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BSPFA Combined with One Measurable Cardinal
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Abstrgct

We consider consequences of BSPFA (Bounded Semi-Proper Forcing Axiom) combined with an existence
of a measurable cardinal. The large cardinal assures existences of relevant semiproper preorders via Chang’s
Conjecture-type arguments.

Introduction
In [T], 2 new combinatorial principle 8¢ is introduced. We recall its definition.

Definition. ([T]) fac holds, if for every one-to-one list r = (r; | ¢ < w;) in “2 and every S C wy,
there exist ordinals ¥ > 8 > a > w; and an increasing continuous decomposition v = |[J{N, v < w1} of the
ordinal 7 into countable sets such that for all v < wy, N, Nw; € § if and only if the following holds, where
i=o0.t.(N,Na), j=o0.t.(N,NP) and k = 0.t.(N,),

A(ri,r;) = Max {A(rs, 7)), A(ri, i), AT, 7r) }-

The notation A(r,r’) stands for the least n < w such that r(n) # r'(n) for r,r’ € “2 with r # r’. We
also recall.

Definition. BMM (Bounded Martin’s Mazimum) holds, if for any A € HXX and any Xp-formula ¢, if

Fp“Jye(y, A) in H:i[cc],.] ” holds for some preorder P which preserves every stationary subset of w;, then we
2

already have 3y p(y, A) in HX},.
We may formulate a weaker forcing axiom by restricting the class of preorders to the semiproper ones.
Definition. BSPFA (Bounded Semi-Proper Forcing Aziom) holds, if for any A € HXz" and any Xo-
formula o, if |Fp“Jyp(y, A) in H V‘Eﬁ;] ” holds for some preorder P which is semiproper, then we already

w2
have Jy¢(y, A) in HX;,.

In [T}, it is shown
Theorem. ([T]) (1) BMM implies fac,
(2) Oac implies 2¥ = 2' = w,.

In this note, we consider §3 which is somewhat stronger than ¢ of [T] and show
(3) If BSFPA holds and there exists a measurable cardinal, then 8% holds,
(4) 0xc implies both ac and CB (Complete Bounding).

While §5c of [T] demands existences of o, 8 and v with w; < @ < 8 < 4, our 8} further demands
o = wy. The consistency strength of the assumption in (1) is not well-known. A proper class of Woodin
cardinals suffices (p. 867 in [W]). However they say it is unknown whether BMM implies 0% or not.

On the other hand, if we have a type of reflecting cardinal (which itself is very much weaker than
Mabhlo) and a measurable cardinal above it (and so lots of measurable must exist below it), then we get the
consistency of the assumption in (3) via a revised countable support iteration (say, see [M2]).
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§ 1. Basics with The One-to-one Lists in The Cantor Space

1.1 Definitin. A one-to-one listr = (r; | i < w;) in “2 means that for all ¢ < wj, i : w — 2 and for
all 4,j < wy, if ¢ # j, then r; # r;. In this case, we denote A(r;,7;) = Min {n < w | r;(n) # r;(n)}. More
generally, we consider a one-to-one list r = (r; | ¢ € T') on a stationary set T C w; in “2. For a countable
set X of ordinals, 0.t.(X) denotes the order type of X. Hence 0.t.(X) < w;. For any ordinals o < 3, if
o.t.(XNa) <o0.t.(XNB) < w, then we denote A% (o, B) = A(To4.(XNa) To.t.(xn3))- We usually simply write
Ax (o, B) instead of A% (e, 3). For any ordinals o, 8 and v, if o.t. (X Na) < 0.t (X NP) < 0.t.(X N7Y) < wy,
then we denote Max Ax(a, 8,v) = Max {Ax(a, 3), Ax(a,v), Ax(8,7)}.

1.2 Lemma. Let r = (r; | i < wy) be a one-to-one list in “2. Then there exists n < w such that both
{i <wy | ri(n) =0} and {i <w; | r;(n) = 1} are stationary.

