
Estimating Discrete-Time Periodic Software Rejuvenation
Schedules under Cost Effectiveness Criterion

岩本 一樹 \dagger , 土肥 正 \dagger , 海生 亘人 \ddagger

K. Iwamoto \dagger , T. Dohi \dagger and N. Kaio \ddagger

\dagger 広島大学大学院工学研究科情報工学専攻
\ddagger 広島修道大学経済科学部経営情報学科

\dagger Graduate School of Engineering, Hiroshima University, Japan
\ddagger Facu1ty of Economic Sciences, Hiroshima Shudo University, Japan

1. INTRODUCTION
Software faults should ideally have been removed during the debugging phase. Even if
software may have been thoroughly tested, it still may have some design faults that are
yet to be revealed. Such faults are called bohrbugs and may exist even in mature software
such as commercial operating systems. Also, even mature software can be expected to
have what are known as heisenbugs [11]. These are bugs in the software that are revealed
only during specific collusions of events. For example, asequence of operations may leave
the software in astate that results in an error on an operation executed next. Simply
retrying afailed operation, or if the application process has crashed, restarting the process
might resolve the problem. Another tyPe of fault observed in software systems is due to
the phenomenon of resource exhaustion. Operating system resources such as swap space
and free memory available are progressively depleted due to defects in software such as
memory leaks and incomplete cleanup of resources after use. These faults may exist in
the operating system, middleware and the application software.

In fact, when software application executes continuously for long periods of time, some
of the faults cause software to age due to the error conditions that accrue with time $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

load. Software aging will affect the performance of the application and eventually cause
it to fail [1, 4, 8, 16]. Software aging has also been observed in widely-used software like
Internet Explorer, Netscape and xrn as well as commercial operating systems and mid-
dleware. Acomplementary approach to handle software aging and its related transient
software failures, called software rejuvenation, are becoming popular [12]. Software reju-
venation is apreventive and proactive solution that is particularly useful for counteracting
the phenomenon of software aging. It involves stopping the running software occasionally,
cleaning its internal state and restarting it. Cleaning the internal state of asoftware might
involve garbage collection, flushing operating system kernel tables, reinitializing internal
data structures, and hardware reboot.

Huang et al. [12] report the software aging phenomenon in real telecommunications
billing application where over time the application experiences acrash or ahang failure,
and propose to perform rejuvenation occasionally or periodically. More specifically, they
consider the degradation as atwo step process. From the clean state the software system
jumps into adegraded state from which two actions are possible: rejuvenation with return
to the clean state or transition to the complete failure state. They model the four-state
process as acontinuous-time Markov chain and derive the steady-state availability and
the expected cost per unit time in the steady state. Avritzer and Weyuker [2] discuss
aging in atelecommunication switching software where the effect manifests as gradual
performance degradation. Garg et al. [9] introduce the idea of periodic rejuvenation
(deterministic interval between successive rejuvenations) into the Huang et al. model [12]
and represent the stochastic behavior by using aMarkov regenerative stochastic Petri net.
Dohi et al. [5] extend the original Huang et al. model to semi-Markov models and develop

数理解析研究所講究録 1306巻 2003年 152-161

152

anon-parametric algorithm to estimate the optimal software rejuvenation schedule from
the complete sample of failure time.

As another examples, it is interesting to consider both effects of aging as $\mathrm{c}\mathrm{r}\mathrm{a}s\mathrm{h}/\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}$

failure, referred to as hard failures, and of aging as soft failures that can lead to per-
formance degradation. Pfening et al. [18] model the performance degradation process
by the gradual decrease of the service rate and formulate the determination problem of
the optimal software rejuvenation schedule and formulate the determination problem of
the optimal software rejuvenation schedule by aMarkov decision process. Garg et al.
[10] consider the transaction based software systems, which involve arrival and queueing
of jobs, and analyze both effects of aging; hard failures that result in an unavailability
and soft failures that result in performance degradation. Bobbio et al. [3] present afine
grained software rejuvenation model with the degradation process consisting of asequence
of additive random shocks. Liu et al. [14] model acable modem termination system with
rejuvenation by stochastic Petri nets. Park and Kim [17] carry out the availability analysis
for $\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{b}\mathrm{y}$ cluster systems with rejuvenation.

