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1 Introduction

The purpose of this note is to introduce some results in [AC]. In [ACKY], anew space $Z$ and
the continuous map from $Z$ to itself have been constructed by the geometrical method. The
structure of $Z$ changes corresponding to the behavior of acontinuous map $f$ from afinite graph
to itself and the method of choosing an invariant subset of $f$ . And it is shown that the space $Z$ is
aregular curve. The pointwise $P$-expansiveness plays an important role to decide the structure
of the space $Z$ . In this note, first we introduce that, for each continuous map $f$ from the unit
interval to itself, $f$ has positive topological entropy if and only if $f$ is pointwise $P$-expansive for
some periodic orbit $P$ of $f$ .

The notion of chaos is important in the study of topological dynamical systems. The paper
in which the word “chaos” first appeared was written by Li and Yorke [LY]. The word “chaos”,
however, is described by various definitions. One of those definitions is proposed by Devaney [D]
as in Definition 1.1. Huang and Ye have showed that every chaotic map in the sense of Devaney
from acompact metric space to itself is chaotic in the sense of Li-Yorke [HY].

Definition 1.1 Let $f$ be acontinuous map from acompact metric space $(X, d)$ to itself. This
map $f$ is chaotic in the sense of Devaney if

(1) $f$ is topologically transitive, that is, for any non-empty open sets $U$ and $V$ in $X$ , there
exists some non-negative integer $k$ such that $f^{k}(U)\cap V\neq\emptyset$ ,

(2) the set of all periodic points of $f$ is dense in $X$ , and

(3) $f$ has sensitive dependence on initial conditions, i.e., there exists anumber $\delta>0$ such that
for every point $x$ of $X$ and every neighborhood $V$ of $x$ , there exists apoint $y$ of $V$ and $\mathrm{a}$

non-negative integer $n$ such that $d(f^{n}(x), f^{n}(y))>\delta$ .

In [BBCDS], it is shown that the above conditions (1) and (2) imply the condition (3).
Furthermore in [BV], it is proved that, for continuous maps from the unit interval to itself,
Condition (1) implies both Conditions (2) and (3), that is, continuous maps from the unit interval
to itself are topologically transitive if and only if those are chaotic in the sense of Devaney. Every
chaotic map in the sense of Devaney has positive topological entropy on the unit interval [BC].
However, the reverse is false, that is, every continuous map from the unit interval to itself with
positive topological entropy is not necessarily chaotic in the sense of Devaney. So the following
natural question arises :When $f$ is acontinuous map from the unit interval to itself having
positive topological entropy, does there exist achaotic map $g$ from some good space $Z$ to itself
in the sense of Devaney which is semiconjugate to $f$ and which has positive topological entropy
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Sharkovsky’s theorem is the well-known and impressive results about the $\mathrm{c}0$-existence of
periods of periodic orbits of continuous maps from the unit interval to itself. The following is
Sharkovsky ordering for positive integers :

$3\prec 5\prec 7\prec 9\prec\cdots\prec 2\cdot$ $3\prec 2\cdot$ $5\prec\cdots\prec 2^{2}\cdot$ $3\prec 2^{2}\cdot$ $5\prec\cdots\prec 2^{3}\prec 2^{2}\prec 2\prec 1$

Theorem 1.2 [S] Let $f$ be a continuous map from the unit interval to itself. If $f$ has a periodic
orbit of period $n$ and if $n\prec m$ in the above $order\cdot ng$, then $f$ also has a $per\cdot odic$ orbit of period
$m$ .

As for continuous maps from the unit interval to itself, it is known that those have positive
topological entropy if and only if there existsa periodic orbit with period excepta power of
2 [$\mathrm{B}\mathrm{C},\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}$ $\mathrm{I}\mathrm{I}.14$ and Proposition $\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}.34$] . Hence the above question cm be expressed as
follows:When $f$ is acontinuous map from the unit interval to itself having aperiodic orbit with
period except apower of 2, does there exist a chaotic map from some good space to itself in the
sense of Devaney which is semiconjugate to $f$ and which has positive topological entropy? In
this note, it is reported that if a continuous map $f$ from the unit interval to itself has a periodic
orbit with odd period, then there exists a chaotic map from adendrite to itself in the sense of
Devaney which is semiconjugate to $f$ and which has positive topological entropy.