Proof. Suppose not. For each n < w, there is a club C, and e, such that for all i € C,, r;(n) = €n.
Let C = {Cr | n < w}. Then C is a club and for all i € C and all n < w, we have r;(n) = ¢,. Hence
{ri | i € C} has one element. This is a contradiction.

O

1.3 Lemma. Let r = (r; | i € T) be a one-to-one list on a stationary set T in “2. Then there exist
m < w and s € ™2 such that both {i € T | ;[m = s and r;(m) =0} and {i € T | r;[m = s and r;(m) = 1}
are stationary.

Proof. Suppose not. For each m < w and s € ™2, there exist a club Cp,s and €, such that for all
1 € Cms NT, we have if r;[m = s, then r;(m) = €ms. Let C = (Y{Cms | m <w,s € ™2}. Then C is a club
and for all m < w, all s € ™2 and all i € CNT, we have if r;[m = s, then r;(m) = €y,s. In particular,
r;(m) = €mr,[m- Hence for i, j € CNT, we may show r;[m = r;[m for all m < w by induction on m. Hence
{ri | 4 € C NT} has one element. This is a contradiction.

[n]

1.4 Lemma. Let r = (r; | { < w;) be a one-to-one list in “2. For any stationary S and any n < w, there
exist m withn <m < w and s € ™2 such that both {i € S | ri[m =sand ri(m)=0}and {i € S|rifm=s
and r;(m) = 1} are stationary.

Proof. Let S and n be as given. Since {r;[n | i € S} is finite, S gets partitioned into finitely many
cells according to r;{n. But S is stationary. Hence one of them is stationary. So there is ¢t € ™2 such that
T = {i € §| ri[n = t} is stationary. Now may apply lemma 1.3 to a one-to-one list {r;[[n,w) | i € T)
(somewhat abusive). Hence there exist m with n < m < w and u € [»™2 such that both {i € § | r;[n =
t,ri[[n,m) = u,r;(m) =0} and {i € S | r;[n = t,r;[[n, m) = u, r;(m) = 1} are stationary.

o

1.5 Lemma. Let r = (r; | { < w;) be a one-to-one list in “2. For any n < w, there exists a club Cp,
such that for any i € Crn, there is m with n < m < w such that both {j € w; | rj[m = r;[m,rj(m) = 0} and
{j €wr | rj[m =ri[m,rj(m) = 1} are stationary.

Proof. Suppose not. For any club C, there is ¢ € C such that for any m with n < m < w, there is n
such that {j € wy | rj[m = r;[m,r;(m) = n} is not stationary. Let S = {i < w; | for all m withn < m < w,
there is 7 such that {j € w1 | 7;[m = r;[m,r;(m) = n} is not stationary }. Then S is stationary. By lemma
1.4, we have m with n < m < w and s € ™2 such that both S = {i € § | r;i[m = s,r;(m) = 0} and
S' = {i € S| ri[m = s,r;(m) = 1} are stationary. Pick any i € S°(# 0). Then r;[m = s and i € S. Hence
there is  such that {j € w; | rj[m = s,7;(m) = n} is not stationary. Since S° is stationary, we have n = 1.
Similary, since S! is stationary, we have 5 = 0. This is a contradiction.

-0

1.6 Lemma. Let r = (r; | i < w;) be a one-to-one list in “2. Then there exists a club C; such that for
any ¢ € Gy and any n < w, there is m with n < m < w such that both {j € wy | rj[m = ri[m,r;(m) = 0}
and {j € w; | 7;[m = r;[m,r;(m) = 1} are stationary.
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Proof. Let Cy = [{{Crn | n < w}. Then this C, works.
O

1.7 Lemma. Let r = (r; | i < w1) be a one-to-one list in “2. Then there exists a club C; such that for
any ¢ € Cy and any n < w, we have {j < wy | A(r;,7;) > n} is stationary.
Proof. The C, above works.
o

1.8 Lemma. Let r = (r; | { < w;) be a one-to-one list in “2. Then there exist n, < w and a club C;
such that
e Both {j < w; | rj(n:) =0} and {j < w1 | rj(n,) = 1} are stationary.
And so
e Foranyi<wi, {j < wi | A(ri,rj) < n.} is stationary,
While
e For any ¢ € C; and any n < w, {j < wy | A(ri,r;) > n} is stationary.