This paper treats the similar periodic software rejuvenation model to Garg et al. [9]
under the different operation circumstance. That is, we model the stochastic behavior of
telecommunication billing applications by using adiscrete-time Markov regenerative pr0-
cess, and determine the optimal periodic software rejuvenation schedule in discrete-time
setting. Recently, Dohi et al. $[6, 7]$ reconsider the semi-Markov models [5] in discrete
time and characterize the optimal non-periodic software rejuvenation schedules minimiz-
ing and maximizing the long-run average cost and the steady-state system availability,
respectively. Also, they develop non-parametric algorithms to estimate the optimal soft-
ware rejuvenation schedules, based upon the discrete total time on test (DTTT) concept.
Iwamoto et al. [13] introduce the cost effectiveness as acriterion of optimality and obtain
the optimal non-periodic software rejuvenation policy in discrete time. Here, we derive
the optimal periodic software rejuvenation schedule which maximizes the cost effectiveness
in discrete-time setting, and provide astatistical estimation method based on the similar
DTTT concept.

2. MODEL DESCRIPTION

2.1 Notation and Assumption

Z :time interval from highly robust state to failure probable state (discrete random vari-
able)

Fo(n), Fo(n), $\mu_{0}(>0):\mathrm{c}\mathrm{d}\mathrm{f}$, pmf and mean of Z , where $n=0,1,2$, \cdots

X :failure time from failure probable state (discrete random variable)

$F_{f}(n)$, $f_{f}(n)$, $\mu f(>0):\mathrm{c}\mathrm{d}\mathrm{f}$, pmf and mean of X

‘ $*’$:discrete convolution operator, $i.e$. $F0^{*F}f(n)= \sum_{j=\circ}^{n}F_{0}(n-j)ff(j)=\sum^{n}j=0Ff(n-$

$j)f_{0}(j)$

$\overline{\psi}(\cdot)$:survivor function $(=1-\psi(\cdot))$

$r_{0f}(n):=f_{0}*ff(n)/\overline{F_{0}*Ff}(n-1)$

Y :recovery time from failure state (discrete random variable)
1

Fo(n), Fo(n), $\mu_{a}(>0):\mathrm{c}\mathrm{d}\mathrm{f}$, pmf and mean of Y

N :rejuvenation time from failure probable state (discrete random variable)

$F(n)$, $n_{0}(\geq 0)$:cdf and mean of N

153

R :system overhead incurred by software rejuvenation (discrete random variable)

$F_{c}(n)$, $f_{c}(n)$, $\mu_{\mathrm{C}}(>0):\mathrm{c}\mathrm{d}\mathrm{f}$, pmf and mean of R

c_{s} : recovery cost from system failure per unit time

c_{p} : rejuvenation cost per unit time

Assumption: $c_{s}\mu_{a}>c_{p}\mu_{c}$.

2.2 Model 1
Suppose that the software system is started for operation at time $n=0$ and is in the highly
robust state (normal operation state). Let Z be the random time to reach the failure-
probable state from the highly robust state. Let $\mathrm{P}\mathrm{r}\{Z\leq n\}=\mathrm{F}\mathrm{o}(\mathrm{n})$, $(n=0,1,2, \cdots)$.
Just after the state becomes the failure-probable state, asystem failure may occur with a
positive probability. Let X be the time to failure from the failure-probable state having
the probability distribution function $\mathrm{P}\mathrm{r}\{X\leq n\}=Ff(n)$. If the failure occurs before
triggering asoftware rejuvenation, then the recovery operation is started immediately.
The time to complete the recovery operation Y is also the positive random variable having
the probability distribution function $\mathrm{P}\mathrm{r}\{Y\leq n\}=F_{a}(n)$. Without any loss of generality,
it is assumed that after completing repair the system becomes as good as new.

