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Abstract

Rotating stratified turbulence is analyzed using the rapid distortion theory

(RDT) in the Craya-Herring frame, so that the unsteady time development of

the wave components and the vortex components becomes much clearer than

the previous analysis which utilized the usual Eulerian frame. In this study we
have explicitly calculated the energy partition among the wave, vortex and p0-

tential energy components which would be useful for clarifying the mechanisms

controlled by the buoyancy and Coriolis forces. We have found, for example

the equi-partition between the wave components of kinetic energy $(E_{W})$ and
the potential energy (PE) in along time as observed in previous DNS for

non-rotating stratified turbulence. This holds irrespective of the initial energy
partition $E_{W}(\mathrm{O})/PE(0)$ at least when the initial turbulence is isotropic.

1RDT equations

We consider ahomogeneous turbulent flow with vertical density stratifica-

than $(\mathrm{d}\overline{\rho}/\mathrm{d}x_{3})$ and system rotation around the vertical axis. The governing

equations for an inviscid fluid in the rotating frame under Boussinesq ap-

proximations are

$\frac{\partial u}{\partial t}+$ $(u \cdot\nabla)u+2\Omega\cross u$ $=- \frac{1}{\rho_{0}}\nabla p-g\hat{x}_{3^{\frac{\rho}{\rho_{0}}}}$ , (1)

$\frac{\partial\rho}{\partial t}+$ (u . $\nabla)\rho+u_{3}\frac{\mathrm{d}\overline{\rho}}{\mathrm{d}x_{3}}=\kappa\nabla^{2}\rho$, (2)

and

$\nabla\cdot u=0$ , (3)
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where $\rho$ is the density perturbation from $\overline{\rho}(x_{3})$ , $u$ is the velocity fluctua-

tions, $\Omega=(0,0, \Omega)$ denotes the angular velocity $\Omega$ of the system rotation,

$g$ is the accerelation due to gravity, $\hat{x}_{3}$ is the unit vector in the vertical

upward direction, $\rho_{0}$ is the representative density, and $\nu$ and $\kappa$ are the

viscosity and diffusion coefficient respectively.

We then substitute the Fourier decomposition of velocity and density

perturbations given by

$u_{i}= \sum_{k}\hat{u}_{i}(k, t)e^{ik\cdot x}$
$(i=1,2,3)$ , (4)

and

$\frac{g}{\rho_{0}}\rho=\sum_{k}\hat{\rho}(k, t)e^{ik\cdot x}$ . (5)

Then, RDT equations for stratified rotating turbulence with stratifica-

tion in the vertical $(x_{3})$ direction and rotation around the vertical axis are

obtained as (Hanazaki 2002)

$\frac{d\hat{u}_{i}}{dt}+(\delta_{ij}-\frac{k_{i}k_{j}}{k^{2}})\epsilon_{j3l}f\hat{u}_{l}=(\frac{k_{i}k_{3}}{k^{2}}-\delta_{i3})\hat{\rho}$ , (6)

and
$\frac{d\hat{\rho}}{dt}=N^{2}\hat{u}_{3}$ , (7)

where $N$ is the Brunt-V\"ais\"al\"a frequency and $f$ is the Coriolis parame-

ter (twice the angular frequency of rotation). The wave number vector

$\mathrm{k}(\mathrm{t})$ $=(k_{1}, k_{2}, k_{3})(=k$(0)$)$ does not change with time when there is no

shear. We next rewrite the equations in Craya-Herring frame by rotating

the usual Eulerian frame so that one of the new coordinate axes $e^{3}(=k/|k|)$

agrees with the direction of the wave number vector $k$ . Due to the incom-

pressibility condition, the velocity vector must be perpendicular to $e^{3}$ a$\mathrm{n}\mathrm{d}$
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is rewritten as \^u $(t)=\hat{\phi}_{1}e^{1}+\hat{\phi}_{2}e^{2}(\hat{\phi}_{3}=0)$ . We use the spherical coordi-

