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A Modified Relaxation Scheme for Mathematical Programs
with Complementarity Constraints

Gui-Hua Lin* and Masao Fukushima!

Abstract. In this paper, we consider a mathematical program with complementarity
constraints. We present a modified relaxed program for this problem, which involves less
constraints than the relaxation scheme studied by Scholtes (2000). We show that the linear
independence constraint qualification holds for the new relaxed problem under some mild
conditions. We also consider a limiting behavior of the relaxed problem. We prove that
any accumulation point of stationary points of the relaxed problems is C-stationary to the
original problem under the MPEC linear independence constraint qualification and, if the
Hessian matrices of the Lagrangian functions of the relaxed problems are uniformly bounded
below on the corresponding tangent space, it is M-stationary. We also obtain some sufficient
conditions of B-stationarity for a feasible point of the original problem. In particular, some
conditions described by the eigenvalues of the Hessian matrices mentioned above are new and
can be verified easily.
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1 Introduction

We consider the following mathematical program with complementarity constraints,
which constitutes an important subclass of the mathematical program with equilibrium
constraints (MPEC):

min  f(z2)

st.  ¢(2) <0, h(z)=0 (1.1)
G(2) 20, H(z) 20
G(2)TH(2) =0,

*Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto Univer-
sity, Kyoto 606-8501, Japan./Department of Applied Mathematics, Dalian University of Technology,
Dalian 116024, China. E-mail Address: ghlin@amp.i.kyoto-u.ac.jp.

tDepartment of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto Univer-
sity, Kyoto 606-8501, Japan. E-mail Address: fuku@amp.i.kyoto-u.ac.jp.




where f: R* > R,g: R®* — RP,h: R — R? and G, H : R* — R™ are all twice con-
tinuously differentiable functions. This problem plays an important role in many fields
such as engineering design, economic equilibrium, and multilevel game, see [12], and
has attracted much attention in the recent literature. The major difficulty in solving
problem (1.1) is that its constraints fail to satisfy a standard constraint qualification at
any feasible point so that standard methods are likely to fail for this problem. There
have been proposed several approaches such as sequential quadratic programming ap-
proach, implicit programming approach, penalty function approach, and reformulation
approach [1, 4-6, 8-13, 17, 19]. In particular, Fukushima and Pang [6] considered a
smoothing continuation method and showed, under the MPEC-linear independence
constraint qualification (MPEC-LICQ) and an additional condition called the asymp-
totic weak nondegeneracy, that an accumulation point of KKT points satisfying the
second-order necessary conditions for the perturbed problems is a B—stationary point

of the original problem. Subsequently, Scholtes [19] presented a regularization scheme

min  f(2)
st.  g(2) <0, h(z) =0 (1.2)
 G(2) 20, H(z) >0
Gi(2)Hi(2) <e, i1=1,2,---,m,
where € is a positive parameter, as an approximation of problem (1.1) and proved,
under the MPEC-LICQ and the upper level strict complementarity condition, that an

accumulation point of stationary points satisfying the second order necessary conditions

for the relaxed problems is a B-stationary point of the original problem.

In this paper, we consider the following scheme as an approximation of problem

(1.1):
| min  f(2)

st.  g(2) <0, h(z)=0
Gi(Z)Hi(Z) < 52 (13)

(Gi(2) + €)(Hi(2) +¢€) > €?

z=1a2a"'am7

in which there are less constraints than problem (1.2). In the next section, we will

show that the standard linear independence constraint qualification (LICQ) holds for
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the new relaxed problem under some mild conditions. In Section 3, we consider the
convergence of global optimal solutions and stationary points of the relaxed problem.
We obtain some sufficient conditions of B-stationarity for a feasible point of the orig-
inal problem. In particular, we show that, under the MPEC-LICQ, an accumulation
point of stationary points of the relaxed problems is B-stationary for problem (1.1)
if the sequence generalized by the smallest eigenvalues of the Hessian matrices of the
corresponding Lagrangian functions of the relaxed problems is bounded below. These

new conditions can be verified easily in practice.

2 Some Results on Constraint Qualifications

In this section, we discuss constraint qualifications for problem (1.3). We let F and
F. denote the feasible sets of problems (1.1) and (1.3), respectively, and let, for ¢ =
1,2,---,m and z € R",

¢ei(2) = (Gi(2) +€)(Hi(z) +¢) — €7,
Vei(z) = Gilz)Hi(2) — €7,

and

cI)e(z) = (¢5,1(Z), ¢e,2(z)) Tty d’e,m(z))T,
\I/s,(z) = ("/’e,l(z)a "/)6,2'(‘2), Tty we,m(z))T-

Then we have

Véei(z) = (Gi(z) +e)VHi(2) + (Hi(z) +€)VGi(2), (2.1)
Vipei(2) = Hi(2)VG;(2) + Gi(2)VH;(2) (2.2)
fori=1,2,---,m and

V<I>e(z) = (v¢£,l(z)1 T v¢s,m(z))T,
V\I’E(Z) = (V'lpe,l(z)v T sz,m(z))T'

For a function F : R™ — R™ and a given vector z € R", we denote by
Ir(2) = {i: Fi(z) =0}

the active index set of F at z.
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Theorem 2.1 We have F = .5¢ Fe and, for any € > 0,
To.(2) N Ty (2) = 0. (2.3)
Proof: First of all, F C .5 F: is evident. Let 2 € .50 F:. Then for any £ > 0,

Gi(2)Hi(z) < €2,

Gi(2)H;(2) + €(Gi(z) + Hi(2)) > 0,
and so

e+ (Gi(z) + Hi(2)) > 0.
Letting € — 0, we have
Gi(2)Hi(z) =0, Gi(2) + Hi(z) >0, i=1,2,---,m.

