}$ holds,

(ii) there is no $y\in S_{J}$ such that $x^{*\mathrm{T}}Ay\leq x^{*\mathrm{T}}By^{*}$ holds.

By asimilar way, we have the following theorem.

Theorem 3.3 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a weak non-dominated Nash
equilibr $.um$ strategy to Game $\tilde{\Gamma}$ , it is necessary and sufficient that the following conditions
hold:

(i) there is no $x\in S_{I}$ such that $x^{*\mathrm{T}}Ay^{*}<x^{*\mathrm{T}}Ay$ holds,

(ii) there is no $y\in S_{J}$ such that $x^{*\mathrm{T}}By$ $<x^{*\mathrm{T}}By^{*}$ holds.

Theorem 3.1, 3.2 and 3.3 show that fuzzy $\mathrm{b}\mathrm{i}$-matrix game $\tilde{\Gamma}$ is equivalent to apair of
$\mathrm{b}\mathrm{i}$ -matrix games with crisp payoffs $\{\Gamma_{1}, \Gamma_{2}\}$ .

For further discussions, associated with fuzzy $\mathrm{b}\mathrm{i}$-matrix game $\tilde{\Gamma}$ , we shall define para-
metric $\mathrm{b}\mathrm{i}$-matrix games with crisp payoffs, namely, $\mathrm{b}\mathrm{i}$-matrix games whose payoffs are
parameterized.

Let $\lambda$ , $\mu\in[0,1]$ be any real numbers and we set $A(\lambda)\equiv A+(1-2\lambda)H$, $B(\mu)\equiv$

$B+(1-2\mu)K$ . We consider the following $\mathrm{b}\mathrm{i}$-matrix game with parameters $\lambda$ , $\mu$ :

$\Gamma(\lambda, \mu)\equiv\langle\{I, J\}, S_{I}, S_{J}, A(\lambda), B(\mu)\rangle$ ,
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Noting that

$\Gamma(\lambda, \mu)=\{\langle\{I,J\},S_{I}\langle\{I,J\})S_{I}\langle\{I,J\},S_{I}\langle\{I,J\},S_{I}’,,,S_{J},A_{2\lambda}^{R}S_{J},A_{2\lambda}^{R}S_{J},A_{2\lambda}^{L}S_{J},A_{2\lambda}^{L}’,,,B_{2}\rangle B^{\int_{2}^{R}}\rangle B_{2}^{\mathit{1}\mathrm{f}}B_{2\mu}^{[}\rangle\rangle$

$\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}$ $\lambda,\mu\in(1/2,1]\lambda\in(1/2,1],\mu\in(0,1/2]\lambda,\in(0,1/2],\mu\in(1/2,1]\lambda,\mu\in(0,1/2],,$
’

holds.

Definition 3.4 ([12]) Let $\lambda$ , $\mu\in[0,$ 1] be any real numbers. A strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$

is said to be a Nash equilibrium strategy to Game $\Gamma(\lambda, \mu)$ if it holds that

$x^{\mathrm{T}}A(\lambda)y^{*}\leqq x^{*\mathrm{T}}A(\lambda)y^{*}$ , $\forall x\in S_{I}$ (8)
$x^{*\mathrm{T}}B(\mu)y\leqq x^{*\mathrm{T}}B(\mu)y^{*}$ , $\forall y\in S_{J}$ . (9)

The following theorems give relationships between Game $\tilde{\Gamma}$ and Game $\Gamma(\lambda, \mu)$ .

Theorem 3.4 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a non-dominated Nash strategy
to Game $\overline{\Gamma}$ , it is necessary and sufficient that there exist positive real numbers $\lambda$ , $\mu\in(0,1)$

such that $(x^{*}, y^{*})$ be a Nash equilibrium strategy to $bi$-matrix Game $\Gamma(\lambda, \mu)$ .

By asimilar way, we have the following theorem.

