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1. Introduction

Let X;,X,,... and Y;,Y2,... be independent observations from the populations II,
and II, respectively, where II; is according to an exponential distribution having the

probability density function
foi(z) = 07 exp(~z/0;), >0

with 0 < 0; < oo for ¢ = 1, 2. We assume that the scale parameters o; and o, are both
unknown and two populations II; and II, are independent. We want to estimate the ratio
01/ 0, of scale parameters. Taking samples of sizes n and m from II; and II, respectively,
we estimate § = o, /0, by '

é(n,m) = Yn/—};m

where X, =n"!'Y" . X; and Y,, = m~! =7, Y.. As the loss function, we consider
n 1=1 1 ’

LBnm) = Bnmy — 0)* + c(n + m)

where ¢ > 0 is the known cost per unit sample in each population, and the risk is given
by R(O(nm)) = E{L(é(n,m))} which is finite if m > 2.

As for two-sample case, sequentiél estimation of the difference of the means under the
above loss structure has been considered in the literature. Ghosh and Mukhopadhyay
(1980) and Mukhopadhyay and Chattopadhyay (1991) considered the normal and the
exponential cases, respectively and gave second order approximations to the risks as
¢ — 0. Mukhopadhyay and Purkayastha (1994) treated the same problem in the case



of unspecified distributions. For the present exponential distributions, it is sometimes
of interest to estimate the ratio of scale parameters rather than the difference of the
means and hence, in this paper we propose a sequential procedure for estimating o1/05.
In Section 2, we present a fully sequential procedure and give second order asymptotic
expansions for the expected sample size and the regret of the sequential procedure. Bias-
corrected procedure is also proposed to reduce the risk. These procedures can be applied
to the estimation of the ratio of two normal variances, which are stated in Section 3 and

proved in Section 4.

2. Main results

In this section, we propose a fully sequential procedure and give second order asymp-
totic properties of the procedure. Let m > 2. Estimating 6 = 01/03 by é(n,m), the risk is
given by

Rlnmy) = EXn/Vm — 0)* + c(n+m) = (£ + )87 + rnmb” + c(n +m),

where Tnm = (2 + ;1;)(,"3"“2

2 i - 14 1)2
D(m—2) + D) Since Tp;m = O ((ﬂ + m) ) as n and m

tend to infinity, we have
RlBnymy) = (2 + L8 +c(n+m) + O ((2 + 1)?).

If we ignore the order term above, then the risk R(é(n,m)) is (approximately) minimized

by taking
n=m=c?0=n* (say) (2.1)

(in practice, one of the two integers closest to this value) with R(é(n—,n‘)) ~ 4cn* for
sufficiently small ¢. But o; and o, are unknown, so is n*. Since fixed sample size
procedures are not available, we propose the following sequential sampling procedure
motivated by (2.1). As the starting sample sizes, we take X, ..., X and Y3,..., Y} from
I1, and II, respectively, where & > 2. If k < c"*/2X}/Y, then we take one observation
in addition from each population, that is, X341 and Yi; are taken from II, and II,

respectively. The resulting stopping time is defined by
N=N.=inf{n>k: n2 VX, )Y, )

Then, by the strong law of large numbers, P(N < oo) = 1 for all ¢ > 0. Once the
sampling stops, using the total 2N samples Xj,..., Xy and Yi,...,Yn, we estimate
6 = 01/05 by Oy = é(N,N) = Xn/Y n. The risk R(éN) associated with Oy is
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R(éN) = E(X—N/VN - 9)2 + cE(ZN)

The performance of the sequential procedure is assessed by the regret R(éN) — 4cen*.
We shall now give the main results concerning second order asymptotic expansions of
the expected sample size and the risk of the procedure. Let { -}~ denote negative part

such that 2~ = max(—z, 0).
Theorem 2.1. (i) If k > 3, then as ¢ — 0,
E(N)=n"+p—1+0(1),

where

ands00< p<E.
(ii) If k > 12, then as ¢ — 0,

R(By) - 4en* = 4c+ o(c).
We shall propose another procedure to reduce the risk. The following theorem con-

cerns the bias of the sequential procedure 9.

Theorem 2.2. Ifk > 6, then as c — 0,
E(6y) - 6 = —V/c+ o(\/0).
Taking account of Theorem 2.2, we propose a bias-corrected procedure

A*N = YN/?N + .