On the other hand, rejuvenation is performed at arandom time interval measured
from the start (or restart) of the software in the robust state. The probability distribution
function of the time to invoke the software rejuvenation, say N , and the probability
distribution function of the time to complete software rejuvenation are represented by $F(n)$

and $F_{c}(n)$, respectively. Suppose that the time to rejuvenate the software is aconstant n_{0} ,
$i.e$. the software rejuvenation is performed periodically. Then, the probabilitu distribution
function $F(n)$ has to be replaced by

$F(n)=U(n-n_{0})=\{$
1: $(n\geq n_{0})$

0: $(n<n_{0})$, (1)

where $U(\cdot)$ is the unit step function. We call no (≥ 0) the software rejuvenative schedule
in this paper. After completing the software rejuvenation, the software system becomes as
good as new, and the software age is initiated at the beginning of the next highly robust
state. We call the above model Model 1in this paper. Figure 1illustrates the configuration
of Model 1.

2.3 Model 2
Next, consider the other model. When the recovery operation is completed after the
system failure, it is assumed in Model 1that the system is renewed and the state is moved
to the highly robust state. However, since restarting the system after recovery operation
may require some cleanup and resuming the process execution at the checkpointed state,
asoftware rejuvenation after completing recovery operation will be needed to renew the
system $[6, 7]$. In this case, the correponding stochastic model should be distinguished from
Model 1. We call this model in which the software rejuvenation is performed just after
the completion of recovery operation as well as at the prespecified time after the robust
state is entered, Model 2. Figure 2depicts the configuration of Model 2.

3. COST EFFECTIVENESS ANALYSIS

Define the time length from the beginning of the system operation to the completion
of the preventive or corrective maintenance as one cycle, and suppose that the same cycl

154

A deterioration point
$\cross \mathrm{f}\mathrm{a}\mathrm{i}\mathrm{l}\mathrm{u}\mathrm{r}\mathrm{e}$ point
\blacksquare start point of rejuvenation
\bullet renewal point

Figure 1: Configuration of Model 1.

Figure 2: Configuration of Model 2.

is repeated again and again over an infinite time horizon. Then, the mean operative time
during one cycle in Model 1is given by

$S_{1}(n_{0})$ $=$ $\sum_{n=0}^{n0-1}\overline{F_{f}*F_{0}}(n)$. (2)

The total expected cost for one cycle is obtained as

Vi (no) $=c_{s}\mu_{a}F_{f}*F_{0}(n_{0})+c_{p}\mu_{cf}\overline{F}*F_{0}$ (no). (3)

Then the cost effectiveness for Model 1is defined as the mean operative time per unit
expected cost [13] as

$E_{1}(n_{0})=S_{1}(n_{0})/V_{1}(n_{0})$ (4)

and the problem is to seek the optimal software rejuvenation schedule n_{0}^{*} maximizing it.
Taking the difference of $E_{1}(n_{0})$ with respect to nO, define the following function $[13, 15]$:

$V_{1}(n_{0})V_{1}(n_{0}+1)$ [$E_{1}(n0+1)-E_{1}$ n0-1
$q_{1}(n_{0})$ $=$

$\overline{F_{0}*F_{f}}(n_{0})$

$=$ $V_{1}(n_{0})-(c_{s}\mu_{a}-c_{p}\mu_{c})S_{1}(n_{0})r_{0f}(n_{0}+1)$, (5)

where $ff*f\mathrm{o}(n)$ is the pmf of the probability distribution $Ff*F_{0}(n)$.

155

The following result gives the optimal software rejuvenation schedule for Model 1.