Proof. Let n = n, < w be any number such that both {j < wy | rj(n) = 0} and {j < w; | rj(n) = 1}
are stationary. Let C; be as in above. These n, and C;, work.

O

§ 2. Basics with Semiproper Preorders

2.1 Notation. Let A be a regular cardinal. We write N < H,, if the structure (N, €) is an elementary
substructure of (Hy,€). For N and M, we denote M Depg N, if M D N and M Nw; = N Nw;. We write
(X;]i<w) /X, if (X; | i< w) is a sequence of continuously increasing countable subsets of X and
U{X, I 1 <w1} =X.

2.2 Definition. Let « be a regular uncountable cardinal and S C [k]“. We say S is semiproper, if there
exists a club C C [Hgx)+]* such that for any N < Ha~)+ with N € C, there is a countable M < H(gxy+
such that M Depg N and M Nk € S.

2.3 Lemma. Let x be a regular uncountable cardinal, S, T' C [«]“ be semiproper and disjoint. Then
for any B C wy, there is a semiproper p.o. set P = P(S,T, B) such that in V¥, there is (X; | i < wy) M &
such that for all 1 < w;,

e Ific B, then X; € S,

e If i ¢ B, then X; €T,
Hence '

e i€ Bif and only if X; € S.
Proof. Let p € P, if p = (X? | i < oP) such that

e p is continuously increasing and the X7 are countable subsets of k with o < wy,
For i < aP, we have

e Ifi € B, then X? € S,

e Ifi ¢ B, then X € T.

For p,ge€ P,let ¢ < p, if ¢ 2 p.
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We show that this P works in a series of claims.

Claim 1. For any p € P and any £ € &, there is X such that £ € X, g =pU {(o? +1,X)} € P and
q<p.

Proof. According to a? + 1 € B or not, we have two cases.

Case 1. of +1 € B: Since S is semiproper, there is a countable M < Hg«)+ such that p,{ € M and
MnNkeS. Let X = M Nk. Then this X works.

Case 2. a? + 1 ¢ B: Since T is semiproper, there is a countable M < H (2=)+ such that p,§ € M and
MnkeT. Let X = M N k. Then this X works.

[m]

Claim 2. Fori <w; and { € &, D(i,&) ={g€ P |i < a% & € XL} is open dense in P.
Proof. By induction on ¢ for all £&. By claim 1, it remains to deal with limit . We show this by

contradiction. Suppose for any ¢ < p, a? < i. It suffices to derive a contradiction. Let (i, | n < w) be
increasing such that ip = of and sup{¢, | n < w} =i. According to i € B or not, we have two cases.

Case 1. i € B: Let M < H(3x)+ be such that i,p,£ € M and M Nk € S. Let (£, | n < w) enumerate
M N k. By induction we have (p, | n < w) so that py = p, p, € PN M, i, < aP*+! < i and &, € D G AT
Let ¢ = U{pn | n <w}U{(i, M Nk)}. Then g € P and q < p with a9 = i. This is a contradiction.

Case 2. i ¢ B: Similarly to case 1, let M < H(3x)+ be such that i,p,{ € M and M Nk € T. Let
{n | n < w) enumerate M Nk. By induction we have (p,, | n < w) so that pg = p, p, € PNM, i, < aPr+l < §
and & € X231, Let g = U{pn | n < w}U {¢,MNk)}. Then g € P and ¢ < p with a? = i. Thisis a
contradiction.

]

Claim 3. P is semiproper.

Proof. Let P € N < H3x)+ with N € C(S) N C(T), where C(S) and C(T) are clubs in [Hg=y+]*
associated with semiproper S and T respectively. Let p € PN N. We want to find ¢ < p which is (P, N)-
semi-generic. According to N Nw; € B or not, we have two cases.