This means that z € F and hence F = N, Fe.

Next we prove (2.3). Suppose that for some € > 0 and some z € F, i € Tp,(z) N
Zy,.(2). Then |

Gi(2)Hi(2) = €?,
Gi(2)Hi(2) + €(Gi(2) + Hi(2)) = 0.
Combining these equalities, we have
Gi(z) + Hi(z) +e=0.

It then follows that

0=¢® — Gi(2)Hi(2) = €2 + Hy(2)? + eHi(z) = (H,-(z) + %)2 + 213-52,

which is a contradiction and so (2.3) holds. O

Next we show that, in contrast with problem (1.1), problem (1.3) satisfies the

standard LICQ at a feasible point under some conditions.
Theorem 2.2 For any zZ € F, if the set of vectors
{Vg,(z), Vh(2),VGi(2),VH(Z) : 1 €T,(2), r=1,---,q, 1 € Ig(2) ﬂIH(:?)}

is linearly independent, then, for any fizred € > 0, there exists a neighborhood U.(Z) of
Z such that problem (1.3) satisfies the LICQ at any point z € U.(Z) N Fe.



Proof: For any z € F, it is obvious that
Yei(2) <0, i=1,2,---,m
and
$ea(2) =0 = i€ Ta(z)NTu(3).

On the other hand, it follows from the continuity of the functions g, ®., and ¥, that,
for any fixed € > 0, there exists a neighborhood U.(Z) of Z such that, for any point
z € U(Z) N Fe,

1,(2) S T,(3), To.(2) S To,(3), Tu.(2) C Tu.(2).
This means that all the functions
Geiy Vejy 1€Ic(Z)NZIu(Z), j=1,2,---,m
are inactive at z in problem (1.3). In addition, we have that
Hi(z)+e#0, Gi(z)+e#0, 1i€Isp(2).

From (2.1), we obtain the conclusion immediately. O

Remark: If z € F is nondegenerate or lower level strictly complementary, which

means
Is(2) N In(2) =0,
then the condition in Theorem 2.2 becomes very simple.

Under the MPEC-LICQ, we have the following stronger result in which the neigh-

borhood is independent of ¢.

Theorem 2.3 For any zZ € F, if the MPEC—LIC’Q holds at Z, which means
{VQI(E)a Vh'r(z)vVGi(Z)) VHJ(E) tle Ig(f), r= 1721 g, 1€ IG(Z)’ .7 € IH(Z)}

is linearly independent, then there exist a neighborhood U(Z) of Z and a positive constant
€ such that problem (1.3) satisfies the LICQ at any point z € U(Z) N F. for any
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Proof: We first consider matrix functions whose columns consist of the vectors
Vai(z): 1€ TIy(2),
Vh(z): r=1,2,---,q,
VG,'(Z) 1 E Ig( ) ﬂIH( )

VGi(z) + %ﬁ%—i—EVH (2) or VGi(2)+ HE ;VH-(z) : 1€ Ie(2)\ Iu(2),
VHj(Z) jE IG(E) ﬂIH(E),
VH,(z) + I—{—(itfvc (2) or VH(2)+ 5 v6.0): i e Ta)\ Zo(2).

Gj(2) + Gj(2)

Note that there are finitely many such matrix functions, which are denoted by
Ai(z,€), Aa(z,€),---, An(2,€). (2.4)

Rearranging components if necessary, we may suppose that all these matrices are con-

vergent to the same matrix A(Z) with columns

Va(z): eIy 2), (2.5)
Vh.(2): r=12,---,q, (2.6)
VGi(2): 1€Zg(2), (2.7)
VH(2): j€Tu(2), (2.8)

respectively, as 2z — Z and € — 0. It follows from the MPEC-LICQ assumption of
the theorem that A(Z) has full column rank. Since the functions G, H, and g are
continuous, there exist a neighborhood U(Z) of z and a positive constant £ such that
for any € € (0, ) and any point z € U(Z)NF,, all the matrices in (2.4) have full column

rank and

To(2) S To(2), Tu(x) STu(3), Ly(2) S T,(2). (2.9)

Now we let € € (0,€) and z € U(2) N F, and show that problem (1.3) satisfies the
LICQ at z. We suppose that the multiplief vectors A, i, 4, and ~y satisfy