Theorem 1: For Model 1, (1) suppose that the probability distribution $F_{0}*F_{f}(n)$ is
strictly FR (increasing failure rate) under the assumption $c_{s}\mu_{a}>c_{p}\mu_{c}$.
(i) If $q_{1}(\infty)<0$, then there exist (at least one, at most two) optimal software rejuvenation

schedules $n_{0}^{*}(0<n_{0}^{*}<\infty)$ satisfying $q_{1}(n_{0}^{*}-1)>0$ and $q_{1}(n_{0}^{*})\leq 0$. Then, the
maximum cost effectiveness is given by

$\underline{E}_{1}(n_{0}^{*})\leq E_{1}(n_{0}^{*})<\overline{E}_{1}(n_{0}^{*})$, (6)

where

$\underline{E}_{1}(n_{0}^{*})$ $=$ $\frac{1}{(c_{s}\mu_{a}-c_{p}\mu_{c})r(n_{0}^{*}+1)}$, (7)

$\overline{E}_{1}(n_{0}^{*})$ $=$ $\frac{1}{(c_{s}\mu_{a}-c_{p}\mu_{c})r(n_{0}^{*})}$. (8)

(ii) If $q(\infty)\geq 0$, then the optimal software rejuvenation schedule becomes $n_{0}^{*}arrow\infty$, $i.e$.
it is optimal not to carry out the software rejuvenation. Then, the maximum cost
effectiveness is given by

$E_{1}(\infty)=\frac{\mu_{f}+\mu_{0}}{c_{s}\mu_{a}}$. (9)

(2) Suppose that the probability distribution $F0*Ff(n)$ is DFR (decreasing failure rate)
under the assumption csfia $>c_{p}\mu_{c}$. Then, the cost effectiveness E_{1} (no) is aconvex function
of no, and the optimal software rejuvenation schedule is $n_{0}^{*}=0$ or $n_{0}^{*}arrow\infty$.

Next, consider Model 2. The mean length of operative time for one cycle and the total
expected cost during one cycle are given by

$S_{2}(n_{0})$ $=$ $\sum_{n=0}^{n_{0}-1}\overline{Ff*F_{0}}(n)$ (10)

and
V_{2} (10) $=$ $c_{S}\mu aFf*F\mathrm{o}$ (no)+CpMc, (11)

respectively. Then, the cost effectiveness for Model 2is formulated as

E2 $(n\mathrm{o})=S_{2}(n\mathrm{o})/V_{2}$ (10) (12)

In afashion similar to Model 1, define the following function:
$q_{2}(n_{0})=V_{2}(n_{0})-c_{s}\mu_{a}r_{0f}(n0+1)S_{2}$ (10) (13)

Theorem 2: For Model 2, (1) suppose that the probability distribution $F_{0}*Ff(n)$ is
strictly IFR.

(i) If $q_{2}(\infty)<0$, then there exist (at least one, at most two) optimal software rejuvenation
schedules $n_{0}^{*}(0<n_{0}^{*}<\infty)$ satisfying $q_{2}(n_{0}^{*}-1)>0$ and $q_{2}(n_{0}^{*})\leq 0$. Then, the
maximum cost effetiveness is given by

$\underline{E}_{2}(n_{0}^{*})\leq E_{2}(n_{0}^{*})<\overline{E}_{2}(n_{0}^{*})$, (11)

where

$\underline{E}_{2}(n_{0}^{*})$ $=$ $\frac{1}{c_{s}\mu_{a}r(n_{0}^{*}+1)}$, (15)

1
$\overline{E}_{2}(n_{0}^{*})$ $=$ (16)

$c_{s}\mu_{a}r(n_{0}^{*})$

.

156

157

(ii) If $q_{2}(\infty)\geq 0$, then the optimal software rejuvenation schedule becomes $n_{0}^{*}arrow\infty$, and
the maximum cost effectiveness is given by

$E_{2}(\infty)=\frac{\mu_{f}+\mu_{0}}{c_{p}\mu_{c}+c_{s}\mu_{a}}$. (17)

(2) Suppose that the probability distribution $F_{0^{*F}f(n)}$ is DFR. Then, the cost effectiveness
$E_{2}(n_{0})$ is aconvex function of no, and the optimal software rejuvenation schedule is $n_{0}^{*}=0$

or $n_{0}^{*}arrow\infty$.