Then, from Theorem 2.2, if k > 6, E(f%) = 6 +0(,/c) as ¢ — 0. The risk associated with
83 is given by R(6%) =F (83 — 6)>+ cE(2N) and its second order asymptotic expansion

is given below.

Theorem 2.3. Ifk > 12, then as ¢ — 0,

R(8%) — 4en* = 3¢+ o(c).

Proofs of Theorems 2.1-2.3 are omitted (see Uno (2003)). We have, from Theorems
2.1 (ii) and 2.3, if k£ > 12, then R(8%) — R(dx) = —c + o(c) as ¢ — 0, which says that
the risk of the bias-corrected procedure é}'v is asymptotically one cost less than the one

of the original procedure Gy.



For two exponential populations II; and II;, Mukhopadhyay and Chattopadhyay
(1991) considered sequential point estimation of the difference oy — 03 and showed that
the regret of their sequential procedure was 4c+o(c) as ¢ — 0. Thus, for two exponential
populations, it seems from Theorem 2.3 that as compared with the estimation of the

difference o, — 04, estimating the ratio o,/0, by é}‘v is more efficient in the regret.

3. Estimation of the ratio of two normal variances

We shall apply the sequential procedures proposed in the previous section to the esti-
mation of the ratio of two normal variances. Let IT; and II, be according to normal distri-
butions N(u1,0%) and N(usz,03) respectively, where the parameters —oo < p1, iz < 00
and 0 < 07, 0 < oo are all unknown. We assume that X, X,... and Y;,Y5,... are
independent observations from the populations II; and II, respectively and two popula-
tions II; and II, are independent. We want to estimate the ratio of the variances o?/a3.
Taking samples of sizes n. and m from II; and II, respectively, we estimate § = o2/o2 by

1 n YV \2 m
Ly (X — X,) - 12 — 1

it R — where X,=—Y_.X; and Vm=—>3_ Y.
;‘1_-1' 2:7;1 (K - Ym)2 n = m iz

O(n,m) =

As the loss function, we consider
LBnm)) = O(nmy — 6)* + c(n +m)
where ¢ > 0 is the known cost per unit sample in each population. Let m > 4. Then the
risk is given by '
R(Onm)) = E{L(B(nm} = E(@nmy — 0)* + c(n+m)
2 (l + ‘.,1,7) 02 + 'r'n,me2 + C(TL + m), ’

Il

n

where

_ (1, 1\ _ 4B3m-—4) 8
Tam = (n m) (m — 2)(m — 4) + (m — 2)(m — 4).

By the same argument as Section 2, if we ignore the term Tam8?, the risk R(é(n,m)) is

(approximately) minimized by taking
n=m=(2/c)/? =n* (say) | (31)

with R(é(n*,n*)) ~ 4cn* for sufficiently small c. But o, and o3 are unknown, so is n*.
Taking account of (3.1) and the sequential procedure presented in Section 2, we propose

a stopping rule
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N=N.=inf{n>k: n>(2/c)"*lnfinn) (3.2)

where Xj,..., Xy, and Y3,...,Ys, are the initial samples from II; and II, respectively,
with ko > 4 and I, = ;25 (> 1) which plays the role to avoid underestimating n* as
seen in Chapter 10 of Woodroofe (1982). Then P(N < oo) =1 for all ¢ > 0. Once the

sampling stops, we estimate 8§ = o%/02 by

b =6 TN (X - XnN)?
N = Y(N,N) = E;N=1(K _?N)g .

The risk R(fy) associated with fy is given by R(dy) = E(fy — 0)% + cE(2N).

The following theorem assesses the performance of the sequential procedure dy.

Theorem 3.1. (i) Ifky > 7, then as c — 0,
E(N)=n"+py— 1+ 0(1),

where po is a constant given in (4.11) and 0 < pg < 3.
(ii) If ko > 25, then as ¢ — 0,

R(fn) — 4cn* = 10c + o(c).

The theorem below concerns the bias of the sequential procedure On.

Theorem 3.2. Ifk, > 13, then as ¢ — 0,

E(by) — 0 = —v2¢ + o(\/0).