2 The elementary properties of pointwise $P$-expansive maps

Adendrite is alocally connected, uniquely arcwise connected continuum (see [$\mathrm{N}$ , Chapter $\mathrm{X}$]
for properties of dendrites). Let $\mathrm{Y}$ beasubspace of adendrite $X$ . We denote the minimum
connected set containing $\mathrm{Y}$ by [V]. Particularly, if $\mathrm{Y}=\{x, y\}$ , then express $[\mathrm{Y}]=[x, y]$ . Let
$(x, y)=[x, y]\backslash \{x, y\}$ and $[x,y)=[x, y]\backslash \{y\}$ . And write the closure of $\mathrm{Y}$ in $X$ by C1(Y). We
denote the interior of $\mathrm{Y}$ in $X$ by Int(Y) and $\mathrm{B}\mathrm{d}(\mathrm{Y})=\mathrm{C}\mathrm{l}(\mathrm{Y})\backslash \mathrm{I}\mathrm{n}\mathrm{t}(\mathrm{Y})$. For any set $A$ , $|A|$ means
the cardinality of $A$ .

Topological entropy is one of methods to measure how complicated adynamical systems is.
The definition is as follows:

Definition 2.1 Let $f$ and $(X, d)$ be as in Definition 1.1. And let $n$ be apositive number, $\mathrm{Y}\subset X$

and $\epsilon$ $>0$ . Define anew metric $d_{n}$ on $X$ by $d_{n}(x,y)= \max\{d(f^{k}(x), f^{k}(y))|0\leq k<n\}$ . Aset
$E\subset \mathrm{Y}$ is said to be $(n,\epsilon, \mathrm{Y}, f)$ -separated(by $f$ ) if $d_{n}(x, y)>\epsilon$ for any $x$ , $y\in E$ with $x\neq y$ .
Denote $s_{n}(\epsilon, \mathrm{Y}, f)$ the biggest cardinality of any $(n,\epsilon, \mathrm{Y}, f)$-separated set in Y. Define

$s( \epsilon, \mathrm{Y}, f)=\lim_{narrow}\sup_{\infty}\frac{1}{n}\log s_{n}(\epsilon, \mathrm{Y}, f)$ .

Now we define the topological entropy of $f$ on the set $\mathrm{Y}$ as

$h(f, \mathrm{Y})=\lim_{\epsilonarrow 0}s(\epsilon, \mathrm{Y}, f)$ .

$h(f)=h(f,X)$ is said to be atopological entropy of $f$.

Lemma 2.2 Let f and (X, d) be as in Definition 1.1 and let $\epsilon_{0}>0$ . If $d(\mathrm{Y}_{0}, \mathrm{Y}_{1})>\epsilon_{0}$ and
$\mathrm{Y}_{0}\cup \mathrm{Y}_{1}\subset f(\mathrm{Y}_{0})\cap f(\mathrm{Y}_{1})$ for some subspaces $\mathrm{Y}\circ$ , $\mathrm{Y}_{1}$ of X, then $h(f)\geq\log 2$ .
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Denote I $=[0,$ 1]. Let f : I $arrow I$ be acontinuous map from I to itself with aperiodic orbit
P. We denote the set of all components of $I\backslash P$ contained in [P] by $S(I,$P).

Notice 2.3 In this note, we denote every periodic orbit P of f : I $arrow I$ with period n by
P $=\{p_{0},p_{1}, \ldots,p_{n-1}\}$ with $0\leq P\mathrm{o}<p_{1}<\cdots<p_{n-1}\leq 1$ .

Definition 2.4 Acontinuous map $f$ : $Iarrow I$ is pointwise $P$-expansive if for every element
$C=(p_{k},p_{k+1})$ of $S(I, P)$ , there exists apositive integer $\ell$ such that $(f^{\ell}(p_{k}), f^{\ell}(p_{k\dagger 1}))\cap P$ I $\emptyset$ .
Note that if $f$ is pointwise $P$-expansive, then $|P|\geq 3$ .

Lemma 2.5 [$\mathrm{B}\mathrm{C}$ , Lemma 1.4] Let $f$ : $Iarrow I$ be a continuous map and let $J\circ$ , $J_{1}$ , $\ldots$ , $J_{m}$ be
compact subintervals of I such that $J_{k+1}\subset f(J_{k})(0\leq k\leq m-1)$ and $J\circ\subset f(J_{m})$ . Then there
exists a point $x$ such that $f^{m+1}(x)=x$ and $f^{k}(x)\in J_{k}(0\leq k\leq m)$ .

