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A positive solution of semilinear elliptic equation
with G-invariant nonlinearity
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0. Introduction

In this note, we consider the following elliptic problem:

—e
—Au+u = f(z,u) in RV,
u>0 in RV, (0.1)
U E HI(RN)’

where f(z,u) is a superlinear and subcritical function in u. We assume that f(z,u) is
invariant under some finite group action G on z and we would like to show the existence of
at least one positive solution of (0.1) via variational methods. More precisely we assume

that f(z,0) =0 and f(z,u) satisfies

(A0) f(z,u) € C(RN xR, R),
(A1) there exist constants do € [0,1) and mo > 0 such that

0 < f(z,u) < dou + mou? for all z € RN and u > 0,
(A2) there exists a constant § > 2 such that
0 < 0F(z,u) < f(z,u)u forall z e RY and u >0,

where F(z,u) = /0-“ f(z,7)dr.

(0.1) or related problems were also studied by many authors such as [BaYL], [BaPLL],
[BWil], [BWi2], [BWa), [CR], [DN], [Li], [PLL1], [PLL2], [R2], [Y] and the references
therein. The main difficulty of these problems is a lack of compactness for corresponding
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functional and they overcome this difficulty by assuming some symmetric condition on
f(z,u). In particular, Bartsch-Willem [BWil] assume radially symmetric condition on
f(z,u). If f(z,u) is a radially symmetric function, then a functional corresponding to
(0.1) satisfies Palais-Smale condition in a class of radially symmetric functions. Thus one
can use many variational methods to show the existence of radially symmetric solutions.
Bartsch-Wang [BWa] (c.f. Bartsch-Willem [BWi2]) consider the following G-invariant
elliptic problem:

—Au + b(z)u = f(=, u) in RV,

where b(z) and f(z: u) are invariant under a group action G That is, b(gz) = b(z),
f(9z,u) = f(z,u) for all g € G and z € R”". Here G is a subgroup of the orthogonal
group O(N) = {A; N x N matrix, *AA = Iy}, where Iy is an unit matrix. They assume
that G is an infinite subgroup such that for all z € RV \{0}, Gz = {gz;g9 € G} has
infinitely many elements. For such a group action G, they show that G-invariant subspace

Eg of H*(RY) is compactly embedded into LPtY(RYN), where 1 < p < x+ 5 if N > 3,
1 <p< ooif N=1,2 As to other type of group action, we refer to Coti Zelati-

Rabinowitz [CR). In [CR], they consider the case where f(z,u) is periodic in each z; and
obtain infinitely many solutions modulo ZV symmetries.

We are interested in a finite group action G, that is, |G| < oo. We consider the
existence of positive solutions of (0.1) with f(z,u) symmetric with respect to a finite
group action G C O(N). For such a finite group action G, the embedding from Eg into
LP*1(RY) is not compact any more. We assume that f(z,u) has a limit f*(u) € C*(R, R)
as |z| = oo and we regard (0.1) as a perturbation of the following autonomous problem:

—Au+u=f®(u) in RV,
u>0 in RV, (0.2)
u € HI(RN),

We request more precise conditions on the behavior of f*(u):

(H1) f*°(u) > 0 for all u >0,

o0
limsupf (u)<oo,
u—o0 u
f > 0 and >0ﬂ1ﬁ)——+c asu |0
or some 7 and co » 14w 0 )

o) £,

is increasing in u > 0.

(H1) gives the behavior of f*°(u) near oo and 0. (H2) is a kind of convexity condition of
u
F®(u) = £ (7) dr, which gives a good characterization of the mountain pass critical

0
point. See Section 1 below.
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We first state a result with respect to G = {id, —id}, which is an example of G C O(N),
for simplicity. Later in Theorem 0.3, we state our existence result in the setting of more
general group actions.

Theorem 0.1. (0.1) has at least one even positive solution, if f(z,u) satisfies (A0)—(A2)
and

(A3) f(z,u) = f(—z,u) forallz € RN, u >0,
(A4) there exists a limit function f>*(u) € C!(R, R) satisfying (H1) and (H2) such that

f(z,u) = f(u) as |z| = o0

uniformly on any compact subset of [0, ),

(A5) there exists a constant A > 2 such that for any € > 0 we can find a constant C >0
which satisfies

f(z,u) — f=(u) 2 —e M2l(eu + C.uP) for allz € RN and u > 0.