Taking account of Theorem 3.2, we propose a bias-corrected procedure 9}'{, = Oy +
V2c. Theorem 3.1 (ii) and the following theorem say that the risk of the bias-corrected

procedure é}'v is asymptotically two costs less than the one of the original procedure On.

Theorem 3.3. If ky > 25, then as ¢ — 0,

R(0%) — 4cn* = 8¢ + o(c).

4. Proofs of the results in Section 3

We shall prove all results given in Section 3. Throughout this section, let M be
a generic positive constant and c;. > 0 be chosen such that n* > 1 for 0 < ¢ < c.
Considering the transformation



; 2
1 ¢ |
Ui= i(i + 1)o? {Z(Xj - Xi+1)} , 1>1

Jj=1
and
2
‘/i Y K ) L 2> 1,
i(i+1)02 1)02 {JZ;I( +1)} =
Uy,U,,...and W}, V;,... are i.i.d. x? random variables, and

Z(X X,,)2—012U and ZY Y,)?= 2ZV for all n > 2.

=
We use the following notation:
n . n
D,=Y(Ui-1), Qu=)(Vi-1), U ZU and V, —-ZV
i=1 i=1 T =1

Then, the stopping time N defined by (3.2) becomes

N = inf {n >ko(>4): (n— 1).‘[.;_"_1 > 'n*} ,
n—1
from which, we have N =t + 1, where

t=tc=inf{n2k(>3): n%P—Zn"} with k = kg — 1. (4.1)

n

The stopping variable t is written in the form
t=inf{n>k: Z,>n"},
where

Zn

b

n =n—D,+Q.+&,

and by Taylor’s Theorem,
En = Zn - (’IL - Dn + Qn) = —n(Un - 1)(Vn - 1) + nvn(Un - )2771:3, (42)
in which 7, is a random variable lying between 1 and U..

Lemma 4.1. Let ¢ > 0. E(U,)? < M and if k > 2q, then E(U;)™? < M. These

assertions hold for V, instead of U,.

Proof. For a real number s,

— T'(%+5) .
ET)' =2 <oo if k>-2s (4.3)
k kT(E)
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where I'(z) is the gamma function. For ¢ > 1, from the Doob’s maximal inequality,
E(T,)* < E {sup,,(U.)"} < (;%)" B < . | (4.4)

For 0 < ¢ < 1, we have from the Holder inequality, for ¢ > 1, E(U,)? < {E(U,)?}¢/¢
which is finite from (4.4). Thus, the first assertion holds. We shall show the second

assertion. For ¢ > 1, from the Doob’s maximal inequality and (4.3);
E(U)™ < E {sup,x(Tn)?} < (%) ET) " <00 if k> 2. (4.5)

For 0 < ¢ < 1, it follows from the Holder inequality and (4.5) that for 1 < ¢' < %,
E(U,)? < {EU,)"7}/Y < oo if k > 2¢, for which k > 3 is sufficient. Hence, the
second assertion holds. The last assertion is clear because U; and V; are the same in

distribution. O

Lemma 4.2. Let g > 1.
(i) {(/n*)"9 c > 0} is uniformly integrable if k > 2q.
(ii) {(¢/n*)?, 0 < ¢ < ¢o} is uniformly integrable if k > 2q.

Proof. From the definition (4.1) of ¢, we have (t/n*)~? < (V,/U,)9. Thus, for a > 1,
from the Holder inequality with v > 1 and u™! + v~ 1 =1,

B(t/n)™t < {B(V) e/ {(BT) e,

Hence, from Lemma 4.1, {(¢/n*)™9, ¢ > 0} is uniformly integrable if £ > 2q. So (i) holds.
For (ii), observe that (t — 1)V;_1/U;_1 < n* on {t > k}, so that for some ¢, > 0,

t/n* < {(Us1/Vica) + (/0" Hsry + (k/n*) =k
< (Ut—l/vt—l)I{t>k} + (k + 1),

where I;.} denotes the indicator function. Therefore, by ¢,-inequality (see Loeve (1977),
p.157), for 0 < ¢ < ¢y,

(t/n") < {Teas/Veed) Loy + (b + D)} < M{ Tt/ Vet oy + (k+1)7}
For a > 1, from the Holder inequality with w > 1 and v ! +v7! =1,

E { (Ut—l/vt-—l )qI{t>k} }a < {E(Ut—l )aquI{t>k} } {E(Vt—l)_aqvl{»k} }

< [ {supnsn (@) " [ {supusn (Vo) =],

which, together with (4.4) and (4.5), proves (ii). O

1/u 1/v

From Theorem 2 of Chow et al. (1979), we have the next lemma.