The following lemma is derived from Lemma 2.5 and the definition of pointwise P-expansive.

Lemma 2.6 Let $P$ be a periodic orbit of $f$ : $Iarrow I$ as in Notice 2.3. If $f$ is not pointwise
$P$-expansive, then there eists a periodic orbit of $f$ with period $\frac{n}{2}$ , thus $n$ is even. Hence, if
$n$ is odd or the supremum in the Sharkovsky ordering except a power of 2, then $f$ is pointwise
$P$ -expansive.

By the above lemmas, we see the following theorem.

Theorem 2.7 Let $f$ : $Iarrow I$ be a continuous map. The following statements are equivalent:
(1) $f$ has positive topological entropy, and
(2) $f$ is pointwise $P$ -ezpansive for some periOdic orbit $P$ of $f$ .

3 The constructions of the dendrite $Z(f,$P)

In [ACKY], aregular curve $Z$ has been constructed from acontinuous map $f$ from afinite
graph to itself and an $f$-invariant subset of the finite graph. In this section, under some natural
restriction, the dendrite $Z(f, P)$ is constructed ffom a continuous map $f$ : $Iarrow I$ and aperiodic
orbit $P$ of $f$ . Let $P=\{p_{0},p_{1}, \ldots,p_{n-1}\}$ be aperiodic orbit of $f$ as in Notice 2.3 and suppose
that $f$ is pointwise $P$-expansive. Let $C$ , $C’$ be elements of $S(I, P)$ . If $C’\cap f(C)\neq\emptyset$ , then
write $Carrow \mathrm{G}$ . And let $C_{i}$ be an element of $S(I, P)$ satisfying $\{p_{i},p_{i+1}\}=\mathrm{B}\mathrm{d}(C_{i})$ for each $i=$

$0$ , 1, $\ldots,n-2$ . Let $B_{i}= \{(x,y)|(x-i-\frac{1}{2})^{2}+y^{2}\leq\frac{1}{4}\}$ be adisk in the two dimensional Euclidean
space for each $i=0,1$ , $\ldots$ , $n-2$ . Since each element Ci of $S(I, P)$ can be matched off against
each $B_{i}$ , we put $A0=\{B_{i}|C_{i}\in S(I, P)\}$ . And write $P\circ=\{(0,0), (1,0), (2,0), \ldots, (n-1,0)\}$

and $X_{0}=\cup A0$ (see Figure 1).

Let $X(i)=\cup\{Bj|C_{i}arrow C_{j}\in S(I, P)\}$ for each $i=0,1$ , $\ldots$ , $n-2$ and let $h_{i}$ : $X(i)arrow B_{:}$ an
embedding satisfying the following (i) and (ii) :
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(i) $h_{i}(X(i))\cap \mathrm{B}\mathrm{d}(B_{i})=P_{0}\cap \mathrm{B}\mathrm{d}(B_{i})$ .

(ii) If $f(p_{i})=pj$ and $f(p_{i+1})=pj^{\prime,\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}h_{i}((j,0))=}(i, 0)$ and $h_{i}((j’, \mathrm{O}))=(i+1, 0)$ .

Denote $D_{k}=\{(i0,i_{1}, \ldots, i_{k})|C_{i_{\mathrm{O}}}arrow C_{i_{1}}arrow\cdotsarrow C_{i_{k}}\}$ , where $C_{i_{j}}$ is an element of $S(I, P)$ for
each $j=0,1$ , $\ldots$ , $k$ . And put $B_{i_{0},i_{1},\ldots,i_{k}}=$ $(h_{i_{0}}\mathrm{o}h_{i_{1}}\circ\cdots \mathrm{o}h_{\iota_{k-1}})(B_{i_{k}})$ , where $(i0, i_{1}, \ldots, i_{k})$ $\in D_{k}$ .
Set $A_{k}=\{B_{i_{0},i_{1},\ldots,i_{k}}|(i_{0}, i_{1}, \ldots, i_{k})\in D_{k}\}$ and $X_{k}=\cup A_{k}$ . And denote $pi_{0},i_{1},\ldots,i_{k-1},j_{k}=(h_{i_{0}}\circ$