nates (k,$\theta, \phi)$ defined by

$k_{1}=k\sin\theta\cos\phi$ , $k_{2}=k$ $\sin\theta\sin\phi$ , $k_{3}=k\cos\theta$ , (8)

where 0is the angle between the polar $(x_{3})$ axis and vector $k$ . Since the new

coordinate, i.e. the Craya-Herring frame $(e^{1}, e^{2}, e^{3})$ is obtained by rotating

the original coordinate $(x_{1}, x_{2}, x_{3})$ by $\pi/2+\phi$ around the $x_{3}$ axis and then

rotating by angle $\theta$ around the new $x_{1}$ (or $e^{1}$ ) axis, the old components $\hat{u}_{i}$

and new components $\hat{\phi}_{i}$ have the relation

$\hat{u}_{1}=-\hat{\phi}_{1}\sin\phi-\hat{\phi}_{2}\cos\theta\cos$
$\langle$$,

$\hat{u}_{2}=\hat{\phi}_{1}\cos\phi-\hat{\phi}_{2}\cos\theta\sin\phi$,

$\hat{u}_{3}=\hat{\phi}_{2}\sin\theta$ . (9)

or equivalently

$\hat{\phi}_{1}=\hat{u}_{2}\cos\phi-\hat{u}_{1}$ Sin ce $=(k_{1}\hat{u}_{2}-k_{2}\hat{u}_{1})/k_{H}=-i\hat{\omega}_{3}/k_{H}$ , (10)

$\hat{\phi}_{2}=-(\hat{u}_{1}\cos\phi+\hat{u}_{2}\sin\phi)\cos\theta+\hat{u}_{3}\sin\theta=\frac{k}{k_{H}}\hat{u}_{3}=\hat{u}_{3}/\sin\theta$, (11)

where $k_{H}$ is the horizontal wave number defined by $k_{H}=(k_{1}^{2}+k_{2}^{2})^{1/2}$ and

the incompressibility condition $k_{1}\hat{u}_{1}+k_{2}\hat{u}_{2}+k_{3}\hat{u}_{3}=0$ has been used in

(11). These expressions show that $\hat{\phi}_{1}$ is related to the vertical vorticity

while $\hat{\phi}_{2}$ is related to the vertical velocity. Then $\hat{\phi}_{1}$ is called ’vortex mode’

and $\hat{\phi}_{2}$ is called ’wave mode.

Using (10) and (11), equations (6) and (7) can be rewritten in the

Craya-Herring frame as

$\frac{d\hat{\phi}_{1}}{dt}=f\hat{\phi}_{2}\cos\theta$ , $\frac{d\hat{\phi}_{2}}{dt}=-f\hat{\phi}_{1}\cos\theta-\hat{\rho}\sin\theta$ , $\frac{d\hat{\rho}}{dt}=N^{2}\hat{\phi}_{2}\sin\theta$ . (12)
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Solving these set of equations, we obtain

$\hat{\phi}_{1}(t)$ $= \frac{1}{a^{2}}\hat{\phi}_{10}(N^{2}\sin^{2}\theta+f^{2}\cos^{2}\theta\cos at)+\frac{1}{a}\hat{\phi}_{20}f\cos\theta\sin$a#

$+ \frac{1}{a^{2}}\hat{\rho}\mathrm{o}f\sin\theta$ cos&(cos $at-1$), (13)

$\hat{\phi}_{2}(t)=\hat{\phi}_{20}\cos$ $at- \frac{1}{a}(\hat{\phi}_{10}f\cos\theta+\hat{\rho}_{0}\sin\theta)\sin$ a#, (14)

$\hat{\rho}(t)=\frac{1}{a^{2}}\hat{\phi}_{10}N^{2}f\sin\theta\cos\theta(\cos at-1)+\frac{1}{a}\hat{\phi}_{20}N^{2}\sin\theta\sin$ at

$+ \frac{1}{a^{2}}\hat{\rho}\mathrm{o}(N^{2}\sin^{2}\theta\cos at+f^{2}\cos^{2}\theta)$ , (15)

where subscript 0denotes the initial values and $a$ is the ffequency of the

internal gravity wave defined by

$a^{2}= \frac{N^{2}(k_{1}^{2}+k_{2}^{2})+f^{2}k_{3}^{2}}{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}=N^{2}\sin^{2}\theta+f^{2}\cos^{2}\theta$. (16)

Since the density is ascalar quantity and not avector, $\hat{\rho}(t)$ is independent of

the frame of reference and agrees with the expression in the usual Eulerian

frame given by Hanazaki (2002).