Remark 0.2. (i) (A3) means, in other words, f(z,u) is invariant under the group action
G = {id,—1id} on =z.

(i) If f(=,u) satisfies (A2) and (A4), then the limit function f °°(u) also satisfies (H2) with
the same constant 6.

(iii) A (in (A5)) corresponds to a convergent rate (from below) and A > 2 plays an essential
role in our existence result. ‘

We remark that if f(z,u) satisfies f(z,u) > f*(u) for all z € RY, u > 0, then it is
well-known that the mountain pass minimax value for corresponding functional is attained.
(cf. Lions [PLL1], [PLL2].) However, without any order relation between f(z,u) and
f*=(u), the mountain pass minimax value is not attained in general. For example, it is
not attained under condition: f(z,u) < f®(u) for all z € RY, u > 0. As far as we
know, without any order relation, the existence of positive solutions of (0.1) is obtained
by Bahri-Li [BaYL] (c.f. Bahri-Lions [BaPLL)) just for the case f(z,u) = a(z)u? with
a(z) satisfying | |

a(z) >0 forallz € RV, ; (0.3)
a(z) =1 as|z| = oo, | (0.4)
a(z) —1> —Ce® forallze RN. - (0.5)

Their proof essentially depends on the uniqueness of positive solutions for the limit prob-
lem: —Au + u = u? in RN which is obtained by Kwong [K). See also Chen-Lin [CL] for
uniqueness result. We remark that Bahri-Li’s solution does not correspond to the mountain
pass critical point.
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Theorem 0.1 can be extended to the setting of more general group actions. We assume,
instead of (A3),

(A3’) let G C be a subgroup of O(N) which does not have a common fixed point on
SN-1 = {2 ¢ RN |z| = 1}, that is, for any z € SN, there exists g € G such
that gz # =. We assume f(z,u) is invariant under the group action G C O(N) on
z, that is,

f(gz,u) = f(z,u) forallge@, z € RY and u > 0.

Let card {...} denote the cardinal number of {...}. Moreover, we set

m= min card{gz;g€ G} 2) (0.6)
and choose zo € SV~! such that card {gzo;9 € G} = m. We denote {gzo;9 € G} =
{é1,...,Em} and set Ao = r;:;éix} |é; — €;] € (0,2]. We assume, instead of (A5),

i#j

(A5’) there exists a constant A > Ao such that for any € > 0 we can find a constant C. > 0
which satisfies

f(z,u) — f°(u) > —e Ml(eu 4+ C.uP) forallz € RN and u > 0.

Our second existence result is the following

Theorem 0.3. Suppose f(z,u) satisfies (A0)-(A2), (A3’), (A4) and (A5’). Then (0.1)
has at least one positive solution u € H*(R”™) which is invariant under the group action
G on z, that is,

u(gz) =u(z) forallge G, z e R". (0.7)

In our setting, by virtue of G-invariant property, we do not need the uniqueness
of positive solutions for the limit problem (0.2). Moreover, we have no order relation
between f(z,u) and f®(u). Since H*(R") is not embedded compactly into LPt1(RN),
the mountain pass minimax value for corresponding functional may not be attained without
order relation. However if we assume that f(z,u) is invariant under finite effective group
action G on z, then we can show that the mountain pass minimax value for functional
restricted to G-invariant subspace of H*(R") is attained without order relation.

~ In the following sections, we prove Theorem 0.3 by variational arguments. Since
Theorem 0.1 is a special case of Theorem 0.3, we show the existence of positive solution
of (0.1) in the setting of Theorem 0.3. Our paper organized as follows. In Section 1, we
give a functional framework and give some known results for the limit problem. We also -
give a concentration-compactness lemma in our setting. Using G-invariant property, we
study where Palais-Smale condition breaks down. In Section 2, we establish some energy
estimate which is a key of our existence result. In Section 3, we complete a proof of
Theorem 0.3. Lastly, in Section 4, we give proofs of some remaining lemmas.
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1. Preliminaries

In this section, we state some known results which are important to our existence result.
First of all, we give a functional framework.