$h_{i_{1}}\mathrm{o}\cdots$ $\mathrm{o}h_{i_{k-1}}$ ) $((j_{k}, 0))$ , where $(i0, i_{1}, \ldots,i_{k-1})\in D_{k-1}$ and $(j_{k}, \mathrm{O})\in X(ik-1)$ (see Figure 2).
Moreover since the map $f$ is pointwise $P$-expansive, we may assume that for any $\epsilon>0$ , there

exists a positive integer $k$ such that the diameter of each element $B_{i_{0},i_{1},\ldots,i_{k}}$ of $A_{k}$ is less than
$\epsilon$ . Define $X arrow=\bigcap_{k=1}^{\infty}X_{k}$ . Since any two points of $Xarrow \mathrm{a}\mathrm{r}\mathrm{e}$ separated in $Xarrow \mathrm{b}\mathrm{y}$ athird point of
$Xarrow$ , we see that $Xarrow$ is adendrite by [$\mathrm{N}$ , Theorem 10.2, p.166].

Figure 2.

Next let us define amap $\pi$ : $Iarrow Xarrow \mathrm{a}\mathrm{s}$ $(\mathrm{a})$ and (b) :

(a)
$\pi(t)=\bigcap_{k=0}^{\infty}B_{i_{0},i_{1},\ldots,i_{k}}\mathrm{C}1(C_{i_{k}}).$

’ if for each $k\geq 0$ there exists $C_{i_{k}}\in S(I, P)$ such that $f^{k}(t)\in$

When there exists $m= \min\{k|f^{k}(t)\not\in[P]\}$ , define as the following:

(b) $\pi(t)=\{$

$p_{\dot{\iota}_{0},\dot{\iota}_{1}},\ldots,:_{m-1},0$ if $f^{m}(t)\in[0,n]$ and $m\neq 0$

$p_{0}$ if $f^{m}(t)\in[0,p\mathrm{o}]$ and $m=0$
$pi_{0},i_{1},\ldots,i_{m-1},n-1$ if $f^{m}(t)\in[p_{n-1},1]$ and $m\neq 0$

$p_{n-1}$ if $f^{m}(t)\in[\mathrm{p}_{n-1},1]$ and $m=0$

This map $\pi$ is well-define$\mathrm{d}$ and continuous by the natural construction. Indeed, for each
element $t$ of $I\backslash P$ and neighborhood $V$ of $\pi(t)$ in $Xarrow$ , there exists some element $B_{i_{0},i_{1},\ldots,i_{k}}$ of $A_{k}$

such that $\pi(t)\in B_{i_{0},i_{1},\ldots,:_{k}}\cap Xarrow\subset V$ . Then by the construction of $Xarrow,\cap^{k}f^{-j}(\mathrm{C}1(C_{i_{j}}))j=0$ is a

non-empty subset containing $t$ and $\pi(\cap f^{-j}(\mathrm{C}1(C_{\dot{l}_{\mathrm{j}}})))j=0k\subset V$. Since $\cup\{\cap^{k}f^{-j}(\mathrm{C}1(C_{i_{j}}))j=0|\pi(t)\in$

$\pi(\cap^{k}f^{-j}(\mathrm{C}1(C_{i_{j}})))j=0\subset V\}$ is aneighborhood of $t$ in $I$ , $\pi$ is continuous.

Set $Z(f, P)=\pi(I)$ , which is adendrite. Because every subcontinuum of adendrite is a

dendrite. Define amap $g$ : $Xarrowarrow Xarrow \mathrm{b}\mathrm{y}$
$g(\cap\infty B_{01}.\cdot,:,\ldots,i_{k})=\cap\infty B_{i_{1},i_{2},\ldots,:_{k}}$ , then the map $g$ is

$k=0$ $k=1$
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well-defined and continuous. The map $\pi$ is asemi-conjugacy between f and g, i.e. it is surjective
and satisfies $\pi$ of $=g\circ\pi$ . See [ACKY] for details. We notice that $g(p_{i_{0},i_{1},\ldots,i_{m}})=pi_{1},i_{2}$ , ’

$i_{m}$ ,
thus, $g^{m}(p_{i_{0},i_{1},\ldots,i_{m}})\in\pi(P)$ .

Notice 3.1 Let $P$ be aperiodic orbit of $f$ as in Notice 2.3. By the construction of $Z(f, P)$ and
the pointwise $P$-expansiveness of $f$ , we see that $\pi^{-1}(B_{i}\cap Z(f, P))\subset C_{i-1}\cup \mathrm{C}1(C_{i})\cup C_{i+1}$ for
each $B_{i}\in A0$ . Particularly, it follows that $\pi^{-1}(\pi(p_{i}))\subset C_{i-1}\cup\{p_{i}\}\cup C_{i}$ .