Lemma 4.3. For ¢ > 1,if {(t/n*)?, 0 < ¢ < ¢} is uniformly integrable for some ¢q > 0,
then {(n*”%lDtl)q, 0<c<c}and {(n*_%|Qt|)q, 0 < ¢ < ¢p } are uniformly integrable.

Let W = ({1, () be distributed according to a bivariate normal distribution with
mean vector (0,0) and covariance matrix ¥ = ( 2 ) In the notation of Aras and
Woodroofe (1993), letting

Xi=U-1,Vi—1), 8,=(Dn,Qn) and c=(-11), (4.6)
we have the following lemma.

Lemma 4.4. If k > 6, then the conditions (C1)-(C6) of Aras and Woodroofe (1993)
are satisfied with p = 3.

Proof. Clearly, (C1) holds for p = 3. From Proposition 4 of Aras and Woodroofe
(1993), (C4) is satisfied, (C5) holds for all @ > 3/2 and (C6) holds with £ = C2— (1o We
shall show (C2) with p = 3. Let 0 < & < 1. Since Z, — (n/e) = n{(Va/Un) —€71} <0
on {V,/U, < 1/}, we have for some s > 3,

E {(Zn - %)4,}3 = E[(Z0 - 2) Iy, g.51/0) <7 E[(Va/ Un) Iig. o1/ 2]

=n*FE [(Vn/Un)sI{Vn/ﬁn>1/e, ﬁn<.1—€}] + n'E [(Vﬂ/‘U—")sI{Vn/ﬁn>l/5’ U,.ZI—E}]
= Ji(n) + Jo(n), say. | |

By the independency of U, and V,,, (4.4) and (4.5), we have, for u > 1 and u 4ot =1,
A(n) < 7 B [(Va/T) I 1y] < WAV HET) P/ (PTn < 1=}
<Mn{PU,-1< —s)}l/" if k> 2su. |
Since by Tchebichev’s inequality and the Marcinkiewicz-Zygmund inequality, for n > 1,
P(U,-1< —¢) < (en)"'E|D,|* = O(n~Y%) for ¢ > 2, | (4.7)

we obtain Ji(n) < Mn* 3 for n > k. If k > 6, then we can choose s > 3, ¢ > 2 and
(u,v) such that k > 2su and s — ¢/(2v) < 0, so that Ji(n) < M for n > k. For Jo(n),
since {V,/U, > 1/e, Up, > 1—¢€} C {V,— 1> 6} where 6 = (1 — 2¢)/e > 0, we have,
from (4.4), foru >1and v +v7 ' =1,

Jo(n) < (1 —¢€)*n’ E [(Vn)%I{V,./UnM/e, ﬁ,.21—e}]
< M {E(V,)" Y/ {P(V, —1> 6)}/* < Mn*{P(V,— 1> 8}

By (4.7), P(V, — 1 > §) = O(n~%/?) for ¢ > 2, so that Ja(n) < Mn#=9/@ for n > k.
Choosing g such that s — ¢/(2v) < 0 for some s > 3 and (u,v), we have Ja(n) < M for
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n > k. Therefore, {[(Z, — 2)*]*, n > k} is uniformly integrable, that is, (C2) holds.
Finally, we shall show (C3). From (4.2), Tchebichev’s inequality, the independency of
U, and V,, and the Marcinkiewicz-Zygmund inequality, we have, for 0 < e < 1,

Plén < —en} = P{(Tn = )(Vo = 1) = Val0n - ;" > ¢}
S P{Tn = )(Va=1) > e} <ePET — 1)°B(V, ~ 1) = O(n™),

which implies 3°32, n P{{, < —en} < o0, so that (C3) holds. O
Let
H=2Z,—n"=t—n*"—D;+Q; + &. (4.8)

It follows from Propositions 2 and 3 of Aras and Woodroofe (1993) that as ¢ — 0,
— —>1 and (%, fta HC) —L (W7 &’ H) with f = C]? - CICZ (49)

3. d « ae o .
where ¢ %5’ and ¢ — ’ stand for almost sure convergence and convergence in distribution,

respectively and H is a certain random variable with pp = E(H) which is given in (4.11).
From Proposition 7 of Aras and Woodroofe (1993),

{l&t — H)?, 0 < c < co} is uniformly integrable. (4.10)

Now we are in a position to prove Theorems 3.1-3.3.