4. ESTIMATION ALGORITHMS
4.1 Graphical Method
For the discrete $\mathrm{c}\mathrm{d}\mathrm{f}Ff*F_{0}(n)$, define the scaled DTTT transform $[6, 7]$:

$\phi(p)=\sum_{n=0}^{(F_{f}*F_{0})^{-1}(p)}\frac{\overline{F_{f}*F_{0}}(n)}{\mu_{f}+\mu 0}$, (18)

where

$(F_{f}*F_{0})^{-1}(p)= \min\{n : F_{f}*F_{0}(n)>p\}-1$, (19)

if the inverse function exists. Then it is evident that

$\mu_{f}+\mu 0=\sum_{n=0}^{\infty}\overline{F_{f}*F_{0}}(n)$. (20)

After afew algebraic manipulations, we can obtain the following result:

Theorem 3: For Model $i(i=1,2)$, obtaining the optimal software rejevenation schedule
$n_{0^{*}}$ maximizing the cost effectiveness $E_{i}(n\mathrm{o})$ is equivalent to obtaining $p^{*}(0\leq p^{*}\leq 1)$

such as
$\max\underline{\phi(p)}$ (21)

$0\leq p\leq 1p+\beta_{i}$
’

where $\beta_{1}=c_{p}\mu_{c}/(c_{s}\mu_{a}-c_{p}\mu_{c})$ and $\mathcal{B}_{2}=c_{p}\mu_{c}/c_{s}\mu_{a}$.

Theorem 3is the dual of Theorem 1and Theorem 2. From this result, it is seen that the
optimal software rejuvenation schedule $n0^{*}=(Ff*F_{0})^{-1}(p^{*})$ is determined by calculating
the optimal point $p^{*}(0\leq p^{*}\leq 1)$ maximizing the tangent slope from the point $(-\beta_{i}, 0)$

$(i=1,2)$ to the curve $(p, \phi(p))\in[0,1]\cross[0,1]$ in the two dimensional plane.

4.2 Statistical Non-parametric Method
Next, suppose that the optimal software rejuvenation schedule has to be estimated

from k ordered complete observations: $0=x_{0}\leq x_{1}\leq x_{2}\leq\cdots\leq xk$ of the times from
adiscrete $\mathrm{c}\mathrm{d}\mathrm{f}F_{0}*F_{f}(n)$, which is unknown. Then, the empirical distribution for this
sample, is given by

$F_{fk}(n)=\{$
i/k for $x_{i}\leq n<x_{i+1}$, (22)
1for $x_{k}\leq n$.

Then the numerical counterpart of the scaled DTTT transform, called the scaled DTTT
statistics, based on this sample, is defined by

ϕ_{ik} $=$ ψ_{i}/ψ_{k} , $i=0,1,2$, \cdots , k , (23)

157

Figure 3: Determination of the optimal software rejuvenation schedule for Model 1.

Figure 4: Determination of the optimal software rejuvenation schedule for Model 2.

where

ψ_{i} $=$ $\sum_{j=1}^{i}(k-j+1)(x_{jj-1}-x)$, $i=1,2$, \cdots , $k;\psi_{0}=0$. (24)

The resulting step function by plotting the points $(i/k, \phi_{ik})(i=0,1,2, \cdots, k)$ is called the
scaled DTTT plot

The following theorem gives statistically non-parametric estimation algorithms for the
optimal software rejuvenation schedules.