In this study we assume that the initial density flux is zero, i.e. $\Phi_{\rho i}^{CH}(k, 0)$

$=(1/2)\hat{\rho}0\hat{\phi}_{i0}^{*}+\hat{\rho}_{0}^{*}\hat{\phi}_{i0}=0(i=1,2)$ in agreement with the usual DNS and

experiments. Then, the three-dimensional spectra in the Craya-Herring

frame become, for example,

$\Phi_{\rho\rho}(k, t)$
$=\overline{\hat{\rho}\hat{\rho}^{*}}$

$= \frac{1}{a^{4}}\Phi_{11}^{CH}(k, 0)N^{4}f^{2}\sin^{2}\theta\cos^{2}\theta(\cos at -1)^{2}$

$+ \frac{2}{a^{3}}\Phi_{12}^{CH}(k, 0)N^{4}f\sin^{2}\theta\cos\theta\sin$ at

$+ \frac{1}{a^{2}}\Phi_{22}^{CH}(k, 0)N^{4}\sin^{2}\theta\sin^{2}$ at

$+ \frac{1}{a^{4}}\Phi_{\rho\rho}(k, 0)(N^{2}\sin^{2}\theta\cos at +f^{2}\cos^{2}\theta)^{2}$ , (17)
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Using equation (12), we can derive general and fundamental relations

among the three-dimensional spectra. Some of them are

$\frac{d}{dt}\Phi_{11}^{CH}=2f\cos\theta\Phi_{12}^{CH}$ , (18)

$\frac{d}{dt}\Phi_{22}^{CH}=-2f\cos\theta\Phi_{12}^{CH}-2\sin\theta\Phi_{\rho 2}^{CH}$ , (19)

$\underline{d}\Phi$

$=2N^{2}\sin\theta\Phi_{\rho 2}^{CH}$ . (20)
$dt$

$\rho\rho$

Since $d\Phi_{\rho\rho}/dt=2N^{2}\Phi_{\rho 3}$ (Hanazaki &Hunt 1996), (20) shows that

$\Phi_{\rho 3}=\sin\theta\Phi_{\rho 2}^{CH}$ . Then,

$\overline{\rho u_{3}}=\int\Phi_{\rho 3}dk$ $= \int_{0}^{\infty}dkk^{2}\int_{0}^{\pi}d\theta\sin\theta\int_{0}^{2\pi}d\phi\Phi_{\rho 3}$ (21)

is different from $\overline{\rho\phi_{2}}=\int\Phi_{\rho 2}^{CH}dk$ although they agree in the long-time limit

as will be shown later.

Integrations of the three-dimensional spectra such as (17) in the whole

spectral space $( \int dk =\int k^{2}dk\sin\theta d\theta d\phi)$ give

$\frac{d}{dt}E_{V}=\int f\cos\theta\Phi_{12}^{CH}dk$, (22)

$\frac{d}{dt}E_{W}=-\int(f\cos\theta\Phi_{12}^{CH}+\sin\theta\Phi_{\rho 2})dk$ $=- \int f\cos\theta\Phi_{12}^{CH}dk-\overline{\rho u_{3}}$ , (23)

and

$\frac{d}{dt}PE=\int\sin\theta\Phi_{\rho 2}^{CH}dk=\overline{\rho u_{3}}$ , (24)

where

$E_{V}(t)= \frac{1}{2}\int\Phi_{11}^{CH}(k, t)dk$ , (23)

$E_{W}(t)$ $=$ (26)

$PE(t)$ $= \frac{1}{2N^{2}}\int\Phi_{\rho\rho}(k, t)dk$, (20)
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are the vortex-mode kinetic energy, wave-mode kinetic energy and potential

energy respectively, and $KE=E_{V}+E_{W}$ is the total kinetic energy.