1.1. Functional framework

Jull = (/ (IVal? + |u|)dz),

(u,v) = LN(Vu - Vv + uv) dz

We use notation:

for u, v € H*(R"). The functional corresponding to (0.1) is
I(u) = l||u.||2 —/ F(z,u)dz: H'(RY) > R. (1.1)
2 RN
Since we look for only positive solutions, we may assume without loss of generality that

f(z,u) =0 forallz € RN andu <0.

Then it follows from standard functional analysis and the maximum principle that the
functional I(u) given in (1.1) belongs to C*(H*(RY), R) and nontrivial critical points
of I(u) are positive solutions of (0.1). See [AT1], Coti Zelati-Rabinowitz [CR] and Ra-
binowitz [R1]. We remark that I(u) possesses a mountain pass structure, that is, I(u)
satisfies the following three properties: '

(i) 1(0) =0,

(ii) there exist constants ag, po > 0 such that
I(u) > a0 >0 forallue Hl( RY) with ||u|| =

(ili) Zo = {u € H*(RN); ||u| > po and I(u) < 0} # 0. :
The proof that I(u) possesses a mountain pass structure has been established in Cotx
Zelati-Rabinowitz [CR], Rabinowitz [R1] and [R2].

Moreover, we set
E = Eg = {u € H'(RV); u(gz) = u(z) forallg € G and = e RV}

By the well-known principle of symmetric criticality, we see that if the restriction I E(u)
has a critical point, then it is in fact a critical point of I(u) and therefore it is a positive
solution of (0.1) which satisfies (0.7). See Palais [P]. Thus it suffices to find a critical
point of I|g(u). We find a critical point of I|g(u) by the Mountain Pass Theorem. The
mountain pass minimax value for I(u) is not attained, however, we show the restriction
I|g(u) satisfies Palais-Smale condition in a range of the mountain pass minimax level.
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1.2. Some properties of the limit equation

We use concentration-compactness lemma given by Lions [PLL1], [PLL2] to study where
Palais-Smale condition for I(u) or I|g(u) breaks down. To classify levels of breakdown of
Palais-Smale condition, the limit equation (0.2) and corresponding functional

1
I°(w) =glu|* - | F<(u)de: H'(RY) > R
R

play important roles. We state here some known results for (0.2). Berestycki-Lions [BeL)]
showed that (0.2) has a positive radial solution w(z) = w(|z|) > 0, which we call a
ground-state solution, as a minimizer of the following minimization problem on the Nehari
manifold:

inf{I°(u); u € HYRY), v 20, I*'(u)u = 0} > 0.

w(z) satisfies
0 < I*°(w) < I*°(u) for any nontrivial solution u of (0.2).

Moreover, Gidas-Ni-Nirenberg [GNN] showed the exponential decay property of w(z):
there exist constants a;, az > 0 such that

N-1

a(je] +1)" e < w(z) < ap(lz| + 1) Fe ! forallzeRY.  (1.2)

From (H2), ivg can easily see that w(z) is also characterized as a mountain pass critical
point of I°°(u) and it also satisfies

sup I (tw) = I*(w). ' (1.3)
>0

1.3. Breakdown of Palais-Smale condition
Definition 1.1. For ¢ € R we say that (u,)22; C HY(RY) is a (PS).-sequence for I(u),
if and only if (u,,)52, satisfies as n — oo, |

I(un) —c,

I'(u,) = 0 in HY(RY).
We also say I(u) satisfies (PS)c-condition if any (PS).-sequence possesses a strongly con-
vergent subsequence in H'(RY).

The following lemma provides a precise description of a behavior of (PS).-sequence
for I(u). The proof of this lemma can be given in [PLL1] and [PLL2].

Lemma 1.2. Let (u,) C HY(RN) be a (PS).-sequence for I(u). Then there exists a
subsequence — still denoted by (u,) — for which the following holds: there exist a solution
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uo(z) of (0.1), an integer k > 0, for i = 1,...,k, sequences of points (z}) C RY and
nontrivial solutions of v;(x) of the limit equation (0.2) satisfying

up — ug weakly in HI(RN),
k
I(up) = ¢ =I(up) + ZI”('«),‘),

=1
) |
iy — (uo + ) vi(z - z;)) — 0 strongly in H*(R"),
i=1 ‘
|:cil|—>oo, |:c:.,—:cf,|—>oo for1 <i#j <k,

where we agree that in the case k = 0, the above holds without v; and z?,. |

The following corollary is obtained from Lemma 1.2.