4 The relationship between the cardinality of P and the chaotic-
ity of $g$

In this section, we introduce the relationship between the cardinality of $P$ and the behavior
of $g$ : $Z(f, P)arrow Z(f, P)$ constructed in Section 3. The following lemmas are derived by the
periodicity of $P$ .

Lemma 4.1 Let f : I $arrow I$ be a continuous map and let P a periodic orbit of f as in Notice
2.3. For each element C of $S(I, P)_{f}$ there eists a natural number k such that $C_{0}\subset f^{k}(C)$ .

Lemma 4.2 Let $f$ : $Iarrow I$ be a continuous map and let $P$ a periodic orbit of $f$ with odd
period $n$ as in Notice 2.3. If $n$ is prime or $ihe$ supremum in the Sharkovsky orde ring, then
$[P]\subset f^{\ell}(\mathrm{C}1(C_{0}))$ for some $\ell$ .

In the following theorem, the topological $m\ddot{m}ng$ means the following :

For every pair of non-empty open sets $U$ and $V$ , there exists apositive integer $N$

such that $f^{k}(U)\cap V\neq\emptyset$ for all $k>N$ .

Clearly if $f$ is topologically mixing, then it is also topologically transitive.

Theorem 4.3 Let $f$ : $Iarrow I$ be a continuous rnap and let $P$ a periodic orbit of $f$ with odd
period $n$ as in Notice 2.3. If $n$ is prime or the supremum in the Sharkovsky ordering, then $g$

is topologically miing and chaotic in the sense of Devaney, where $g:Z(f, P)arrow Z(f, P)$ is the
map constructed in Section 3. Moreover $g$ has positive topological entropy.

By Theorem 1.2 and 4.3, it is easy to prove the following main theorem.

Theorem 4.4 Let $f$ : $Iarrow I$ be a continuous map. If $f$ has a periodic orbit with odd period,
then there eists a chaotic rnap from a dendrite to itself in the sense of Devaney which is
semiconjugate to $f$ and has positive topological entropy.

The following shows such example as $g$ : $Z(f, P)arrow Z(f, P)$ constructed in Section 3is not
chaotic in the sense of Devaney, when $|P|$ is the supremum in the Sharkovsky ordering but not
odd.

Example 4.5 Let f be the piecewise linear function from [0, 5] to itself defined by

$f(0)=3$ , $f(2)=5$, $f(3)=1$ , $f(4)=2$ , and $f(5)=0$.
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Figure 3.

Then $P=\{0,1, \ldots, 5\}$ is a periodic orbit of $f$ with a period 6 and it is the supremum in the
Sharkovsky ordering. However, we see that $g:Z(f, P)arrow Z(f, P)$ as in Section 3is not chaotic
in the sense of Devaney. Indeed, since $f^{k}([0,2])\subset[0,5]\backslash (2, 3)$ for each $k\geq 0$ , there exists some
open subset $U$ of $Z(f, P)$ such that $U\subset\pi([0,2])$ and $\bigcup_{k\geq 0}g^{k}(U)$ is not dense in $Z(f, P)$ .

The following provides such example as $g$ : $Z(f, P)arrow Z(f, P)$ costructed in Section 3is
not chaotic in the sense of Devaney, when $|P|$ is odd, but not the supremum in the Sharkovsky
ordering.

Example 4.6 Let f be the piecewise linear function from [0, 8] to itself defined by

$f(0)=3$ , $f(5)=8$ , $f(6)=1$ , $f(7)=2$, and $f(8)=0$.

Then $P=\{0,1,2, \ldots, 8\}$ is a periodic orbit of $f$ with a period 9. Since $\{\frac{4}{3}, \frac{13}{3}, \frac{22}{3}\}$ is a
periodic point of $f$ with a period 3, $P$ is not the supremum in the Sharkovsky ordering. Let $g$

and $Z(f, P)$ be as in Section 3. Since $f^{k}([0,2])\subset[0,8]\backslash ((2,3)\cup(5,6))$ for each $k\geq 0$ , there
exists some open subset $U$ of $Z(f, P)$ such that $V\subset\pi([0,2])$ and $\bigcup_{k\geq 0}g^{k}(U)$ is not dense in
$Z(f, P)$ . It follows that $g$ is not chaotic in the sense of Devaney.
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