Case 1. NNw; € B: Since N € C(S), we may take a countable M < H3xy+ such that M Depg N
and M Nk € S. Let (p, | n < w) be a (P, M)-generic sequence with py = p. Let ¢ = U{pn | n <
w} U {(M Nwy,MNk)}. Then by claim 2, we know that ¢ € P and so ¢ < p. By construction, ¢ is
(P, M)-generic and so (P, N)-semi-generic.

Case 2. NNw; ¢ B: Similarly to case 1, take a countable M < H, (2=)+ such that M D.,q N and MNk €
T. Let (pn [ n < w) be a (P, M)-generic sequence with pp = p. Let ¢ = |J{pn | n < w} U{(M Nw1, M Nk)}.
Then by claim 2, we know that ¢ € P and so ¢ < p. By construction, ¢ is (P, M)-generic and so (P, N)-
semi-generic.

[m]

Claim 4. Let G be any P-generic filter over V and let (X; | i <w;) = |JG. Then (X; |i <w;) /' &
and for ¢ < wy, we have

o If i € B, then X; € S,
o If i & B, then X; € T.
Proof. By construction of P and claim 2. Notice that || = w; holds in the extension V[G] .

This completes the proof of lemma.
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2.4 Lemma. Let x be a regular uncountable cardinal and S C [k]“ be semiproper. Then there is a
semiproper p.o. set P = P(S) such that in VP, there is (X; | i < w;) /& such that for all i < wy, X; € S.

Proof. The proof is entirely similar to and simpler than lemma 2.3.

§ 3. First Use of A Measurable Cardinal and BSPFA

We prepare a lemma with a measurable cardinal which is by now well-known with stronger statements.

3.1 Lemma. Let x be a measurable cardinal with a normal measure D on k. Let N be a countable
elementary substructure of Hyx)+ with D € N.

(1) For any n € « and any s € (\(N N D) such that sup(IN N k), n < s, we may form a countable elementary
substructure M of H(z<y+ such that NU{s} CM and MNs=NNs=NnNk.

(2) There is a continuously increasing countable elementary substructures (N; | i < wy) of H(g+)+ such that
No = N and (0.t.(N; N k) | i <w1) is a strictly increasing continuous sequence of countable ordinals.

(3) For any stationary S C w;, there is a countable elementary substructure M of H(yx)+ such that N Ceng
M and ot.(MNkK)ES.
Proof. For (1): Let M = {f(s) | f € N}. Then this M works.

For (2): Construct (N; | ¢ < wy) by recursion on 4. At the successor stages, apply (1). At the limit
stages, just take a union.
For (3): Immediate by (2).
o

3.2 Lemma. Let x be a measurable cardinal and r = (r; | ¢ < w;) be a one-to-one list in “2. For
any countable N < Hg~y+ with r,x € N and any n < w, there exists a countable M < H(2x)+ such that
M Deng N and Apr(wi, k) > n. Namely, S(r,k,n) = {X € [s]“ | Ax(w1,K) > n} is semiproper.

Proof. Since r € N, we may assume Cr € N and so § = NNuw; € C,. Therefore S = {j < wy |
A(rs,7;) > n} is stationary. Since & is measurable and x € N, we may take a countable M < Hy«y+ such
that M Dena N and j = 0t.(M N k) € S. Hence Ap(w1, k) = A(Tot.(MAw,)» Tot.(Mnx)) = A(rs,75) > n.

a

3.3 Lemma. Let « be a measurable cardinal and r = (r; | i < w1) be a one-to-one list in “2. For any
n < w, there exists a semiproper p.o. set P such that in V7, there exists (X; | i < w;) * & such that for all
i < wi, Axi(wl,n) > n.

Proof. Apply lemma 2.4 to S(r, K, n).
o

3.4 Lemma. (BSPFA) Let a measurable cardinal exist and r = (r; | ¢ < w;) be a one-to-one list in
w2. PFor any n < w, there exists 3 with w; < 8 < we and (X; | ¢ < wy) 2 B such that for all i < wy,
AXi(wl;/B) > n.