Theorem 4: Suppose that the optimal software rejuvenation schedule has to be estimated
from k ordered complete sample $0=x0\leq x_{1}\leq x_{2}\leq\cdots\leq xk$ of the times from adiscrete
$\mathrm{c}\mathrm{d}\mathrm{f}Ff*F_{0}(n)$, which is unknown. Then, anon-parametric estimator of the optimal software
rejuvenation schedule \hat{n}_{0}^{*} which maximizes E_{i} (no) $(i=1,2)$ is given by $x_{j}*$, where

$j^{*}= \{j|0\leq j\leq n\mathrm{m}\mathrm{a}\mathrm{x}\frac{\phi_{jk}}{j/k+\beta_{i}}\}$, $i=1,2$. (25)

5. NUMERICAL EXAMPLES

5.1 Illustrative Examples
We present some examples to determine the optimal software rejuvenation schedule

which maximizes the cost effectiveness. Suppose that the time X obeys the negative
binomial distribution with $\mathrm{p}\mathrm{m}\mathrm{f}$:

$ff(n)=(\begin{array}{ll}n -1r -1\end{array})$ $q^{r}(1-q)^{n-r}$, $n=1,2,3$, \cdots , (24)

158

Figure 5: Estimation of the optimal software rejuvenation schedule for Model 1.

Figure 6: Estimation of the optimal software rejuvenation schedule for Model 2.

where $q\in(0,1)$ and $r=1,2$, \cdots is the natural number. Also, it is assumed that Z is a
geometrically distributed random variable having $\mathrm{p}\mathrm{m}\mathrm{f}$:

$f_{0}(n)=p(1-p)^{n}$, $n=0,1,2$, \cdots . (27)

In the rest part of this section, we assume that $(r, q)=(10,0.3)$, $p=0.3$, $c_{s}=5.0\cross 10$

[$/day], $c_{p}=4.0\cross 10$ [$/day], $\mu_{a}=5.0$ [day] and $\mu_{c}=2.0$ [day].
Figures 3and 4illustrate the determination of the optimal software rejuvenation sched-

ule on the two dimensional graph for Model 1and Model 2, respectively. Since $p^{*}=$

0.0742365 has the maximum slope from $(-\beta_{1},0)=$ (-0.470588, 0) in Fig. 3, the optimal
software rejuvenation schedule for Model 1is given by $n_{0}^{*}=(Ff*F\circ)^{-1}(0.0742365)$ $=24$.
On the other hand, we obtain $n_{0}^{*}=(Ff*F_{0})^{-1}(0.0546002)$ $=23$ in Model 2. In both cases,
the maximum cost effectiveness are given by $E_{1}(24)=0.246606$ and E2(23) $=0.233799$,
respectively.

Figures 5and 6show the estimation results of the optimal software rejuvenation sched-
ule for Model 1and Model 2, respectively, where the time data are generated from the
negative binomial distribution. For 200 simulation data (negative binomial distributed
random number), the estimates of the optimal rejuvenation schedule and its associated
cost effectiveness are $\hat{n}_{0}^{*}=x_{17}=25$ and $E_{1}(\hat{n}_{0}^{*})=0.264209$ in Model 1. On the other
hand, one estimates $\hat{n}_{0}^{*}=x_{14}=24$ and $E_{2}(\hat{n}_{0}^{*})=0.246961$ in Model 2.

5.2 Asymptotic Behavior
Of our next interest is the investigation of the asymptotic behavior of the estimates

for the optimal software rejuvenation schedule. In Figs. 7 and 8, the estimates of the
maximum cost effectiveness are plotted where the horizontal line denotes the real maxi-
mum calculated based on the negative binomial distribution with same parameters. Rom
these figures, it is observed that the estimate of the cost effectiveness fluctuates around
the real maximum and that the non-parametric method proposed here can provide agood

159

Figure 7: Asymptotic behavior of the estimates for the maximum cost effectiveness (Model
1).

Figure 8: Asymptotic behavior of the estimates for the maximum cost effectiveness (Model
2).

Acknowledgments: This research was partially supported by the Ministry of Ed-
ucation, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B), Grant
No. 13480109 (2001), and the Research Program 2002 under the Institute for Advanced
Studies of the Hiroshima Shudo University, Hiroshima, Japan.

REFERENCES

[1] Adams, E. (1984), Optimizing preventive service of the software products, IBM
Journal of Research aDevelopment, 28, 2-14.

[2] Avritzer, A. and Weyuker, E. J. (1997), Monitoring smoothly degrading systems for
increased dependability, Empirical Software Engineering, 2, 59-77.