Theorem 3.5 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a weak non-dominated Nash
equilibrium strategy to Game $\tilde{\Gamma}$ , it is necessar$ry$ and sufficient that there exist positive real
numbers $\lambda$ , $\mu\in[0,1]$ such that $(x^{*}, y^{*})$ be a Nash equilibr$r\cdot um$ strategy to $bi$-matrix Game
$\Gamma(\lambda, \mu)$ .

From Theorem 3.4 and 3.5, in order to find non-dominated or weak non-dominated
Nash equilibrium strategy to Game $\tilde{\Gamma}$ , it suffices to find Nash equilibrium strategy to Game
$\Gamma(\lambda, \mu)$ . In this sense, Game $\tilde{\Gamma}$ is equivalent to afamily of $\mathrm{b}\mathrm{i}$-matrix games $\{\Gamma(\lambda, \mu)\}_{\lambda,\mu}$ .

For any real numbers $\lambda$ , $\mu\in[0,1]$ , it is well known that there exists at least one Nash
equilibrium strategy to Game $\mathrm{F}(\mathrm{A}, \mu)([1])$ . Therefore, from Theorem 3.4 and 3.5 we have
the following theorem.

Theorem 3.6 In Game $\overline{\Gamma}$ , the following holds:

(i) There exists at least one non-dominated Nash equilibrium strategy.

(ii) There eists at least one weak non-dominated Nash equilibrium strategy.
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4Properties of Values of Fuzzy Matrix Games
In the previous section, we have shown that afuzzy $\mathrm{b}\mathrm{i}$-matrix game is equivalent to a
family of parametric $\mathrm{b}\mathrm{i}$-matrix games. However, this implies that there are infinite number
of non-dominated Nash equilibrium strategies. In this section, we investigate the properties
of the value of Game $\overline{\Gamma}$ .

Let $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be any non-dominated Nash equilibrium strategy to Game $\tilde{\Gamma}$ .
Then from Theorem 3.4, there exist real numbers $\lambda$ , $\mu\in(0,1)$ such that

$x^{*\mathrm{T}}(A+(1-2\lambda)H)y^{*}\geqq x^{\mathrm{T}}(A+(1-2\lambda)H)y^{*}$ , $\forall x\in S_{I}$ , (10)
$x^{*\mathrm{T}}(B+(1-2\mu)K)y^{*}\geqq x^{*\mathrm{T}}(B+(1-2\mu)K)y$, $\forall y\in S_{J}$ . (11)

Now we set $v^{*}\equiv x^{*\mathrm{T}}(A+(1-2\lambda)H)y^{*}$ and $w^{*}\equiv x^{*\mathrm{T}}(B+(1-2\mu)K)y^{*}$ . In case that
$\lambda$ , $\mu\in(0,1/2]$ , from Theorem 2.2, (10) and (11) imply that

$2\lambda=\mathrm{P}\mathrm{o}\mathrm{s}(x^{*\mathrm{T}}\tilde{A}y^{*}\geqq v^{*})\geqq \mathrm{P}\mathrm{o}\mathrm{s}(x^{\mathrm{T}}\tilde{A}y^{*}\geqq v^{*})$ , $\forall x\in S_{I}$ , (12)
$2\mu=\mathrm{P}\mathrm{o}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y^{*}\geqq w^{*})\geqq \mathrm{P}\mathrm{o}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y\geqq w^{*})$ , $\forall y\in S_{J}$ . (13)

On the other hand, in case that $\lambda$ , $\mu\in(1/2,1)$ , we have

$2\lambda-1=\mathrm{N}\mathrm{e}\mathrm{s}(x^{*\mathrm{T}}\tilde{A}y^{*}\geqq v^{*})\geqq \mathrm{N}\mathrm{e}\mathrm{s}(x^{\mathrm{T}}\overline{A}y^{*}\geqq v^{*})$, $\forall x\in S_{I}$ , (11)
$2\mu-1=\mathrm{N}\mathrm{e}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y^{*}\geqq w^{*})\geqq \mathrm{N}\mathrm{e}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y\geqq w^{*})$ , $\forall y\in S_{J}$ . (13)