The kinetic energies of vortex mode and wave mode ( $E_{V}$ and $E_{W}$ ) ex-

change energy via the integral $\int f\cos\theta\Phi_{12}^{CH}dk$ , which vanishes when there

is no rotation $(f=0)$ . Then, without rotation (e.g., pure stratified flow),

the spectrum $\Phi_{11}^{CH}(t)(=\Phi_{11}^{CH}(0))$ is constant (cf. (18)) and vortex mode

energy $E_{V}(t)(=E_{V}(0))$ is constant. Even with the rotation $(f\neq 0)$ , the

energy exchange vanishes if $\Phi_{12}^{CH}(t)$ $=0$ at all times. This occurs if $N=0$

(pure rotation) and if the turbulence is initially isotropic. This recovers the

previous results (e.g., Cambon&Jacquin 1989, Hanazaki 2002) that initial

isotropy is conserved for pure rotating turbulence in the most general form.

It is important here to note that the integral decays rapidly with time

(e.g., $\propto t^{-3/2}$) even if $f$, $N\neq 0$ . This rapid decay occurs since the dispersion

relation of the inertial gravity wave gives that the most contributions to the

integral should have come from near $\theta=\pi/2$ , while the integral contains

$\cos\theta(=0)$ (cf. \S 2), as verified mathematicaly by the method of stationary

phase (Hanazaki& Hunt 1996, Hanazaki 2002).

On the other hand, $E_{W}$ and $PE$ exchange energy via $\int\sin\theta\Phi_{\rho 2}dk$ (or

$\overline{\rho u_{3}})$ , which does not exist if $N=0$ (e.g., pure rotation) but decays slowly

$(\propto t^{-1/2})$ since $\theta=\pi/2$ gives $\sin\theta=1$ which is contained in $dk$ and the

integrand does not vanish for the most contributing wave number comp0-

nents.

These characteristics of the interaction integrals show that the rotation

contributes to the interaction between the vortex mode and the wave mode

only for ashort time, while the stratification contributes to the periodi$\mathrm{c}$
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energy exchange between the wave mode and the potential energy for a

longer time. In ohter words, the system rotation does not contribute to

the energy exchange for along time at least in the linear dynamics.

This fact has been already found in the solutions for the usual Eulerian

frame (Hanazaki 2002) for both the initially isotropic and the axisymmetric

purely horizontal turbulence. Above result shows that the characteristics

is quite general and independent of the initial conditions such as the initial

isotropy or anisotropy of turbulence.

We should remember that the internal gravity wave is atransverse wave

and the wave-number vector is perpendicular to the velocity of the fluid, i.e.

$k\cdot u=0)$ the energy $\mathrm{e}\mathrm{x}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}/\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ is maintained by the components

of $\theta\sim\pi/2$ , i.e. the vertical motion of the fluid which has angular frequency
$N$ , noting that the dispersion relation $a^{2}=N^{2}\sin^{2}\theta+f^{2}\cos^{2}\theta$ gives $a=N$

at $\theta=\pi/2$ .

Steady non-decaying components are also contributed mainly from $\theta\sim$

$\pi/2$ since they also are multiplied by $\sin\theta$ in the integration in spherical

coordinates. This result suggests that the energy containing cone is defined

by $\theta\sim\pi/2$ which corresponds to ahorizontal wave-numver vector with

vertical fluid motion rather than $\theta\sim 0$ and $\pi$ with horizontal motion??