Z /\val(z)+Zl~LTVh (2) + 2 5V¢ez( + z '7va€,.7(2) =0. (2.10)
leZy(z) i€y, (2) J€Tw (2)
By (2.1) and (2.2), we have
Y 6Vu(z) = Y G((H(2) +©VG(E) + (Gilz) + ) VHL())

€Ly, (2) i€y (2)NT(2)NTy ()
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+ > G(Hi(2)+e)(VGi(2) +
1€Zy, (2)\ZH(2)

+ Z 0:(Gi(2) +¢) (VHi(Z) + _7]-_5:

i€Zo, (N\Zo(2)

and

Y 4 VYe(2) = 3 vi(Hy(2)VG;(2) + G;(2) VH;(2))

J€Zy,(2) €Ty, (2)NIg(2)ZH(Z)

3 Gi(2)
+ iH;(2)(VGi(2) + 7= VH;
jezwe(z)\zﬂ(z)7 ( )( H;(2) i(z ))

t Y 66 (VHE) + G VEE)

i€Ty (2)\Zc(?)

Note that (2.3) and (2.9) hold. Then, renumbering terms if necessary, we can choose
a matrix Ax(z,€), 1 <k < N, in (2.4) so that (2.10) can be rewritten as

A
(0 )
7
(S](HI(Z) + Ee;)
. YrHi(2)
0
Sw(Hm(z) + cem)
Ax(z,€) yvHp(2) =0, (2.11)
0
51(G1(Z) +861)
11G1(2)

0
ov(Gv(z) + eey)
YvGw(2)

0

where

= Ts.(2) NZa(2) N Iu(2),
= Ty (2) NZe(Z) N Tu(2),
= Ts.(2) \ Zu(2),
= Zy.(2) \ Iu(2),
= To.(2) \ Lc(2),
VI = Iy.(2)\Ze(2),

<EE'§N
|

and ez = (1,1,---,1)T € R7l. Since Ai(z,¢€) has full column rank, it follows from
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(2.11) that the multiplier vector in (2.11) is zero. Noticing that

Hi(z)+e#0, Gi(z)+e#0, i € Ip, (2),
Hi(2) #0, Gi(z) #0, i € Ty (2),

and

we have from (2.11) that
(AT, /‘I‘T) 6T’ ’YT) = 0)

which implies that problem (1.3) satisfies the LICQ at z. This completes the proof. O

3 Convergence Analysis

In this section, we consider the limiting behavior of problem (1.3) as € — 0. First we

give the convergence of global optimal solutions.

Theorem 3.1 Let {&;} C (0,4+00) be convergent to 0 and suppose that z* is a
global optimal solution of problem (1.3) with ¢ = er. If z* is an accumulation point of

the sequence {2*} as k — oo, then z* is a global optimal solution of problem (1.1).

Proof: Taking a subsequence if necessary, we assume without loss of generality

that limy_.. 2* = z*. By Theorem 2.1, 2* € F. Since F C F,, for all k, we have
f(Z¥) < f(2), VzeF, Vk.
Letting k£ — oo, we have from the continuity of f that
f(z*) < f(z), VzeF,
i.e., 2* is a global optimal solution of problem (1.1). O

In a similar way, we can prove the next theorem.

Theorem 3.2 Let both {ex} C (0,+00) and {&} C (0,+00) be convergent to 0

and 2* € F,, be an i-approzimate solution of problem (1.3) with € = ¢, i.e.,

f(z'“) - & < f(z), VzeF,.
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Then any accumulation point of {z*} is a global optimal solution of problem (1.1).

Now we consider the limiting behavior of stationary points of problem (1.3). We
‘will use the standard definition of stationarity for problem (1.3), i.e., z is a stationary
point of problem (1.3) if there exist Lagrange multiplier vectors A € RP, u € RY, and
4,y € R™ such that

Vi(z)+ Vg(2)TA+ Vh(2)Tp — V. (2)T6 + V. (2)Ty =0, (3.1)
A>0, §>0, v>0, | (3.2)
9(2) <0, h(z) =0, ®.(2)>0, ¥ (2) <0, (3.3)
9(2)TA=0, &.(2)T6=0, T (2)Ty=0. (3.4)

For problem (1.1), Z € F is said to be a B-stationary point if it satisfies
dTVf(z) >0, Vde T(z,F), ' (3.5)

where 7T (z, F) stands for the tangent cone of F at z. As in [19], a feasible point Z is
called weakly stationary to problem (1.1) if there exist multiplier vectors A € RP, i € RY,
and @, 7 € R™ such that

Vf(z)+ Ve(Z)TA+ Vh(z)Ta - VG(z)Ta — VH(2)Ts =0, (3.6)

A>0, z2eF, Mgz =0, (3.7)
=0, i¢Ig(3), (3.8)
5, =0, i¢Iy(2). (3.9)

If the MPEC-LICQ holds at Z, then the definition (3.5) of B-stationarity can be restated
in terms of Lagrange multipliers [12,17,19]: Z is a B-stationary point of problem (1.1)
if there exist multiplier vectors A, fi, %, and ¥ such that (3.6)—(3.9) hold with

4; >0, 9, >0, i€Zg(Z)NTu(2). (3.10)

Obviously any weakly stationary point Z is B-stationary whenever Z satisfies the lower

level strictly complementarity condition
Ze(2) NIu(z) = 0.