Proof. Apply BSPFA to lemma 3.3.

§ 4. Modifications and Summary
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4.1 Lemma. Let n < w, w1 < 8 < wp and (X; | i < wi) / B be such that for any i < wy,
Ax, (w1, B) > n. Then we have a continuously increasing (N; | ¢ < wi) such that

e For all i <wy, N; < H,, and N; is countable,
e 3 No, H{Ni|i<wi}Dwiandso Y{N:|i<wi} DB,
e For all i < wy, An,(w1,8) = n.

Proof. Let (N; | i < w;) be any continuously increasing sequence of countable N; < H,, such that
U{N: | i < w1} D w1 and B € Ny. Then since B < wq, we have U{N; N B | i < w1} = B and so
C = {i <w; : X; = N; N B} is a club. By reenumerating {N; | i € C'}, we are done.

a

4.2 Lemma. (BSPFA) Let a measurable cardinal exist and r = (r; | ¢ < w;) be a one-to-one list in “2.
Then there exist n, < w, a club Cy, 8, with w; < 8 < wy and (N} | i < w;) continuously increasing such
that

Both {j < w; | rj(ne) =0} and {j < wn | rj(n.) = 1} are stationary,

For any i < wi, {j < w1 | A(r;,7j) < ny} is stationary,

For any ¢ € C; and any n < w, {j <wi | A(ri,7;j) > n} is stationary,
e For any 1 < wy, Nj < H,, and N7 is countable,

Br € N§, U{NFli<wi}Dwiandso |J{NFNB|i<wi} =7,

e For any i < wy, A‘jvf(wl,ﬁr) >ne + 1.

Proof. Combine lemma 1.8, lemma 3.4 and lemma 4.1.

§ 5. Second Use of The Same Measurable Cardinal and BSPFA

5.1 Definition. Let 03, denote the following statement. For any r one-to-one list in “2 and any
B C w1, there exist 3 and v with w; < 8 <+ < ws and (X; | i <wi) /' such that for any ¢ < w;, i € B if
and Only if AXi(wl,/B) = Max AXi(w17ﬁ7 7)

It is clear that 83 implies Oac of [T}.
5.2 Theorem. (BSPFA) If there exists a measurable cardinal, then 3 holds.

We show this in a series of lemmas.

5.3 Lemma. Let x be a measurable cardinal and r be a one-to-one list in “2. For any 8 withw; < 8 < &,
any countable N < H(3s)+ with r, 8,5 € N, there exists a countable M < Hy«)+ such that M Deng N and
AM(wlaﬂ) = Min AM(wlaﬂ) K’)'

Proof. Since r € N, we may assume C. € N and so N Nw; € C;. Hence for all n < w, we have
{j < w1 | A(rNrw,,7j) > n} is stationary. Since w; < (3, we may calculate Ay (w1,8) = n. Since & is a
measurable cardinal, we may choose a countable M < H(z«)+ such that M NB=NNgG, ifj = o.t.(M N k),
then A(rnnw,,7j) > n+ 1. Since Ay (w1, 8) = An(w1,8) = 1 < A(TNnwy» Tot.(MAr)) = Am(wi, k), we
have A (wr, 8) = Min Ay (w1, B, K).

u]

5.4 Lemma. (BSPFA) Let x be a measurable cardinal and r be a one-to-one list in “2. For any
countable N < H«y+ with r,x € N, there exists a countable M < Hyx)+ such that M Dena N and
Apm(wi,Br) = Max Ap (w1, Br, K).
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Proof. Let n = rnaw, (ne). Let 77 € {0,1} and 7 # 7. Since {j < w; | rj(n;) = 7} is stationary, we may
choose a countable M < Hax)+ such that M Deng N and 7ot (Mnx)(nr) = 7. Hence Ap(wi, ) < np. On
the other hand, since we may assume (N} | i < w;) € N, if § = NNw;, then we have Nj Ceng NNH,,. Since
Br € NE, we conclude NjNB, = NNGr = MNG; holds. So Ap(w1,8r) = An(w1,Br) = ANsr(wl,ﬁ,) > ne+1.
Therefore, Apr(wi, Br) = Max Apr(wy, Br, ).