Proof of Theorem 3.1. Using the notation (4.6),
t=inf{n > k: n+(c, S,) + &, > n*},

where (-, -) denotes inner product. Let

E{(1 + (¢, S.))*}

=' > . n = ’
T=inf{n21: nt{e, S.) >0} and po =G

(4.11)

It follows from Theorem 1 and Proposition 3 of Aras and Woodroofe (1993), Corollary
2.2 of Woodroofe (1982) and Lemma 4 that if k = kg — 1 > 6, then

E(N)=E(t+1)=n"+p—E(€)+1+0(1) =n"+pyp—1+0(1) asc— 0.

From Corollary 2.7 of Woodroofe (1982), pp = 2 — %2, E{(n — D, + Q,)"}, and so
0<p < % Thus, the first assertion holds. We shall prove (ii). Observe that

R(On) — 4cn* = 6*E(U, )V, — 1) + 2cE(t + 1) — 4en’
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and by Taylor’s theorem,
(Ut/vt - 1)2 = {Ut - 1 - (Vt - 1)}2(Vl)—2
= {U,-1-V,-1DP{1-2(V,-1)+3(V. - 1)%¢*},
where ¢ is a random variable lying between 1 and V,. Hence,
R(Oy) —4en* = 6*E{U,-1—(V,— 1)} +2cE(t+ 1) — 4cn*
~20°E [{U,— 1 - (V. — )}*(V. - 1))
+36°E [{U, — 1 - (Ve - DP(V, - -
= Jl + J2 + J3, say. (412)
Since from (3.1), J; = 2¢[1(n*)2E{U, — 1 — (V: — 1)}* + E(t) + 1 — 2n*], we get from
Corollary 1 of Theorem 2 of Aras and Woodroofe (1993) with b = (3, —3) and Lemma
4.4,
J1/(2¢)
= $E{E(G -G} —2B(E) +4+ 8- JE{Ui —1- (i - )} +1+0(1)
= 3B{G(G ~ &)’} +9+0(1)
= 21+o0(1),
which implies
J1 =42c+o(c) asc—0. (4.13)
Observe from (3.1) that J; = 3¢ E[(n*)?{({U, — 1) — (Ve — 1)}*(V; — 1)*¢™*]. We shall
show the uniform integrability of {(n*)2{(T; — 1) — (Vi — 1)}*(V: — 1)%¢™*, ¢ < o} for
some ¢y > 0. Clearly,
)T = 1) = (Ve = DP(Ve - 1%
= (n*)2(Ut - 1)2(Vt - 1)2<P—4 - 2(TL*)2(Ut - 1)(V¢ - 1)3Q0_4 + (n*)Z(Vt - 1)4(P—4
= Juy — 2J55 + Js3, say.
From the Holder inequality, for a > 1,
E|Jn|* = E|(n*/t)* {(n*) EDP{(n") 3 Q0™
< {E(n /t)12a}1/3{E|(n )—-2-D Ilzu}l/s{El(nm)-iQtl12a}1/6{E((p—12a)}1/3
and by the convexity, E(¢~'%*) < 1+ E(V;)~1?%. Thus, from Lemmas 4.1-4.3, if k =
ko — 1 > 24, then {|J3|, ¢ < ¢} is uniformly integrable. Similarly, we can show the
uniform integrabilities of {|Js3|, ¢ < co} and {|Ja3|, ¢ < co} provided k > 24, so that we
obtain the uniform integrability of {(n*)2{(T; — 1) — (V: — D}*(V: — 1)%¢™%, ¢ < c}.
From (4.9) and the fact that ¢ = 1 as ¢ — 0,
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P ){T:=1) - (Vi - DP (V.- 1)’ -5 (G- 6)G asc—0,
which yields
= 3cE{(G1 — G)*G} + o(c) = 24c + o(c). (4.14)
Finally, we shall calculate J;. From (3.1),
Jy = —cE{(n")*7*(D; - Q.)*Q:}

