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1. Introduction

Let us consider the stably and weakly stratified ideal fluid under the uniform gravitational
acceleration. Various characteristic flows can be seen owing to the existence of restoring force
caused by the difference of buoyancy and gravitational forces. In order to analyze these flows,
many studies have been done. The impulsive-start problem is one of them. The examples of
these flows are, an impulsive start uniform flow over topography, an impulsive start of sink
flow, an impulsive movement of obstacle in astratified fluid at uniform velocity, and so on.
The original set of governing equations and initial condition for these problems is the
following:

Governing eqations :The Euler set of equations for acompressible fluid
Initial condition :state of rest

However, many prior studies use the following set for analyzing these problems:
Governing eqations: The Euler set of equations for an incompressible fluid

Initial condition: Flow velocity is divergence free, momentum vector is rotation free,
where the boundary condition just after the start ofthe impulsive
motion is used, and the density profile is that of state at rest.

The latter set is that for an incompressible fluid and it is different ffom the former original set
for acompressible fluid. Therefore, if we want to use the latter incompressible set, it must be
derived in advance ffom the former original compressible set systematically under the suitable
physical assumptions. When this derivation is completed, we can insist that the solution of the
incompressible set represents the fluid motion we are now considering. In prior study, only its
equations were derived (Spiegel&Veronis [I960]). However, no consideration is given to its
initial condition which is important in the analysis of the general initial-value problem.
Moreover, the systematic derivation on the basis of the series expansion has not been done.
We can say, therefore, that the derivation of the incompressible set of equations and initial
condition has not yet been done systematically on the basis of the former original set of
compressible type.

In this PaPer, this problem is resolved. That is, through asystematic procedure ffom the
original set for acompressible fluid, we derive the sets of governing equations for an
incompressible fluid and the corresponding initial condition not only at the lowest order but
also for the higher orders. The physical assumptions are the following five: (i) the fluid is
ideal; (ii) the geometry of the boundary is smooth; (iii) the fluid is at rest, weakly stratified,
and satisfies the hydrostatic condition before the impulsive motion starts; (iv) the impulsive
motion is defined as the continuous change of the flow velocity on the boundary ffom zero to
agiven stationary value during the time for the sound wave to proceed over the distance of
the fluid depth; (v) the flow region is open so that the sound wave is propagated away. In what
follows, for the sake of specific explanation, we consider aflow initiated by the discharge of

数理解析研究所講究録 1311巻 2003年 27-39

27



the fluid, or the sink flflow. If the above $\mathrm{f}_{1}\mathrm{v}\mathrm{e}$ assumptions are $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}_{1}\mathrm{e}\mathrm{d}$, other impulsive-start
problems like the flow over topography and the flflow past abody can be treated in asimilar
way That is, the flow speed of the discharge imposed on the boundary (or sink) should be
replaced by that of the flflow over topography or the normal velocity component to the
boundary of amoving body.

In the meantime for the sake of concise explanation, the flfluid is assumed to be agas. So the
sound speed is of the order of the square root ofthe ratio of the pressure to the density and its
dependency on the pressure and the density is moderate, that is, its derivative with respect to
the pressure or the density is ofthe order of the ratio of the sound speed to the pressure or the
density. Moreover we assume that the $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{f}_{1}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ is caused thermodynamically and not by
the concentration of solvent or species. When $\mathrm{a}$ flfluid is liquid, or the above condition for the
sound speed is not satisfied, we can use the result of the gas with astraightforward
manipulation. This point is discussed in Section 4. The case where the flfluid is subject to
stratification by the concentration of solvent or species without diffision is also discussed in
Section 4.

2. Problem

Let us consider an ideal flfluid between two parallel $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ plates at rest located at $X_{3}=0$

and $d$ , where $X_{i}$ is the rectangular space coordinate system (see $\mathrm{f}_{1}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}1$ ). The fluid is
subject to auniform gravitational force $g$ in the negative $X_{3}$ direction, i.e., in the direction
normal to the plates. The fluid is at rest and $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}_{1}\mathrm{e}\mathrm{s}$ the following hydrostatic condition:

$\frac{\Phi}{\partial X_{i}}=-oe\delta_{i3}$ , (1)

where $p$ is the pressure of the flfluid, $\rho$ is the density. This condition determines the
pressure gradient if the density $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{f}_{1}1\mathrm{e}$ is given. The density variation results not only ffom
pressure variation but also from temperature variation. Here the stratified fluid with this
density variation is assumed to be stable [or $\partial\rho/\partial X_{3}<-\mathrm{o}\mathrm{e}/$ (sound speed) ], and the
magnitude of this density gradient is smaller than $\rho_{0}/d$ , where the subscript 0indicates the
value on the lower plate $X_{3}=0$ :