Other two kinds of stationarity concepts for MPECs called C-stationarity and M-
stationarity [19], which are stronger than the weak stationarity but weaker than B-

stationarity, are also employed often. We say Z is C-stationary to problem (1.1) if
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there exist multiplier vectors X, i, @, and ¥ such that (3.6)-(3.9) hold and

uv; >0, 1€ IG(E) ﬁIH(f) (311)
and we say Z is M-stationary to problem (1.1) if, furthermore, either @; > 0, 7; > 0
or 4;7; = 0 for all i € Zg(Z) N Zy(Z2). In addition, a weakly stationary point Z € F of

problem (1.1) is said to satisfy the upper level strict complementarity condition if there

exist multiplier vectors A, i, %, and ¥ satisfying (3.6)—(3.9) and
wt; #0, 1€ IG(Z) ﬂIH(E). (312)

The upper level strict complementarity is weaker than the lower level strict comple-
mentarity. Also, it is obvious that any M-stationary point of problem (1.1) satisfying

the upper level strict complementarity condition is B-stationary.
Then we have the following convergence results.

Theorem 3.3 Let {ex} C (0,+00) be convergent to 0 and z* € F,, be a stationary
point of problem (1.8) with € = € for each k. Suppose that Z is an accumulation point
of the sequence {z*}. Then, if the MPEC-LICQ holds at Z, % is a C-stationary point
of problem (1.1).

Proof: Without loss of generality, we assume that
lim 2* = z. (3.13)
Since all the functions involved in problem (1.1) are continuous, F is closed and hence
Z € F by Theorem 2.1. It follows from the MPEC-LICQ assumption, (3.13), and
Theorem 2.3 that, for any sufficiently large k, problem (1.3) with € = ¢, satisfies the

LICQ at z* and hence, by the stationarity of 2*, there exist unique Lagrange multiplier
vectors A¥ € RP, uF € R9, and §%,7* € R™ such that

Vi (2*) + Vg(z*)TAF + VR(*)Tp* — V., (5)T6* + VT, ()Tv* =0,  (3.14)

Me>0, 6¥>0, v¥>0, (3.15)
g(z¥) <0, h(zF)=0, @, (2*)>0, ¥, (25 <0, (3.16)
g(Z) A =0, @, (576 =0, ¥, ()T =0. (3.17)

It follows from (3.15)—(3.17) that
M=0, i¢ T, (2, (3.18)
& =0, i¢Is, ("), (3.19)
=0, i¢Ty, (") (3.20)

209



210

Now suppose that, for all sufficiently large &, (3.14)—(3.17) hold and, in addition, the

conditions

Ia(2*) C Ta(2), Tu(z*) CIu(2), L,(*) CZ,(2) (3.21)
hold and all the matrix functions A;(z,¢), ¢ =1,2,---, N, in (2.4) defined in the proof
of Theorem 2.3 have full column rank at (z*,e;). By (2.1) and (2.2), we have

Ve, ()76 = Y SF((Hi(2¥) + ex) VGi(2¥) + (Gi(Z¥) + &) VHi(2Y))
i€Zg(2)NTH ()

+ Y SH(H(2Y) + &) (VGi(2F) +
i€Zg(2\Iu(2)

+ Y G + ) (VH() +
1€TH(2\Ic(2)

Gi(Zk) + &
Hi(Zk) + &g
H;(2%) + ek
Gi(z") + €k

VH;(2"))

VGi(2))

(3.22)

and

VI, ()T = Y 2 (Hi(NVG(ER) + Gi(2N)VH,(2Y)
€T ()T (Z)

| k

+ Y (V6N + g,ﬁ;i

i(2)

VH;(2"))

J€Zc(2)\TH(2)

+ 3 G(z")(VH(")-i— (k)vcj(zk)).
J€Tu(2)\Za(2)
(3.23)

Then, taking into account (2.3), we have from (3.14) and (3.18)—(3.23) that
—Vf(2¥) = Vg(2*)TA* + VR(F) Tk
~ Y (SH(H(E) + &) — vFHi(24)) VGi(2)
i€Lg(2)NZH(2)
Gi(z") + &k
H;(2F) + &
L okpr ok k , Gi(zF)
- Y (—AHEN) (VG + T )

i€Ty,, ("\Iu(2)

— Y (BHGHE) + k) — 1EGi(2)) VHI(2)

1€Te(H)NTH(Z)

- Y SH(E) +e) (VG + VH("))

i€Ty,, (2*)\Zu(2)

— 3 S (Gi(2%) +5k)(VH,-(z’“) g_g.;"ﬂ_ﬂ.vg( k))

i€T4,, (+)\Ta(2)