]

5.5 Lemma. (BSPFA) Let x be a measurable cardinal and r be a one-to-one list in “2. Let § = {X €
[k]“ | Ax (w1, Br) = Max Ax (w1, B, k)} and T = {X € [k]* | Ax (w1, 5r) = Min Ax (w1, B, &)}. Then both
S and T are semiproper and disjoint.

Proof. By lemma 5.4 and lemma 5.3.

5.6 Lemma. (BSPFA) Let x be a measurable cardinal. Let r = (r; | ¢ < w;) be a one-to-one list in “2
and B C w;. Then there exists a semiproper p.o. set P such that in V%, there is (Y; | i < w1) & such
that for any i < wy, i € B if and only if Ay, (w;, Br) = Max Ay, (w1, Br, ).

Proof. By lemma 5.5 and lemma 2.3.

Proof of theorem 5.2. Apply BSPFA to the p.o. set in lemma 5.6.

§ 6. 03 implies CB

6.1 Definition. CB (complete bounding) stands for the following. For any f : w3 — wj, there exist
w1 <7y < weg, aclub C and (X; | i <w1) 7~ « such that for all i € C, f(i) < 0.t.(X3).

6.2 Theorem. 8} implies CB.
Proof. We have two claims.

Claim 1. If for any one-to-one list r in “2, there exist w; < 8 < we and (X; | ¢ < wy) B such that
Ax, (w1, B) > 0, then CB holds.

Proof. Let f : w3 — w;. We may assume that for all i < wy, ¢ < f(¢) and f is strictly increasing.
Take a continuously increasing (N; | i < wi) such that each N; is countable, N; < H,,, and N; € N;y; and
f € Ny. Notice that N; Nw; < f(N;Nwy) < Niy1 Nws. It is easy to construct r so that 7x,n., (0) = 1, for £
with N; Nwy < € < f(N; Nwy), we have r¢(0) = 0. By assumption get w; < 8 < wp and (X; | ¢ < wy) such
that for all i < w;, we have Ax,(w1,3) > 0. Let C={i<w; | N;Nw; =i = X; Nw;y,w; € X;}. Then for
i€ C, since Ax,(w,0) = A(T,;,To_t.(xi)) > 0, we have f(i) = FIN; Nw) < 0.t.(X;).

O

Claim 2. If 6} holds, then for any one-to-one list r in “2, there exist w; < B < we and (X; | i<
w1) ' B such that Ay, (wq,8) > 0.

Proof. By 03¢ for B = w1, there exist w; < 8 <y <ws and (Y; | i < wy) /'« such that for all i < wy,
we have Ay, (wq, 3) = Max Ay, (wi,8,7). In particular, Ay, (w;,8) > 0. Let X; = Y; N 3. Then these 8 and
<Xi | 1< w1> work.
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§ 7. Additional Observations
Now we make a few observations. We may consider to directly force our 8% Ac- Namely, we may add the
following to [D].
Theorem. ([D], [M]) The following are equiconsistent.
o Con(There exists a regular cardinal p such that {x < p | x is a measurable cardinal} is cofinal in p).
e Con(f;c),
e Con(CB).

Hence fac of [T] accordingly has a large cardinal upper-bound.

Next, similarly to Con( PFA* + — CB) (which we got from S. Todorcevic), we may show via wj-many
Cohen reals r,

Theorem. ([M]) Con( PFA* and —f5c) and so Con(PFA* and -~ BMM).

Lastly, starting with a Souslin tree in the ground model and preserving it ([M1]), we have

Theorem. ([M]) Con(There exists a Souslin tree and 83) and so Con(— MA and 0ic)

Among others concerning the large cardinal strength of BMM, we may ask
Question. Does ¢ of [T} imply any large cardinal, say, CB ?

More modestly,

Question. Does BMM imply the Weak Chang’s Conjecture ?
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