$\frac{\max|\partial\rho/\partial X_{3}|}{\rho_{0}/d}=O(\epsilon)$ , (2)

where $\epsilon$ is agiven small parameter characterizing the degree of $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{f}_{1}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ . In contrast, the
maximum pressure difference in the $X_{3}$ direction is of the order of $\rho_{0}gd$ from (1) and the
density change due to this pressure change is ofthe order of $\rho_{0}gd/a_{0}^{2}$ where $a_{0}$ is the sound
speed ofthe flfluid on the lower plate. Here this density change is assumed to be ofthe order of

$\epsilon^{M}$ relative to $P_{0}$ , $\mathrm{i}.\mathrm{e}.$ ,

$\frac{gd}{a_{0}^{2}}=\epsilon^{M}G$ , (3)

where $G$ is aconstant of the order of unity and $M$ is anatural number $(M\geq 1)$ . The left-
hand side of (3) is identical with the inverse of the Froude number.

Now consider intakes of smooth geometrical shape set up in the flfluid. We are interested in
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the flow after starting the discharge with suction velocity profile $V(X_{wl},\tau)$ normal to the
intake boundary, where $X_{m}$ is the space coordinate of the intake and $\tau$ is time. $V(X_{m},\tau)$

is zero for $\tau<0$ . It then continuously varies for $0<\tau\leq O(d/a_{0})$ , or during the time for the
sound wave to proceed over the distance $d$ . After this variation it keeps astationary value.
Its length scale of variation is assumed to be the distance of the fluid depth $d$ , and its
magnitude is ofthe order of $\epsilon^{k}$ relative to the sound speed:

$\frac{\max|V|}{a_{0}}=O(\epsilon^{k})$ , (4)

where $k$ is areal positive constant.
The problem is to systematically derive simplified sets of equations that describe the

asymptotic behavior for small $\epsilon$ of the fluid motion after the start of discharge of the weakly
stratified fluid. For that purpose, first consider asystem that deviates only slightly ffom an
initial state at rest such that the linearized Euler set of equations is valid for the analysis. It
will be made clear that this case corresponds to the case where the parameter range for $k$ and
$M$ is given by

(I) $2k$ $>>M+1$ (or $2k$ $>>M$ ).
It will be useffil here to note the physical meaning of this parameter range. The magnitude of

$\epsilon^{2k}$ represents the effect of convection, since it is of the order of the square of the suction
speed $V$ . The magnitude of $\epsilon^{M+1}$ represents the effect ofbuoyancy, since it is ofthe order of
the product of the gravitational force and the maximum density difference at the initial state.
Therefore, the physical meaning of (I) is that the characteristic convective force is much
smaller than that ofbuoyancy.

Next we consider the case
(II) $2k$ $=M+1$ .

The physical meaning of this parameter range is that the characteristic convective force is
comparable with that ofbuoyancy. Therefore, the nonlinear convective terms will be the same
order quantities as the buoyancy term and should be retained in the analysis, that is, the
analysis has to be carried out on the basis of the original (nonlinear) Euler set of equations. In
the above two parameter ranges (I) and (II), the buoyancy force is dominant or is comparable
with that of convection. So the set of Boussinesq equations will be derived as their leading-
order set.

Lastly, we consider the case where the buoyancy effect is not important. The parameter
range for $k$ and $M$ is given by

(III) $2k<<M+1$ (or $2k<<M$ ).
In this case, the set of equations for ahomogeneous incompressible fluid will be derived as
the leading-0rder set, and the resulting flow will be irrotational at the leading order. In the
following analysis, because of the limitation for the number of pages, only the case (I) is
presented (Section 3).

3. Linear theory (Case I: 2k $>>M$ )

3.1 Basic equation
The following variables are introduced: the time $\tau=(d/a_{0})t$ , the rectangular space
coordinate $X_{i}=\ _{i}$ , the space coordinate of the intake $X_{w\iota}=\ _{m}$ , the flow velocity $a_{0}u_{i}$ ,
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the suction speed $V=a_{0}u$ , the pressure $\rho_{0}a_{0}^{2}(\overline{p}+p’)$ , and the density $\rho_{0}(\overline{\rho}+\rho’)$ , where
the variables with overbar indicate those evaluated at the initial state at rest, i.e., $p-$ and $\overline{\rho}$

are the pressure and the density at the initial state. They are quantities of the order of unity
and given ffinctions of $x_{3}$ whose length scale ofvariation is the distance ofthe fluid depth $d$ ,

or in dimesionless form, the distance $x_{3}$ of the order of unity. From (1)$-(3)$, they satisfy the
following relations:

$\frac{d\overline{p}}{\ _{3}}=-\epsilon^{M}G\overline{\rho}$ , (Hydrostatic condition) (5)

$\overline{\rho}=1+O(\epsilon)$ , (6)
In contrast, the variables with prime represent deviations from the corresponding values at the
initial state, i.e., $p’$ and $\rho’$ are the deviations of pressure and density, respectively. Here we
consider the behavior of the fluid that slightly deviates from the initial state at rest, that is, the
case $|u_{i}|<<1$ , $p’<<1$ , $\rho’<<1$ . Then, the mathematical problem is the following initial-
boundary-value problem of the linearized Euler set of equations for acompressible fluid: The
nondimensional form ofthe basic equations is

$\frac{\partial\rho’}{\partial t}+u_{3}\frac{\Gamma\rho}{\ _{3}}+ \overline{\rho}\frac{\partial u_{i}}{\alpha_{i}}=0$ , (7a)

$\overline{\rho}\frac{\partial u_{i}}{\partial t}=-\frac{\phi’}{\mathrm{a}_{i}}-\epsilon^{M}G\delta_{i3}\rho’$, (7b)

$\frac{\partial\rho’}{\partial t}+u_{3}\frac{F\rho}{\ _{3}}= \frac{1}{\overline{a}^{2}}(\frac{\Phi’}{\partial t}+u_{3}\frac{Fp}{\ _{3}})$ , (7c)

where $\overline{a}^{2}$ , representing the square of sound speed nondimensionalized by $a_{0}^{2}$ , is a
moderately varying ffinction of $\overline{p}$ and $\overline{\rho}$ whose magnitude is of the order of unity
$[\overline{a}^{2}=O(1), \ ^{-2}/\Phi=O(1), k^{-2}/\partial\overline{\rho}=O(1)]$:

$\overline{a}^{2}=\overline{a}^{2}(\overline{p},\overline{\rho})$ . (8)
The initial condition is

$u_{i}=0$ , (9a)
$p’=0$ , (9b)
$\rho’=0$ . (9c)

The boundary condition is
$u_{i}n_{i}=u$ at $x_{i}=x_{w\iota}$ , (1Oa)

$u_{i}n_{i}=0$ at $x_{3}=0,1$ . (10b)

where $u=V/a_{0}<<1$ is amoderately varying ffinction of $x_{m}$ and $t$ that varies ffom zero to

agiven stationary value during the nondimensional time $0<t\leq O(1)$ . $n_{i}$ is the unit normal
vector to the boundary.

3.2 Fluid motion at the start of discharge
Variation of the suction speed takes place continuously during the dimensionless time of the
order of unity, or in dimensional form, during the time for the sound wave to proceed over the
distance of the fluid depth. The flfluid motion at the start of discharge is, therefore, described
by the set of acoustic equations at the leading order. Thus, the magnitude ofthe unknowns $u_{\mathrm{i}}$ ,
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$p’$ and $\rho’$ is expected to be the same order as that of the nondimensional suction speed $U$ .

Bearing this in mind, we consider the fluid motion whose appreciable variation occurs in the
distance of the fluid depth $d$ and the time for the sound wave to proceed over the distance of
the fluid depth, i.e., in the dimensionless distance and the dimensionless time of the order of
unity [ $\partial\phi/\ _{\mathrm{i}}=O(\phi)$ , $\partial\phi/\partial t=O(\emptyset)$ with $\emptyset$

$=u_{i}$ , $p’,\rho’$ ]. The asymptotic behavior for small
$\epsilon$ describing this situation can be sought in power series of $\epsilon$ . However, in the analysis of
the next subsection, where the subsequent time development is considered, we encounter
series expansion in the square root of $\epsilon$ . Therefore, we look for the moderately varying
solution of Eqs. (7a-c) with (8), (9a-c) and $(\mathrm{l}\mathrm{O}\mathrm{a},\mathrm{b})$ , in power series of $\sqrt{\epsilon}$ . That is,
introducing

$\delta=\sqrt{\epsilon}$ , (11)
we seek the solution in power series of $\delta$ :

$u_{iS}=u_{iS0}+\delta u_{iS1}+\delta^{2}u_{iS2}+\cdots$ , $(12\mathrm{a})$

$p_{\acute{s}}=p_{\acute{S}0}+\delta p_{\acute{S}1}+\delta^{2}p_{\acute{S}2}+\cdots$ , (12b)
$\rho_{\acute{s}}=\rho_{\acute{S}0}+\delta\rho_{\acute{S}1}+\delta^{2}\rho_{\acute{S}2}+\cdots$ , (12c)

which correspond to the expansion ofthe dimensionless suction speed $u$ :
$o=\mathit{0}_{0}+\delta v_{1}+\delta^{\mathrm{z}_{U_{2}+}}\cdots$ , (13)

where $u_{n}(n=0,1,2,\cdots)$ is agiven ffinction of $x_{w\iota}$ and $t$ that varies its value ffom zero to a
stationary ffinction of $x_{m}$ during $0<t\leq O(1)$ . In (12a-c) the subscript $S$ is attached to
discriminate the solution of sound wave region.