[3] Bobbio, A., Sereno, M. and Anglano, C. (2001), Fine grained software degradation
models for optimal rejuvenation policies, Perfor mance Evaluation, 46, 45-62.

[4] Castelli, V., Harper, R. E., Heidelberger, P., Hunter, S. W., Trivedi, K. S.,
Vaidyanathan, K. V. and Zeggert, W. P. (2001), Proactive management of software
aging, IBM Journal of Research &Development, 45, 311-332.

[5] Dohi, T., $\mathrm{G}\mathrm{o}\check{\mathrm{s}}\mathrm{e}\mathrm{v}\mathrm{a}$-Popstojanova, K. and Trivedi, K. S. (2001), Estimating software
rejuvenation schedule in high assurance systems, The Computer Journal, 44 (6),
473-485.

[6] Dohi, T., Iwamoto, K., Okamura, H. and Kaio, N. (2002), Discrete-time cost analysis
for atelecommunication billing application with rejuvenation, Proc. Second EurO-
Japanese Workshop on Stochastic Risk Modelling for Fianance, Insurance, Production
and Reliability, 181-190

160

161

[7] Dohi, T., Iwamoto, K., Okamura, H. and Kaio, N. (2002), Discrete availability
models to rejuvenate atelecommunication billing application, Proc. lth IEEE Int’l
Symposium on High Assurance Systems Engineering, 159-166.

[8] Dohi, T., $\mathrm{G}\mathrm{o}\check{\mathrm{s}}\mathrm{e}\mathrm{v}\mathrm{a}$-Popstojanova, K., Vaidyanathan, K., Trivedi, K. S. and Osaki,
S. (2003), Software rejuvenation –modeling and applications, $Sp_{7}\dot{\mathrm{u}}nger$ Reliability
Engineering Handbook (H. Pham, ed.), Springer-Verlag, in press.

[9] Garg, S., Telek, M., Puliafito, A. and Trivedi, K. S. (1995), Analysis of software reju-
venation using Markov regenerative stochastic Petri net, Proc. 6th Int’l Symposium
on Software Reliability Engineering, 24-27.

[10] Garg, S., Pfening, S., Puliafito, A., Telek, M. and Trivedi, K. S. (1998), Analysis of
preventive maintenance in transactions based software systems, IEEE Transactions
on Computers, 47, 96-107.

[11] Gray, J. (1986), Why do computers stop and what can be done about it?, Proc. 5th
Int’l Symposium on Reliability in Distributed Software and Database Systems, 3-12.

[12] Huang, Y., Kintala, C, Kolettin, N. and Funton, N. D. (1995), Software rejuvenation:
analysis, module and applications, Proc. 25th Int’l Symposium on Fault Tolerant
Computing, 381-390.

[13] Iwamoto, K., Dohi, T., Okamura, H. and Kaio, N. (2003), Estimation of discrete-time
software rejuvenation schedule based on the cost effectiveness, Transactions of IEICE
(A), in press.

[14] Liu, Y., Ma, Y., Han, J. J., Levendel, H. and Trivedi, K. S. (2002), Modeling and
analysis of software rejuvenation in cable modem termination system, Proc. 13th Int’l
Symp. on Software Reliability Engineering, 159-170.

[15] Nakagawa, T. (1984), Asummary of discrete replacement policies, European Journal
of Operational Research, 17 (3), 382-392.

[16] Parnas, D. L. (1994), Software aging, Proc. 16th Int’l Conf. on Sof tware Engineering,
279-287.

[17] Park, K. and Kim, S. (2002), Availability analysis and improvement of $\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{b}\mathrm{y}$

cluster systems using software rejuvenation, Journal of Systems and Software, 61,
121-128.

[18] Pfening, S., Garg, S., Puliafito, A., Telek, M. and Trivedi, K. S. (1996), Optimal
rejuvenation for toleranting soft failure, Performance Evaluation, 27/28, 491-506

161