S Y (-G (VA + ) vee)

€Ty, (Z*N\Zu(2)




where u*, v* are given by

5{“(1‘[,-(2’“) +ek), 1€ Iq;sk (2¥)NZe(2)

uf = { =vFHi(2*), i € Iy, (2*) NZc(2)
0, i €T5(2) \ (Ta,, (2*) UTu, (29)),
85(Gi(2*) + ex), ie Ts, (2*) N ZIu(2)

vk = { —FGi(29), i € Iy, (2*) NIH(2)
0, i € Iy (2) \ (Ze., (z*) U Tu,, (29)),

(3.24)

(3.25)

(3.26)

respectively, and Ay, (z,¢€) is one of the matrix functions in (2.4). As we assumed

above, A, (2*,ex) has full column rank for all sufficiently large k. In consequence, it

follows from (3.13) and (3.24) that all the multiplier sequences
(N1 € I,(2)}, {uf :r=1,2,---,q},
{uF: ieZg(3)}, {v;c 1 j €Iy(2)}

are convergent. Define A € RP, i € R, and 4,7 € R™ as follows:

5 - [limee M, 1€ T(2)
T 0 , 1¢T,(2)

ﬂ,-=llm /'Lfv r=12---,q,

k—o0

_— limy o0 Uf , 1€ ZIg(2)
' 0 , 1¢Ig(2)

= limy o0 v;? , JE€ZIu(2)
’ 0 , J¢Iu(z)

Letting k — oo in (3.24) and noticing that

klim An, (2%, er) = A(2),

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

where A(Z) is the matrix with the columns (2.5)—(2.8), we have from (3.29)—(3.32) that

—Vf(z) = Vg()TA+ Vh(2)Ta — VG(2)Ta — VH(2)"7,
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i.e., (3.6) holds for the multiplier vectors A, &i, @, @. On the other hand, we have (3.7)-
(3.9) immediately from (3.15), (3.16), (3.29), (3.31), and (3.32). Then the rest of the
proof is to show (3.11). In fact, for each ¢ € Zg(2) N Iy (Z), we have from (2.3) and
(3.25)-(3.26) that

{ (0F)*(Hi(2*) + €x)(Gi(2*) + ex) = (0Fer)?, i € Ts, (2¥)
k

(V) Hi(2)Gi(2*) = (vfex)?, i € Iy, (2¥)
0, 1 ¢ Iq;s,c (Zk) U I\yek (Zk).

Letting k — 0o, we obtain (3.11) since the sequences {u¥} and {vf} in (3.28) are

convergent. Hence Z is a C-stationary point of problem (1.1). This completes the

proof. O

From the definitions of B- and C-stationarity, we have the following result immedi-

ately.

Corollary 3.1 Let the assumptions in Theorem 3.3 be satisfied. If, in addition, Z

is nondegenerate, then it is a B-stationary point of problem (1.1).

Next we consider some other sufficient conditions on M- and B-stationarity. We say
z € R" satisfies the second-order necessary conditions for problem (1.3) if there exist
multiplier vectors A € RP,u € R?, and 8,7 € R™ such that (3.1)—(3.4) hold and, in
addition,
dTV2L (2, M\, p1,8,7)d > 0, Vd € T.(2), (3.33)
where
Le(2, M, 1,7, 8) = f(2) + ATg(2) + uTh(2) — 7@, (2) + 77 ¥(2)
stands for the Lagrangian of problem (1.3) and
T(z)={deR": d"V.i(z) =0, i € Lo (2);
d"Vie ;(2) =0, j € Ty, (2);
dTVg(2) =0, l € T,(2);
d"Vh,(z) =0, 7 =1,2,---,q}.
We next introduce a new kind of conditions which are weaker than the second-order
necessary conditions for problem (1.3). Suppose that « is a nonnegative number. We

say that, at a stationary point z of problem (1.3), the matrix V2L.(z, ), u,4,7) is

bounded below with constant « on the corresponding tangent space 7.(z) if

dTV2L,(2, A\, 1, 6,7)d > —al|d||?, Vd € To(2). (3.34)
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A few words about (3.33) and (3.34): The condition (3.34) is clearly weaker than
(3.33). In fact, for the matrix V2L.(2, A, u,6,7), there must exist a number a such
that (3.34) hold. For example, any « such that —« is less than the smallest eigenvalue
of V2L (z, A, it,d,~) must satisfy (3.34). However, the condition (3.33) means that the
matrix V2L.(z, A, ,d,7) should have some kind of semi-definiteness on the tangent
space T.(z). Note that, in (3.34), the constant —a may be larger than the smallest

eigenvalue mentioned above.

Theorem 3.4 Let {¢,} C (0,+00) be convergent to 0 and zF € F., be a stationary
point of problem (1.8) with € = €, and multiplier vectors A\*, u*, 6%, and v*. Suppose
that, for each k, V2L, (2*,\¥, u*,6%,~+%) is bounded below with constant ay on the
corresponding tangent space T, (2¥). Let Z be an accumulation point of the sequence
{z*}. If the sequence {ax} is bounded and the MPEC-LICQ holds at %, then Z is an
M-stationary point of problem (1.1).