Corollary 1.3. I|g(u) satisfies (PS).-condition for the level
ceE (—00, mIoo(,w)),
where m is given in (0.6) and w is a ground state solution of (0.2).

Proof. Let (u,) C E be a (PS).-sequence for I(u). Then it follows from the usual
concentration-compactness argument that (u,) is bounded and if (u,) does not have a
convergent subsequence, then there exists a sequence (z,) C R" and a > 0 such that
|£n| — 00 as n — oo and ' -

lim inf |un|? dz > a,

n—oo Bl(zn)

where B;(z,) = {z € RV ; |z — 2,| < 1}. Since (u,) C E, we see that

lim inf |up|?dz >a forall g€ G.

nroo Bi(gzn)

By (0.6), we can find m sequences {(y)}™, C R" such that

Bi(y.) C U Bi(9z,) forali=1,...,m,
9€G

dist (B (v.), Bi(y))) > 00 asn — oo forl <i#j<m.

Thus it follows from Lemma 1.2 that

liminf I(u,) > mI®(w).

n—0o
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By the principle of symmetric criticality, we see that (PS).-sequences for I|g(u) are in
fact (PS).-sequences for I(u). Therefore the first level of breakdown of (PS).-condition for
I|g(u) is mI®®(w). |

2. Energy estimates

To obtain a positive solution of (0.1) through the Mountain Pass Theorem, by Corollary
1.3, we need only to show the mountain pass minimax value for I|g(u) is strictly less than
mI®(w). That is, we find a test path which lies below mI*°(w). The following proposition
plays an important role to find a desired test path.

Proposition 2.1. For any integer £ > 2 and any e,,...,e, € SN, we suppose that there
exists a constant A > )g such that for any € > 0 we can find a constant C, > 0 which
satisfies

flz,u) — f°(u) > —e M®l(eu + C,uP) forallz € RN and u >0,
where Ao = mip le; — e;| € (0,2]. Then there exists a constant Sp > 1 such that
i#j

. v
I(tZw(z —se;)) < £I*°(w) for allt > 0 and s > Sp. (2.1)

=1

Remark 2.2. This type of estimate was used successfully in Bahri-Li [BaYL], Bahri-
Lions [BaPLL] to obtain the existence of positive solutions of (0.1) with f(z,u) = a(z)u?.
They used an interaction phenomenon among w( — se;) in a sense of Taubes [T]. See also
[AT1], [AT2] for nonhomogeneous perturbed problem.

We remark that we may assume X\ € (Ao, p + 1) without loss of generality. To give a
proof of Proposition 2.1, we need some lemmas.

Lemma 2.3. For any integer £ > 2, a € (%, 1) and M > 0, there exists a constant
B =B, a, M) > 0 such that
I}

t o ; £ o a
Fo(Yu) = S F2(w) o Y f(ui)us +8 Y wrut >0 (22)

i=1 i=1 : L %=1 ii=1
i#) £

for all 0 < uy,...,uy < M, where n > 0 is given in (H1).

Lemma 2.4. There exist constants Cy, Cy, C3 > 0 such that

—As .
—Al=| e )2 dp < ) Cre ifA<2, .
LN € w(z set) dz < { Czs_(N_l)e—2‘ if A > 2, (2 3)

/ e M=lw(z — se;)PT dz < Cze™™ (2.4)
RN
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for all e; € SN~ and s > 1. Moreover, for all p € (1, ; ), there exists a constant
Cs > 0 such that
/ w(z — sei)gjzﬂw(:c - .sej)$ de < Cyerolei—ei (2.5)
RN

for all e;, e; € SN~ and s > 1.

Lemmas 2.3 and 2.4 are important to use an interaction phenomenon, but those
proofs are essentially elementary. We leave proofs of Lemmas 2.3 and 2.4 for a while and
we proceed the proof of Proposition 2.1. We give proofs of Lemmas 2.3 and 2.4 in last
section.