= —cE {(n”)"1 ((n"’/t)3 - 1) (D: — Q1)’Q: + (n*) ™MDy — Qt)th}
= —cE{Jy + Jpn}, say (4.15)

Observe from (4.8) that
= () () 1) (D: - QU@
- e (n ~ (D, - Q)'Q,

n*t3
n*2+n*t+t2 . n"‘2+n*t+t2
=~ ) 3 (De — Q1)°Q: + (") s (D; — Qt)ZQt(& - H,)

= Jo1 + Jog, say.

For a > 1, by the Holder inequality,

('n )%+ (n* )2t + n*t? (D, — Q:)°Q: ¢
13 (nv)2

< {e(BF - 3)") e

E|J211|a =

Ta/4 }4/ 7
: b

so that from Lemmas 4.2 and 4.3, {|J211, 0 < ¢ < ¢} is uniformly integrable provided
k > 14. Similarly, fora>1,s>1,s'+u ' =1landv > 1, v 1+ w1 =1,

1
2a3}§7

whence, taking (s,u) = (%,2) and (v,w) = (43, 23), from Lemmas 4.1-4.3 and (4.10),
d

{|J212], 0 < ¢ < ¢} is uniformly integrable provided k¥ > 16. Since from (4.9), Jy; —
—3({1 — ¢2)3¢; as ¢ — 0, we obtain

(n )2+ n*t+t2 (D,
t2

st ) ez

x {BIV,— 11"} (Bl - HIy,

E|Jyel* = Qt) (Ve—1)(& —

IA

E(Jn) = =3E{(¢C1 — ()°Cz} + o(1) = 72+ o(1). (4.16)



For Js,,

Jp = (n*)7'DiQ: —2(n") D@} + (n*)T'Q;
= J221 -2 J222 + J223, say. (417)

Since E(t?) < oo for all ¢ € (0, o] by Proposition 2 of Aras and Woodroofe (1993), it
follows from Theorem 9 of Chow et al. (1965), Lemma 4.2 and (4.9) that

E(Jy3) = (n*)" {8E(t) + 6E(tQ.)} = 8 + 6E {(t/n")Q:} + 0o(1) asc—0,

where by Wald’s lemma and (4.8),

(4
B (a5 {(5-1)a) -5
From (4.10) and Lemmas 4.2 and 4.3, for @ > 1 and some ¢y > 0 such that n* > 1, if

k > 6, then

D, -Q:— &+ H.

n*

Dt_Qt—Et"'HcQt}.

n*

a

E

Q:
(D: — Q1)Q:

1
3a)3

<u[s " (mle - m2Y {Blot) e} | <,

and from (4.9), (n*)"}(D; — Q: — & + HC)Q,V N (& — ¢2)¢z as ¢ — 0. Therefore,

E{(t/n")Qs} = E{(C. — )G} +0(1) = —2+0(1) asc—0, (4.18)
which yields |

E(Jy3) =8+6{—2+o0(1)} +0o(1) = —4 + o(1). (4.19)
From (4.18), as ¢ — 0, |

E(hm) = (n*)E{(D} - 20)Q:} + 2E{(t/n")Q:}
= (") E{(D} - 20)Q:} — 4+ o(1) (4.20)

and we have
E{(D? - 2t)Q.} = L {E(D? - 2t + Q.)* - E(D? - 2t) - E(@})}. (4.21)

For X; = (U;—=1, V;—1),i=1,2,...,let F, = 0(X1,..., Xn) for n > 1 be the o-algebra
generated by X1,..., X, with F, = {¢, Q}, and let z; = 2D;_1(U; — 1)+ (U; — 1) -2
for i > 1 with Dy = 0. By the same argument as (2.14) of Chow and Martinsek (1982),
it follows from Lemma 4.2 (ii) and E(t?) < oo that for fixed ¢ € (0, co], as n — 00
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f |D? — 2n|dP = o(1).
{t>n}