Proof: Assume that lim,_., 2z = Z without loss of generality. First of all, we
note from Theorem 3.3 that Z is a C-stationary point of problem (1.1). To prove the
theorem, we assume to the contrary that Z is not M-stationary to problem (1.1). Then,
it follows from the definitions of C-stationarity and M-stationarity that there must exist

an ig € Ig(z) N Iy(Z) such that
Uy, <0, T, <0. (3.35)
By (3.25)—(3.26) and (3.31)—(3.32), we have
io € T, (") UTy,, (2F)

for every sufficiently large k. First we consider the case where iy € Ty, (2*) for infinitely
many k. Furthermore, taking a subsequence if necessary, we may assume without loss

of generality that
ip € Iy, (2°) (3.36)

for all sufficiently large k. Then, by (3.25) and (3.26),

aio = _kli_'r{.lo'%{;}‘{io(zk) < 01 (337)
B, = —lim £ Gy, (2¥) <0, (3.38)

and so

. H (25
lim =22 2 _ o -, ’ 3.39
Jim G~ Ta >0 (3.39)

213



In what follows, we suppose that, for all sufficiently large &, (3.14)-(3.17), (3.21), and

Hi (Zk)

() "

hold and all the matrix functions A;(z,¢), ¢ = 1,2,---, N, in (2.4) have full column

rank at (2*,¢;). For such k, the matrix Ay, (2%, ex) whose columns consist of the vectors

Va(2¥): e I,(z),
Vh(z¥): r=1,2,---,q,

VGi(z*) : i€ (Ze(2) NTu(2) U (Zo(2) \ (Ta,, () UTs,, (),

(2F k . _
VGi(2*) + %ci—iz—kVHi(zk) D i €Ty, () \ Iy (2),
(K Gi(2*) (kY . . k _
VG!(Z ) + Hi(zk)le(“ ) . S I‘I’sk (Z ) \IH(Z)a
VH;(Z): j € (Za(2) NTu(2)) U (Tu(2) \ (Ze., (2*) U Ty, (),
VH(#) + GAR T V() ¢ € Te, (4)\ Talz),
k Hj(zk) k . k -
VH () + Zm Vi) - j € Ta, (M) \ Z(2)

has full column rank. Therefore, we can choose a vector d* € R™ such that

(d*)TV g (2*) =0, 1€ T,(2);
(dk)TVhr(zk) =0, r=12,---,q;

(3.40)
(3.41)

(d*)TVGi(2*) =0, i€ (Za(2) NZu(2)) U (Za(2) \ (Ta,, (2*) U Ty, (21))), i # io;

(kY ]
(@) (VGi(2*) + %g,%—iZVHi(zk)) =0, i€ Ty, (2)\ZIn(2);
(@7 (VGi(z*) + flgg VH(2) =0, i€y, (2)\Tu(2);

(3.42)
(3.43)

(3.44)

(d)TVH;(2*) =0, j € (Ze(2)NZu(2) U (Zu(2) \ (Ze., (2*) ULy, (24)), J # io;

(dk)T(VHj(zk) + gf%;—}z—:vcj(zk)) =0, j€Is, () \Zc(2);
(oK '
@) (VH ) + G VEH) =0 5 € Tuy (H\ Zo(@)
(d)TVG,(2*) = 1;
(k
P - )

(3.45)
(3.46)

(3.47)

(3.48)
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Then for any i € Zs, (2*) and any j € Ty,, (2*), since

Ve, i(2F) = (Gi(2F) + ex) VH;(2*) + (Hi(2F) + €:) VGy(2Y),
Vipe, i(2%) = H;(Z")VG;(2*) + G;(2F)VH;(2Y),

we have

@)V, i(z5) =0, i€y, (),
(d*) Ve, i(25) =0, j € Ty, ("),

and so d* € T;,(2*). Furthermore, we can choose the sequence {d*} to be bounded.
Since V2L, (2%, ¥, ¥, 6, 4*) is bounded below with constant oy on the corresponding

tangent space 7;, (2*), we have from (3.34) that there exists a constant C such that
(@*)TV2Le, (2%, N, u*, 6%, vF)d > —au||d*|? > C, (3.49)

where the last inequality follows from the boundedness of the sequences {ax} and {d*}.
Note that

p q
V2L, (25, 06, 15 4%, 8%) = V2F(F) + 30 NV2g(F) + 3 pk 2k, (o)

=1 r=1

— 3 5V, () + 3 1V, ()
. P

i=1

= V() + Y Afvzg,(zk)+fjufv2h,(zk)

leZ,(2) : r=1

- Z 6ikv2¢ek,i(zk) + Z 7;V2¢ek,j(zk)