The sum of (22) and (23) gives

$\frac{d}{dt}KE=\frac{d}{dt}(E_{V}+E_{W})=-\overline{\rho u_{3}}=-\frac{d}{dt}PE$ . (28)

This shows the conservation of total energy $(E_{V}+E_{W})+PE=KE+$

$PE$ in the inviscid fluid. At the same time the energy exchange between

the kinetic energy and the potential energy is maintained by the vertical

density flux $\overline{\rho u_{3}}$, which decays slowly with time
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Sum of (23) and (24) gives

$\frac{d}{dt}(E_{W}+PE)$ $=- \int f$ COS $\theta\Phi_{12}^{CH}dk$ $=- \frac{d}{dl}E_{V}$ . (29)

This again shows the conservation of total energy $E_{V}+E_{W}+PE$ in the

inviscid fluid. At the same time the energy exchange between the vortex

mode energy $E_{V}$ and the wave-like energy components ( $PE$ and $E_{W}$ ) occur

only with the effect of rotation $f$ , which decays rapidly with time.

2Initially isotropic turbulence

If we further assume that the turbulence is initially isotropic, the initial

three-dimensional spectra are given by

$\Phi_{ij}(k, 0)=\frac{E(k)}{4\pi k^{2}}(\delta_{ij}-\frac{k_{i}k_{j}}{k^{2}})$ , (30)

and
$\Phi_{\rho\rho}(k, 0)=\frac{S(k)}{4\pi k^{2}}2N^{2}$ , (31)

where $E(k)$ and $S(k)$ are the initial radial kinetic and potential energy

spectra and the initial kinetic energy $KE_{0}$ and potential energy $PE\circ$ are

given by

$KE_{0}= \int_{0}^{\infty}E(k)dk$ , (32)

and

$PE_{0}= \frac{1}{2N^{2}}\int\Phi_{\rho\rho}dk=\int_{0}^{\infty}S(k)dk$ . (33)

Using the relation (6), the isotropic condition for the kinetic energy

spectra can be rewritten in the Craya-Herring frame as

$\Phi_{11}^{CH}(k, 0)=\Phi_{22}^{CH}(k, 0)=\frac{E(k)}{4\pi k^{2}}$ , $\Phi_{12}^{CH}(k, 0)=0$ . (34)
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Then we obtain the three-dimensional spectra in the Craya-Herring

frame. The $\mathrm{e}_{1}$ (vortex mode) component spectrum becomes Integrating

(8) in the whole spectral space, we obtain the kinetic energy of the vortex

mode (Ey) as

$E_{V}(t)$ $= \frac{1}{2}\overline{\phi_{1}^{2}}=\frac{1}{2}\int\Phi_{11}^{CH}(k, t)dk$

$= \frac{1}{2}KE_{0}-\frac{1}{4}(KE_{0}-2PE_{0})$

$\cross$ $\int_{0}^{\pi}d\theta\frac{N^{2}f^{2}}{a^{4}}\sin^{3}\theta\cos^{2}\theta(1-\cos at)^{2}$ (35)

Similarly, the kinetic energy of the wave mode $(E_{W})$ can be calculated

as

$E_{W}(t)$ $=$ $\frac{1}{2}\overline{\phi_{2}^{2}}=\frac{1}{2}\int\Phi_{22}^{CH}(k, t)dk$

$=$ $\frac{1}{2}KE_{0}-\frac{1}{8}(KE_{0}-2PE_{0})$

$\cross$ $\int_{0}^{\pi}d\theta\frac{N^{2}}{a^{2}}\sin^{3}\theta(1-\cos 2at)$ , (36)

The steady components in the integrand of (37) shows that, when

$KE\circ>2PE\circ$ , $E_{W}$ is not reduced by the components of $\theta\sim 0$ or $\pi$ .

The potential energy becomes

$PE(t)$ $=$ $\frac{1}{2N^{2}}\overline{\rho^{2}}=\frac{1}{2N^{2}}\int\Phi_{\rho\rho}(k, t)dk$

$=PE_{0}+ \frac{1}{8}(KE_{0}-2PE_{0})$

$\cross$ $\int_{0}^{\pi}d\theta[\frac{N^{2}}{a^{2}}\sin^{3}\theta(1-\cos 2\mathrm{a}\mathrm{t})$