Therefore, from Theorem 1 and Lemma 6 of Chow et al. (1965),

E(D} -2t =E (2; x,?) =E {2; E (a} |f,-_1)}

t t
=F {f_j(sD,?_1 +32D;_; + 56)} =8FE (Z Df_l) + 32E(tD,) + 56E(t),
=1

=1

which is finite because from Theorems 2, 7 and Lemma 9 of Chow et al. (1965),

E(tD;) < {E(t*)}:{E(D})}} < oo and
B (% Df_l) <E (z D?) < B(tD?) < {E@)HEDHH < oo.

i=1
Similarly, we get
t t
ED?-2t4+ Q) =FE {E(m,- +Vi— 1)2} =FE [ZE {(x,- +V; —1)? |J-“-_1}
i=1 i=1
] = E(D? — 2t)* + 2E(t) < oo,

=E [YZ‘,E {e? +20:(Vi - 1) + (Vi - 1)? | Fica}

=1

which, together with (4.21) and E(Q?) = 2E(t), yields
(4.22)

E{(th —2t)Q:} =0

and hence, from (4.20), we obtain
(4.23)

E(Jzzl) = —4+4 0(1) asc— 0.
By an argument similar to (4.18), if £ > 6, then E{(t/n*)D,} = E{({i — (2)(1} +0(1) =
2+0(1) as ¢ — 0, so that
(n*) 7 E{Dy(Q} — 2t)} + 2E{(t/n") Dz}

= (n*)'E{Dy(Q? — 2t)} + 4+ o(1).

By the same argument as (4.22), we have E{D(Q?—2t)} = 0, and so E(Jz2;) = 4+0(1),
which, together with (4.17), (4.19) and (4.23), yields E(Jy;) = -4 — 8 —4 + o(1) =
—16 + o(1). Therefore, from (4.15) and (4.16),

E(Ja2) =

Jy = —¢(72 — 16) + 0(1) = —56¢c + o(c) as c — 0,



from which, together with (4.12)-(4.14), we get R(fy) — 4cn* = (42 — 56 + 24)c+ o(c) =
10c + o(c). Thus, the proof is complete. O

Proof of Theorem 3.2. From (3.1) and Taylor’s theorem,
E(6y) -6 =n*E{Ut_ 1-(Ve~ 1)}
c/2 Vi
= B0~ 1= (V. ~ D)} = E[{T: - 1= (Ve - D}V: — 1)o7
= Ji — J,, say, (4.24)

where ¢ is a random variable lying between 1 and V;. By Wald’s lemma, (4.8) and (4.9),

J = E{n‘t—t(Dt_Qt)} =E{'_(Dt—Qtt)""ft—HC(Dt_Qt)}

= —E(G-G)+o(1)=—4+0(1) asc—0 (4.25)

because for a > 1,

EI_(Dt—Qtt)'*'ft—Hc

a

(D: — Q1)

<M [E ((_f?f_:t_ﬁ?z)_z)a +E|(& - H)(T. —Vt)|“]

n* 3a %
=M {E (%) } £
which is bounded, that is, {%’—‘(Dt — @), 0 < c < ¢o} is uniformly integrable for some
co > 0 such that n* > 1, by Lemmas 4.1-4.3 and (4.10), provided k > 6. Since for a > 1,

Dy — Q:

W=

3a 2
}3 M (Bl - B2V (B, -V,

Eln*{U;—1— (V. — D}V, — 1) %

< o)) {=(2522)) ey

and E(¢~%) < 1+ E(V,)™%, it follows from Lemmas 4.1-4.3 that if k = ko — 1 > 12,
then {n*{U;—1— (V- 1)}(V:—1)¢~2, 0 < ¢ < co} is uniformly integrable. Thus, from
(4.9) and the fact that ¢ = 1 as ¢ — 0,

Jo = E{(C1 — ¢2)¢2} + o(1) = =2 + o(1),

which, together with (4.24) and (4.25), yields E(dy) — 8 = yJc/2{—-4+2+o(1)} =
—v/2¢ + o(/c). The theorem holds. O
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Proof of Theorem 3.3. 1t follows from Theorems 3.1 (ii) and 3.2 that as ¢ — 0,
R(6y) = R(By)+2V2cE(fy — 0) +2c = R(6y) + 2v2¢ {—V2c + o(v/2)} + 2¢
= R(On) — 2c+ o(c) = 8c+ o(c),

proving Theorem 3.3. O
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