€Ty, (%) J€Ty,, (2%)
by (3.18)—(3.20) and
V2¢ek,,—(zk) = VGi(Zk)VHi(Zk)T + VHi(Zk)VGi(Zk)T
+(Gi(2¥) + ex) VEH(2¥) + (Hi(2*) + er) VZGi(2¥),
Ve i(2%) = VG;(2*)VH;(2*)T + VH;(z*)VG;(*)T
+G’j(z")V2Hj(zk) + Hj(z"’)V"’Gj(zk).
We then have

(d) TV L, (25, N5, , 6%, 7*)d"
q
= @)V (N + 30 N(d) V() + 3 pr(d)TV?he () d

leTy(z) r=1



— > (@G VH ()T + (d°) TV Hy(2F)VGi(2*)Td*
iGLpsk(Zk)
+ (Gi(2") + &) (d)TVEH (2 )d" + (Hi(2*) + &) (@) TV?Gi(24)d¥)
+ Y A (@)TVG(ZF)VH;(2F)Tdk + (dF) TV Hy(2*)VG,(2F)TdE
j€Ty,, (%)

+ G;(2%)(@*) TV H;(2*)d* + H;(2*)(d*)TV?Gj(2*)d). (3.50)

By the twice continuous differentiability of the functions, the boundness of the sequence
{d*}, and the convergence of the sequences {2*}, {A\F} and {u¥} (by (3.29)—(3.30)),

the terms

@A, T M@, S @)V, (4

1€Z4(2) r=1

are all bounded. Consider arbitrary indices 7 and j such that i € Zs,, (2*) for infinitely

many k and j € Zy,, (2*) \ {4} for infinitely many k, respectively. If
| i€ To(2)NTu(z) or j€Io(z)NIu(?),
then
(d*)TVG;(2F) = 0 or (d*)TVH;(z*) =0
and, by (3.25)—(3.26) and (3.31)—(3.32), the sequences
{eeH+en} (o) +en),
and
(e}, {kmeEn}
are all convergent. If
i,J ¢ Ia(2) N Iu(2),

then, also by (3.25)-(3.26) and (3.31)—(3.32), the sequences {6f} and {75} are conver-
gent. Therefore, we have that the terms
> SF((@)TVGi()VH(*)Td* + (&) VHi(2*)VGi(2*)Td* +
i€ly,, (%)

(Gi(2*) + ex) () "V2Hy(2*)d* + (Hi(2¥) + e)(d*)TV2Gi(2*)d¥)
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> (@)Y () VH ()T d + (a5 VH,(2*)VGy(F)Td* +
€T, (2*)\(io}

G3(2)(d) TV H;(2*)d* + H;(2*)(d)TV?Gj(*)d¥)

are bounded. On the other hand, however, we have (3.36) for all sufficiently large k

and

7 ((d%)TVGiy (2% V Hiy (25)Td* + (d°)TV Hig (%) VG (2¥)Td*

+Gig (25)(d¥)T V2 Hio (2)d¥ + Hiy (2%)(d¥)T VGl (2¥)d") (3.51)
2’7{; H;, (%)

T Gy

+ o (Ca () (@) TV Hig(4)d* + Hiy (24) (@) V2Gy (24)d) .

Since (3.39) holds and vf — +o00 as k — oo by (3.15) and (3.37), we have

_ 2’)‘1’:)H1,,0 (Zk)
Gio(‘zk)

as k — oco. Note that, by (3.37) and (3.38), the sequences
{#6u@} {hHEN)

are also convergent. We then have that the term (3.51) tends to —oo as k — oo.
Therefore, it follows from (3.50) that

—00

(@)L, (25,3, 15, 6%, 1*)d* — —o0
as k — oo. This contradicts (3.49) and hence Z is M-stationary to problem (1.1).

Finally we consider the case where iy € Zs,, (2*) for infinitely many k. By (3.25)
and (3.26), we have from (3.35) that

U, = kh—»r{olo (Sfo (Hio (Zk) + Ek) <0,
i, = Jim 6% (Gig(2*) +ex) <0,

and so

H; (2* c U
lim ~—————°(z )tex _ Li

= > 0.
k—o0 G’io (Zk) + €k Ui,

Therefore, we can also choose a bounded sequence {d*} such that (3.40)—(3.48) and

Hio (Zk) + &k

(d")TVH,(2*) = - Gl ¥ or
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hold for each k. In a similar way, we then obtain a contradiction and so Zz is M-

stationary to problem (1.1). This completes the proof. O

Corollary 3.2 Let {ex}, {2*}, and Z be the same as in Theorem 3.4. If 2* together
with the corresponding multiplier vectors \¥, u* 8%, and +* satisfies the second-order
necessary conditions for problem (1.3) with € = ¢, and the MPEC-LICQ holds at Z,
then z is an M-stationary point of problem (1.1).

Corollary 3.3 Let the assumptions in Theorem 3.4 be satisfied. If, in addition,
Z satisfies the upper level strict complementarity conditions, then it is a B-stationary

point of problem (1.1).