$+$ $\frac{2N^{2}f^{2}}{a^{4}}\sin^{3}\theta\cos^{2}\theta(1-\cos at)^{2}]$ , (37)

which agrees with the results previously obtained in the usual Eulerian

frame [3]. The density fluxes become

$\overline{\rho\phi_{1}}(t)$ $= \frac{1}{2}(KE_{0}-2PE_{0})$
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$\cross$ $\int_{0}^{\pi}d\theta\frac{N^{2}f}{a^{4}}\sin^{2}\theta\cos\theta$( $1-\cos$ a7) $(N^{2}\sin^{2} ? \cos at+f^{2}\cos^{2}\theta)$

$=$ 0, (38)

and

$\overline{\rho\phi_{2}}(t)=\frac{1}{2}(KE_{0}-2PE_{0})$

$\cross\int_{0}^{\pi}d\theta\frac{N^{2}}{a^{3}}\sin^{2}\theta\sin$ at $(N^{2} \sin^{2}\theta\cos at+f^{2}\cos^{2}\theta)$ . (38)

Note that $\overline{\rho\phi_{1}}=0$ holds identically because of the asymmetry of the inte-

grand against $\theta=\pi/2$ .

2.1 General case of $N\neq f$

If we separate the steady and unsteady components in the integrals (38)-

(40), and integrate analytically only the steady components, we obtain

$E_{V}=$ $\frac{1}{2}KE\circ+\frac{3}{8}\frac{f^{2}N^{2}}{(f^{2}-N^{2})^{2}}(KE\circ-2PE_{0})(3-\frac{f^{2}+2N^{2}}{f^{2}-N^{2}}I_{A})$

$+$ $\frac{1}{8}(KE_{0}-2PE_{0})$

$\cross$ $\int_{0}^{\pi}d\theta\frac{N^{2}f^{2}}{a^{4}}\sin^{3}\theta\cos^{2}\theta(4 \cos at-\cos 2at)$ , (40)

$E_{W}$ $=$ $\frac{1}{2}KE0+\frac{1}{8}(KE_{0}-2PE_{0})$

$\cross$ $( \frac{2N^{2}}{f^{2}-N^{2}}-\frac{2N^{2}f^{2}}{(f^{2}-N^{2})^{2}}I_{A}+\int_{0}^{\pi}d\theta\frac{N^{2}}{a^{2}}\sin^{3}\theta\cos 2at)$

$=$ $\frac{1}{2}KE\circ+\frac{1}{8}(KE_{0}-2PE_{0})$

$\cross$ $[ \frac{2N^{2}}{f^{2}-N^{2}}-\frac{2N^{2}f^{2}}{(f^{2}-N^{2})^{2}}I_{A}$

$+$ $\int_{0}^{\pi}d\theta(\frac{N^{4}}{a^{4}}\sin^{5}\theta+\frac{N^{2}f^{2}}{a^{4}}\sin^{3}\theta\cos^{2}\theta)\cos 2at]$ , (41)

$PE(t)$ $=PE \circ+\frac{1}{8}(KE_{0}-2PE_{0})$
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$\cross$ $[- \frac{N^{2}(11f^{2}-2N^{2})}{(f^{2}-N^{2})^{2}}+\frac{N^{2}f^{2}(5f^{2}+4N^{2})}{(f^{2}-N^{2})^{3}}I_{A}$

$\int_{0}^{\pi}d\theta$ ( $\frac{N^{4}}{a^{4}}\sin^{5}\theta\cos 2at$ $+ \frac{4N^{2}f^{2}}{a^{4}}\sin^{3}\theta\cos^{2}\theta\cos at$) $],(42)$

where

$I_{A}= \int_{0}^{1}\frac{dx}{x^{2}+N^{2}/(f^{2}-N^{2})}$

$= \frac{(f^{2}-N^{2})^{1/2}}{N}\tan^{-1}\frac{(f^{2}-N^{2})^{1/2}}{N}(f>N)$

or

$= \frac{(N^{2}-f^{2})^{\frac{1}{2}}}{N}\log\frac{N-(N^{2}-f^{2})^{1/2}}{f}(f<N)$ , (43)

and the sign $\pm \mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}+\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}f>N$ , and –when $f<N$ .
As is clear in (38) (40), $\overline{\rho\phi_{1}}(=0)$ and $\overline{\rho\phi_{2}}$ do not have steady com-

ponents. We note that there is an unsteady exchange of energy among

$E_{V}$ , $E_{W}$ and $PE$. The echange between $E_{W}$ and $PE$ is due to stratification

which exsts even when $f=0$ , while the exchange $E_{V}\Leftrightarrow E_{W}$ exists only

when $f\neq 0$ .