Namely, the strategy $x^{*}$ maximizes the possibility(or necessity) that fuzzy expected payoff
$x^{T}\tilde{A}y^{*}$ is greater than or equal to $v^{*}$ , given player $J$ ’s strategy $y^{*}$ and maximum value of
the possibility(or necessity) is $2\lambda$ (or $2\lambda-1$ ). On the other hand, the strategy $y^{*}$ maximizes
the possibility(or necessity) that fuzzy expected payoff $x^{*T}By$ is greater than or equal to
$w^{*}$ , given player I’s strategy $y^{*}$ and maximum value of the possibility(or necessity) is $2\mu$

(or $2\mu-1$ ). These facts induce us to define another types of games.
Let $v\in R$ be any real numbers and we define real-valued functions $P_{v}^{A}$ : $S_{I}\cross S_{J}arrow$

$[0,1]$ , $N_{v}^{A}$ : $S_{I}\cross S_{J}arrow[0,1]$ , $P_{v}^{B}$ : $S_{I}\cross S_{J}arrow[0,1]$ and $N_{v}^{B}$ : $S_{I}\cross S_{J}arrow[0,1]$ by
$P_{v}^{A}(x,y)\equiv \mathrm{P}\mathrm{o}\mathrm{s}^{A}(x^{\mathrm{T}}\tilde{A}y\geqq v)$ , $N_{v}^{A}(x, y)\equiv \mathrm{N}\mathrm{e}\mathrm{s}(x^{\mathrm{T}}\tilde{A}y\geqq v)$ , $P_{v}^{B}(x, y)\equiv \mathrm{P}\mathrm{o}\mathrm{s}^{B}(x^{\mathrm{T}}\tilde{B}y\geqq v)$ ,
and $N_{v}^{B}(x, y)\equiv \mathrm{N}\mathrm{e}\mathrm{s}(\mathrm{x}\mathrm{T}\mathrm{B}\mathrm{y}\geqq v)$, respectively. Then we consider the following four kinds
of tw0-person games:

$\Gamma^{\mathrm{P}\mathrm{P}}(v, w)\equiv\langle\{I, J\}, S_{I}, S_{J}, P_{v}^{A}(\cdot, \cdot), P_{w}^{B}(\cdot, \cdot)\rangle$ ,
$\Gamma^{\mathrm{P}\mathrm{N}}(v, w)\equiv\langle\{I, J\}, S_{I}, S_{J}, P_{v}^{A}(\cdot, \cdot), N_{w}^{B}(\cdot, \cdot)\rangle$ ,
$\Gamma^{\mathrm{N}\mathrm{P}}(v,w)\equiv\langle\{I, J\}, S_{I}, S_{J}, N_{v}^{A}(\cdot, \cdot), P_{w}^{B}(\cdot, \cdot)\rangle$,
$\Gamma^{\mathrm{N}\mathrm{N}}(v, w)\equiv\langle\{I, J\}, S_{I}, S_{J}, N_{v}^{A}(\cdot, \cdot), N_{w}^{B}(\cdot, \cdot)\rangle$,

In each Game, player I chooses astrategy that maximizes possibility or necessity which
the fuzzy expected payoff $x^{T}\tilde{A}y^{*}$ is greater than or equal to $v$ , which is ainspiration level
of expected payoff player I claims to get, given player $J$ ’s strategy. While player $J$ chooses
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astrategy that maximizes possibility or necessity which the fuzzy expected payoff $x^{*T}By$

is greater than or equal to $\mathrm{W}$ , which is ainspiration level of expected value player $J$ accepts
to lose, given player $I$ ’s strategy.

Prom the above discussions, we have the following theorem.

Theorem 4.1 Let a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be any non-dominated Nash equilibrium
strategy to Game F. Then there exist real numbers $v^{*}$ , $w^{*}\in R$ such that $(x^{*}, y^{*})$ is
a Nash equilibrium strategy to one of Game $\Gamma^{\mathrm{P}\mathrm{P}}(v^{*}, w^{*})$ , $\Gamma^{\mathrm{P}\mathrm{N}}(v^{*}, w^{*})$ , $\Gamma^{\mathrm{N}\mathrm{P}}(v^{*}, w^{*})$ , and
$\Gamma^{\mathrm{N}\mathrm{N}}(v^{*}, w^{*})$ .