The last corollary establishes convergence to a B-stationary point under the second-
order necessary conditions and the upper level strict complementarity. These or similar
conditions have also been assumed in [6, 8, 9, 19], but they are somewhat restrictive
and may be difficult to verify in practice. The next theorem provides a new condition
for convergence to a B-stationary point, which can be dealt with more easily. We note
that, unlike [6, 8, 9, 19], it relies on neither the upper level strict complementarity nor

the asymptotic weak nondegeneracy.

Theorem 3.5 Let {e;}, {2*}, and Z be the same as in Theorem 3.4 and \*, u*, &%,
and v* be the multiplier vectors corresponding to z*. Let B« be the smallest eigenvalue
of the matriz V2L, (2%, X, y¥, 6%,+%). If the sequence {Bx} is bounded below and the
MPEC-LICQ holds at Z, then Z is a B-stationary point of problem (1.1).

Proof: Tt is easy to see that the assumptions of Theorem 3.4 are satisfied with
ay = max{—[, 0} and so Z is an M-stationary point of problem (1.1). Suppose that z
is not B-stationary to problem (1.1). Then, by the definitions of B- and M-stationarity,
there exists an iy € Zg(Z) N Zy(Z) such that

Uip <0, Ty=0 (3.52)
or

Gy =0, Ty <O0.
By (3.25)—(3.26) and (3.31)—(3.32), we have

g € Iq;sk (Zk) U I\y% (Zk)

for every sufficiently large k. Without loss of generality, we assume that (3.52) holds.
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First we consider the case where ig € I\I,Ek(z"') for infinitely many k. By taking a

subsequence if necessary, we assume
ip € Ty, (2°) (3.53)
for all sufficiently large k. Then, it follows from (3.25), (3.26), and (3.52) that
Ty = — lim ’yl i(25) <0
and so, by (3.15), we have
lim v} = +o00. (3.54)

k—o0

Now we suppose that, for all sufficiently large k, (3.14)—(3.17) and (3.21) hold and the
matrix Ay, (2*, €x) defined in the proof of Theorem 3.4 has full column rank. Therefore,

we can choose a vector d* € R™ such that

(d*)TVg(2*) = 0, 1eT,(2);

(d*)TVh,(2F) =0, r=12,---,q;

(d)TVGi(*) =0, i€ (Ta(2) NTu(2) U (Ta(2) \ (Zo., (2*) UTw,, (), i # io;
(dk)T(VG'i(Zk) + f;—gz-,;gj—_—zv}[z(zk)) = 0, 1 € Iq;sk (Zk) \IH(E);

@ (V60 + PEITHEH) =0, i € Tu, ()\Tu(2)

(d)TVH;(z*) =0, j € (Zs(2) nIH(Z)) U (Zu(2) \ (Ta, (*) UTw,, (), § # io;
(@) (VHH) + G an VG5 () =0, 5 € Toy, () \ Tol)

@ (VHH + G AVG,H) =0, € T, (4)\Tol();

(d)TVGi (") = 1;
(d*TVH,, () = —1.

Furthermore, we can choose the sequence {d*} to be bounded. By the assumptions of

the theorem, there exists a constant C such that
(@) TV2Le, (2%, X, ¥, 8%, 7¥)d* 2 Billd™||* > C (3.55)
holds for all k. In a similar way to the proof of Theorem 3.4, we can show that all the
terms on the right-hand side of (3.50) except
7 () TV G () V Hiy (25)7d" + (@) TV Hi (25) VG ()
+Gi0(lk)(dk)Tv2 (~ )dk + Hzo( k)(dk)Tv2 ( L)dk)
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are bounded. On the other hand,

v ((85)TV Gy (25)VHig (2)Td* + (¢)TVH;y (25)VGig(24)Td¥) = =29 — —o0

to

by the definition of {d*} and (3.54), and
71":; (Gio (Zk')(d’“)TV2Hio (zk)dk + Hio(zk)(dk)TV2Gio (zk)dk)
is bounded by the convergence of the sequences
{16} {rHu )}
In consequence, we have
(d)TV2Le, (2%, XF, 1%, 6%, /¥)d* — —oo
as k — co. This contradicts (3.55) and hence Z is B-stationary to problem (1.1).

For the case where iy € Zg,, (2*) for infinitely many k, we can show that z is B-
stationary to problem (1.1) in a similar way as in the proof of Theorem 3.4. This

completes the proof. O

4 Concluding Remarks

In this paper, we have proposed a modified relaxation scheme for a mathematical
program with complementarity constraints. The new relaxed problem involves less
constraints than the one considered by Scholtes [19]. All desirable properties estab-
lished in [19] remain valid for the new relaxed problem. In addition, we obtain some
weaker sufficient conditions for B-stationarity described by the eigenvalues of the Hes-
sian matrix of the Lagrangian of the relaxed problem. From the proof, it is easy to
see that, even if the matrix mentioned above is replaced by the Hessian matrix of the

simpler function
EE(Z,'Y., 6) = 'YT\IIE(Z) - 6Tq)e(z)’

ail the results remain true. Similar extension is possible for the relaxation schemes
presented by Scholtes [19] and Lin and Fukushima [11] as well.
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