)/
Proof of Proposition 2.1. By the continuity of I(u) at 0 and the fact that I(¢ Z w(z—
i=1
se;)) — —oo as t — oo uniformly in s > 1, we can find constants ¢, £ > 0 such that
L
I(tZw(z —se;)) < I®(w) forallte€[0,t]U[t,00) and s > 1.
i=1

Thus we need to find a large So > 1 such that (2.1) holds for ¢ € [¢, £]. Simple calculation
yields

{5
I(t Ew(:c—se,) = —||t2w(z—se,)|[ —-/ F(z tZw(z——se,))dz
=3 Z ltw(z — se;)||® + Z t?(w(z — se;),w(z — se;j))
., t#:
- b w(z — se;)) dz
Jo 3 wte — se) .

£

o 4 |
+/RN(F°°(tZw(z—se;))—F(z,t;‘w(z—-’ei)))d”

i=1

4 R 4
=5 Y lbule —sedl? =3 [ F<(tule —se)de

— Fe(t Z w(z — se;))dz + Z/ F®(tw(z — se;)) d=

RY i=1
Z 2 (w(z — se;), w(z — se,))
3,7=1

$#)

s [ E=ed

' L
w(z — se;)) — F(z,t Z w(z — se;))) dz.

1
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Fix a € (% 1) and we put M =1t nél;.x w(z). Applying Lemma 2.3, we have

L

It ) w(z — se;)) < I (tw)

=1

—a Z f°°(tw T — se;))tw(z — se;) dz
t,j=1
i#]

Z t* (w(z — se;), w(z — se;))

1,7=1
s#I

L
+ /R (F=(t Zw(z_se,) ~Flat Y (e - sei))) do

i=1

+ Z / B(tw(z — se,)) 2 (t'w(a: - se,))%"" de.

t,5=1
1#)

= £I°°(tw) — (I) + (II) + (III) + (IV). (2.6)

We estimate each term of the right hand side of (2.6) respectively to show (2.1). First of
all, we estimate (III) and (IV). We have from (A5) and Lemma 2.4,

(1) = /RN(F°° Zw(z—se,)) — F(=, tz'w(z—se, ))) d=

1—1

-[. / et ) fa,r))drds

t2:= w(z—se;)
S/ / ' e Mel(er + C.7?) da
RN Jo

‘ 2
=§/ e~ A=l (tZw z-——se,) dz

i=1 .
c ¢t r+1
+ . _:1 . e~ M=l (t ;w(z - se;)) dz
[/
< %C’ /RN e =l ;(tw(z — se;))? dz

C
+ —CC'/ e~ M=l Z tw(z — se;))Pt dz
P+ 1 =1

< eA;max{e s~ (V"De"20} 4 C,Ape” ’, (2.7)
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2+n

where A;, A2 > 0 are constants independent of ¢ > 0 and s > 1. Fix p € (1, >

). We

also have from (2.5)

(Iv) = Z / B(tw(z — se,)) 7 (tw(z — se,)) T dz < Age P, (2.8)

where As > 0 is a constant independent of s > 1. We remark that (2.7) and (2.8) hold for
all t € [t, 2]

We treat (I) and (II) more carefully. Since w(z) is a solution of (0.2), we have
£ (w(z — ses),w(z — se;)) = / £ (w(z — ses))tw( — se;) da
RN
= / tf(w(z — se;))tw(z — se;) dz.
RN
Thus we have
- (D) + (1)

= - Z / (2af®(tw(z — se;)) — tf>(w(z — se;)))tw(z — 3e_,) dz. (2.9)

i,7=1
i#j5

From (H1), (H2) and a > %, we can choose t; € (0,1) and § € (0,2a — 1) such that

20 (tw(z — se;)) — tf°(w(z — ;eg)) > §f®(tw(z — se;)) (2.10)

forallt > t;, z € RN, s
d € (0,2a — 1) satisfying (2
tefti,tjand t € [¢t, t1].