Theorem 4.1 shows that each player $I$ , $J$ faces one of the games $\Gamma^{\mathrm{P}\mathrm{P}}(v, w)$ , $\Gamma^{\mathrm{P}\mathrm{N}}(v, w)$ ,
I $\mathrm{N}\mathrm{P}(v,w)$ , and I $\mathrm{N}\mathrm{N}(v, w)$ .

Next we shall show that converse relationships holds among them. First we investigate
the relationships between $\Gamma^{\mathrm{P}\mathrm{P}}(v, w)$ and $\tilde{\Gamma}$ .

Theorem 4.2 Let $v$ , $w\in R$ be any real numbers and let a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be
any Nash equilibrium strategy to Game I $\mathrm{P}\mathrm{P}(v, w)$ . If $P_{v}^{A}(x^{*}, y^{*})_{\sim}$, $P_{w}^{B}(x^{*}, y^{*})\in(0,1)_{\mathrm{z}}$ then
$(x^{*}, y^{*})$ is a non-dominated Nash equilibrium strategy to Game $\Gamma$ .

In Theorem 4.2, conditions $P_{v}(x^{*}, y^{*})$ , $P_{w}(x^{*}, y^{*})\in(0,1)$ are important. In fact, if
parameters $v$ , to are sufficiently small or sufficiently large, all strategies will be Nash equi-
librium strategies to Game $\Gamma^{\mathrm{P}\mathrm{P}}(v, w)$ . In order to exclude such acase, we need these
conditions.

Next we consider the relationships between Game $\Gamma^{\mathrm{N}\mathrm{N}}(v, w)$ and $\tilde{\Gamma}$ .
Theorem 4.3 Let $v$ , $w\in R$ be any real numbers and let a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$

be any Nash equilibrium strategy to Game $\Gamma^{\mathrm{N}\mathrm{N}}(v, w)$ . If $N_{v}^{A}(x^{*}, y^{*}),N_{w}^{B}(x^{*}, y^{*}-)\in(0,1)$ ,
then $(x^{*}, y^{*})$ is a non-dominated Nash equilibrium strategy to Game $\Gamma$ .
By asimilar way, we could show that the following theorem hold.

Theorem 4.4 Let $v$ , $w\in R$ be any real numbers and let a strategy $(x^{*},y^{*})\in S_{I}\cross S_{J}$

be any Nash equilibrrium strategy to Game I $\mathrm{P}\mathrm{N}(v, w)$ . If $P_{v}^{A}(x^{*}, y^{*}),$ $\sim N_{w}^{B}(x^{*}, y^{*})\in(0,1)_{f}$

then $(x^{*}, y^{*})$ is a non-dominated Nash equilibrium strategy to Game $\Gamma$ .

Theorem 4.5 Let $v$ , $w\in R$ be any real numbers and let a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$

be any Nash equilibr$r\cdot um$ strategy to Game $\Gamma^{\mathrm{N}\mathrm{P}}(v, w)$ . If $N_{v}^{A}(x^{*}, y^{*})$ , $P_{w}^{B}(x^{*}, y^{*})\in(0,1)$ ,
then $(x^{*}, y^{*})$ is a non-dominated Nash equilibrium strategy to Game $\tilde{\Gamma}$ .

5Conclusion
In this paper, we considered fuzzy $\mathrm{b}\mathrm{i}$ -matrix games and defined three kinds of concepts of
Nash equilibrium strategies to fuzzy $\mathrm{b}\mathrm{i}$-matrix games based on the concepts of fuzzy $\max$

order and investigated their properties. Especially, we have shown that the sets of all these
Nash equilibrium strategies coincide with sets of Nash equilibrium strategies of afamily
of parametric $\mathrm{b}\mathrm{i}$-matrix games with crisp payoffs. In addition, we have investigated the
properties of values of the fuzzy $\mathrm{b}\mathrm{i}$-matrix games based on possibility or necessity measures
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