Note that if there is no rotation $(f=0)$ , $E_{W}$ asymptotes to $E_{W}(tarrow$

$\infty)=(1/4)KE\circ+(1/2)PE\circ$ , which is equivalent to the asymptotic value

of the potential energy $PE(t arrow\infty)=(1/4)KE_{0}+(1/2)PE\circ[4]$ . This also

agrees with the DNS for non-rotating stratified turbulence [7] which showed

the equi-partition of energy between $E_{W}$ and $PE$ . It is also important to

note that $E_{W}(t arrow\infty)=PE(tarrow\infty)$ holds irrespective of the initial

energy partition between $KE_{0}(=E_{V}(0)+E_{W}(0))$ and $PE\circ$ , showing that

this is arather general feature of the stratified turbulence. In the previous

studies Godeferd&Cambon(1994) $(PE0–0)$ and M\’etais&Herring (1989)

$(PE_{0}=0.05KE_{0}\ll KE_{0})$ argued $E_{W}(t arrow\infty)=PE(tarrow\infty)$ for $\mathrm{s}\mathrm{m}\mathrm{a}1$
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initial potential energy. The equi-partition is, however, violated by the

system rotation and the parameter $f/N$ alters the energy partition among

$E_{V}$ , $E_{W}$ and $PE$ (Hanazaki 2002).

2.2 Special case of $N=f$

In the special case of $N=f$ the integrations can be done exactly and the

energy and the fluxes become

$E_{V}= \frac{1}{5}(2KE_{0}+PE_{0})+(KE_{0}-2PE_{0})(\frac{2}{15}\cos Nt-\frac{1}{30}\cos 2Nt)$ , (44)

$E_{W}= \frac{1}{3}(KE_{0}+PE_{0})+\frac{1}{6}(KE_{0}-2PE_{0})\cos 2\mathrm{N}\mathrm{t})$ (45)

$PE= \frac{4}{15}KE_{0}+\frac{7}{15}PE_{0}-\frac{2}{15}(KE_{0}-2PE_{0})(\cos Nt +\cos 2Nt)$ , (46)

$\overline{\rho\phi_{1}}=0$ , (47)

$\overline{\rho\phi_{2}}=\frac{N\pi}{16}(KE_{0}-2PE_{0})(\sin Nt$ $+ \frac{3}{2}\sin 2Nt)$ , (48)

which show non-decaying oscillation (Kaneda, 2000; Hanazaki, 2002). This

is in contrast to the horizontal kinetic energy components $\overline{u_{1}^{2}}$ and $\overline{u_{2}^{2}}$ which

had components proportional to $\cos Nt$ only and where clear distinction

from the vertical components $(\propto\cos 2Nt)$ could be made (Iida&Nagano

1999, Hanazaki 2002).

When $N=f$, $\overline{\rho\phi_{2}}$ does not agree with $\overline{\rho u_{3}}$ even in the long-time limit

because there is no localization to $\thetaarrow\pi/2$ in this particular case.

3Conclusions

Solutions of the RDT equations for the stratified rotating turbulence in the

Craya-Herring frame have been obtained. The results for the non-rotatin$\mathrm{g}$
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stratified turbulence showed the equi-partition of energy between $E_{W}$ and

$PE$ in their final equilibrium state, as observed in the previous DNS. This

is independent of the initial energy partition. It will be altered, however,

with the system rotation, since the final steady values of $E_{V}$ , $E_{W}$ and $PE$

will depend on the value of $f/N$ .
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