For t € [t;, ], we have from (1.2) and (2.10)

>1and ¢ = 1,...,£. Then we choose t; € (0,1) and
.10) and fix them. We consider the following two cases:

Z / (2af(tw(z — se;)) — tf°(w(z — se:)))tw(z — se;) dz

t,j=1
i5%j

2 Z f°° (tw(z — se,))w(:c — sej) dz

;e__
L

s / = (tw(e))w(e - s(e; - e:)) dz

3 J—l
i#j
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6t1
> Z /m 2))w( — s(e; — e;)) de

Jt
y e 2))(Je — (e = &) + 1)~ F eIl g

$,5=1 .1:|<1
i#)

Jt
> 3 By 2y el [ r=(tue)dz
l=|<1

i,j=1
i#)

IV

> Ags— T e Moo, (2.11)

where Ay > 0 is a constant independent of s > 1. Then taking ¢ small if necessary, we see
that there exists a constant S; > 1 such that

— Aos_ge_)‘“ +c4A, ma.x{e“"‘, s—(N_l)e—z’} + C,Ae™?* + AgePros
<0 forall s>S,;. (2.12)

Thus we have from (1.3), (2.6)—(2.12)
.
I(tZw(z — se;)) < £I*®°(w) forall s> S; andt€[t,,t].
=1

For t € [t, t;], it follows from (1.3) that
I®(tw) < I*®(w) forallte€[t,t,]. (2.13)
On the other hand, (I) > 0 is obvious. Moreover we have

(w(z — ses), w(z — se;)) = (w(z — s(ei — 3)), w(z))

—0 ass— oo (2.14)

for all 1 # j. From (2.7), (2.8) and (2.14), we see that (II) 4+ (III) + (IV) tends to 0 as
s — oo uniformly in ¢. Thus by (2.6) and (2.13), we find a constant Sz > 1 such that

L
I(tZw(z —se;)) < I®(w) forall s> S, andt€t,t,).

i=1

Finally, setting So = max{S , S2}, we obtain (2.1) for this So > 1. |
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3. Proof of Theorem 0.3

Recall that I(u) possesses a mountain pass structure (i)—(ili). Then we consider the
following minimax value

b—;g{,trggﬁll s(1(t)),

where

I'={y € C([0,1], E); 4(0) = 0, ¥(1) € Zo},

Zo ={u € E; |ul| > po and I|g(u) < 0}.
Applying Proposition 2.1 with £ = m and {é,,...,¢é,,}, we see that there exists a constant
So > 1 such that ’

I(tZw(z — 8€;)) < mI®(w) forallt> 0 and s > .Sp. (3.1)
1=1
Since I(t Z w(z — s€;)) & —oo as t — oo uniformly in s > So, we choose ty > 0 such that
i=1

|Ito E'w(z — 3€;)|| > po and I(2o Zw (z - se,)) < 0. We define yo(t) by

o 1=1 1=1
t) =ty Ew(m — 8€;).
i=1
Since |gz| = |z| for all g € G, z € R and w is a radially symmetric function, we see that
Yo(t) € E for all t € [0,1]. Thus ~o(t) € I'. Then it follows from Corollary 1.3 and (3.1)

that we obtain a positive solution satisfying (0.7), which corresponds to the mountain pass
minimax value b. i

4. Proofs of Lemmas 2.3 and 2.4

Proof of Lemma 2.3. First we prove (2.2) with £ = 2, that is, we show that for any
a€ (— 1) and M > 0, there exists a constant 3 > 0 such that

F(u+h) — F* (i) — F®(h) — af*(u)h — af®(h)u + fu 51 > 0 (4.1)
forall 0 < h, u <M. If h = 0oru=0, obviously (4.1) holds. Otherwise we assume,

1
without loss of generality, that 0 < h < u < M. It is easy to see that for a € (5, 1),

F™(u + k) — F®(u) — F®(h) — af*®(u)h — af®(h)u + fu 3 h*F"

= F®(u + h) — F®(u) — F*(h) — f*(u)h
+ (1 - @) f2(w)h — af = (h)u + fu’ s 1"

= F(u + h) — F®(u) — F(h) — f°(u)h
+ (- o ISE) by g
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From (H2), we see that
F(u + h) — F(u) — F®(h) — f®(u)h
-/ St ) — () — () dr
[ (et I, s,

u+T T u

/Oh <f°°u(i~};'r) _ f°:_(7')) .,-d-,-+/oh (f°°u(1::--r) f°‘;(u)) udr
0

v

for all 0 < A < u. Thus if

(eI 5 ),

u

(4.1) hold for any 3 > 0. The remaining case is

(-2 7R

It follows from (H1) that there exist constants 0 < ¢; < ¢, such that
cult? < f°(u) < cpu't" for 0 < u < M.

Thus in this case we have ¢1(1 — a)u” < coah”, that is,
(01(1 - a)) S ﬁ
ca u
| 240
©o h 2
s (e

IR (al-a))H
_12““"( AT+ +ﬁ(1cz—aa) )

Then

for B > 0 large enough.
"~ Next we use induction argument to prove Lemma 2.3. We put Uy_1 = uy +---+ug—1.

By (4.1), we have for any a € (1 1), there exists a constant 8 > 0 such that

F°°(U¢_1 + ul) -— Fco‘(Ul_l) - Foo('u,[)
. 3tn 349
—af®(Up-1)ue — af®(ug)Up—1 + BU, 2 u,* >0. | (4.2)
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It follows from the hypothesis of induction that for any a € (-;— , 1), there exists a constant
B' > 0 such that

£—-1 £-1 £—-1
249 24n
FOUemr) = Y FP(us) —a Y fouw)uj+8 D w;” u;? 20, (43)
i=1 i,j=1 ii=1
i#£j i#)

By (H2), we have

F=(Ue) - gf“(ui) = tX_) e LS

We also see that there exists a constant C' > 1 such that
Ui_i’? < C(u:_-gl +-- 4+ u:i_’:) (4.5)
From (4.2)-(4.5), putting 8" = max{8',C}, we have Lemma 2.3 for this 3". |

Remark 4.1. If f(z,u) = a(z)u? with a(z) satisfying (0.3)-(0.5), then f*°(u) = u? and
there exists a constant 3 > 0 such that Lemma 2.3 (with 7 = p — 1) holds for a = 1 and
any h, u > 0. See Bahri-Li [BaYL], Bahri-Lions [BaPLL].

Proof of Lemma 2.4. In what follows, we denote various positive constants independent
of e;, e; € SN~! and s > 1 by C. We first show (2.5). From (1.2), we see that

w(z)%ﬂ < Ce #l forall z € RV,

/ e"l""w(z)ﬁ?ﬂ dz < oo.
RN
Thus we have
/ w(z — 3ei)3¥1w(z - sej)a;'n dz
RN

< [ e Hlamseilgmnlz—seilgnlz—seily(p  se;) % do
RN

=C | e plemsleimenlg—plzlghlaly(5)H do
RN

< C max e—Mlz—s(ei—e;)+Iz)) / eHolw(z) 5" de
~ zeRV RY
< CePelei—e;l
and we obtain (2.5). Next we show (2.4). It follows from (1.2) again that
w(:c)P'H < Ce M2l forall z € RN,___

/ eMelw(z)Pt1 dz < oo.
RN
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Thus in the same way as (2.5), we obtain (2.4). If A < 2, then (2.3) is also obtained
similarly. If A > 2, we obtain (2.3) by the Lebesgue dominated convergent theorem. From
(1.2), we have

/ e M2ly(z — se;)? dz
RN

<C e"‘lzl(lz — se;| + 1)_(N—l)e"2lz_”‘| dz
JR¥N

RY

N-1
< Cs—(N—ne—z./ e—(A-2)l=| _ s - dz.
- RY |z — se;| +1

We observe that

N-1
e—(A-2)la| (I?:%Tﬁ) — e D2l 355 5 oo forall z € RY.
s
For |z| < 3
| N-1 N-1
Ol (% <e-2lef [ 2
|z — se;| +1 $+1
< gN-1-(A-2)la]
For |z| > i,
2 N-1
o~ (A=2)l2l (T—SH_T) < e~ A-D)lel N-1
z — se;
< 2N_16_(>‘_2)|z||a:|N_1.
Thus

\ N-1. ‘
—(A=2)|=| 8 < 9N-1,-(A-2)z| 1. lz|N-1 LYRM).
e (_|z—se,-|+1) < e max{1,|z|" "'} € L'(R")

Therefore we can apply the Lebesgue dominated convergénce theorem and we obtain

/ e M=ly(z — se;)?dz < Cs~ (VD20 (/ e (ADlel g 4 0(1)>
RY RY

as s — 0o. Thus we obtain (2.3). |
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