Corresponding to this expansion, the given ffinctions $p-$ and $\overline{\rho}$ are also expanded in $\delta$ :
$\overline{p}=\overline{p}_{0}+\delta^{2\mathrm{A}I}\overline{p}_{2M}+\delta^{2M+1}\overline{p}_{2M+1}+\cdots$ , $(14\mathrm{a})$

$\overline{\rho}=1+\delta^{2}\overline{\rho}_{2}+\delta^{3}\overline{\rho}_{3}+\cdots$ , (14b)

Here $\overline{p}_{0}$ is agiven constant. The component ffinctions $p-n(n=2\mathrm{M},2\mathrm{A}/ +1,2M+2,\cdots)$ and
$\overline{\rho}_{n}$ $(n =2,3,4,\cdots)$ are given ffinctions of $x_{3}$ . In (14a-c), the series of the variable parts start

from $O(\delta^{2\mathrm{A}i})$ and $O(\delta^{2})$ , respectively following Eqs.(5) and (6). These component
ffinctions are related by the hydrostatic condition (5) as

$\frac{d\overline{p}_{n}}{\ _{3}}=\{$

$-G$ $(n=2M)$

0 $(n=2M+1)$

$-G\overline{\rho}_{n-2M}$ $(n\geq 2M +2)$

(15)

Substituting the series (12a-c) and (14a-c) into the linearized Euler set of equations (7a-c),
we obtain aseries of equations for $u_{iSn}$ , $p_{\acute{S}n}$ and $\rho_{\acute{S}n}$ $(n =0,1,2,\cdots)$ as follows:
At $n=0,1$ , the acoustic equations:

$\frac{\Phi_{Sn}’}{\partial t}+\frac{h_{iSn}}{\partial x_{i}}=0$ , (16a)

$\frac{\partial u_{iSn}}{\partial t}+\frac{\Phi_{Sn}’}{\mathrm{a}_{i}}=0$ , $(n=0,1)$ (16b)

with

31



$\frac{\partial\rho_{\acute{S}n}}{\partial t}-\frac{\Phi_{\acute{S}n}}{\partial t}=()$ . (16c)

For $n$ $\geq 2$ , the acoustic equations with source terms:

$\frac{\Phi_{\acute{S}n}}{\partial t}+\frac{\partial u_{iSn}}{\partial x_{i}}=A_{n}$ , (17a)

$\frac{\partial u_{iSn}}{\partial t}+\frac{\Phi_{\acute{S}n}}{\mathrm{a}_{i}}=B_{in}$ , (17b)

with
$\frac{\partial\rho_{\acute{S}n}}{\partial t}-\frac{\Phi_{\acute{S}n}}{\partial t}=C_{n}$ , (17c)

where $A_{n}$ , $B_{in}$ and $C_{n}$ $(n \geq 2)$ are source terms composed of the lower order solutions.
Their components are classified into the following two kinds: the terms representing
inhomogeneity of fluids $AH_{n}$ , $BH_{in}$ , $CH_{n}$ , and those representing effects of gravity $AG_{n}$ ,
$BG_{in}$ , $CG_{n}$ , i.e.,

$A_{n}=AH_{n}+AG_{n}$ , (18a)
$B_{in}=BH_{in}+BG_{in}$ , $(n \geq 2)$ $(18\mathrm{b})$

$C_{n}=CH_{n}+CG_{n}$ . (18c)

Specifically, $AH_{n}$ , $BH_{in}$ and $CH_{n}$ are given by

$AH_{n}=- \{(\overline{\rho}\overline{a}^{2}-1)\frac{\partial u_{iS}}{\ _{i}} \}_{n}$ , (19a)

$BH_{in}=- \{(\overline{\rho}-1)\frac{\mathrm{a}_{iS}}{\partial t}\rangle_{n}$ , $(n \geq 2)$ (19b)

$CH_{n}= \{(\frac{1}{\overline{a}^{2}}-1)\frac{\phi_{\acute{s}}}{\partial t}\}_{n}-\{u_{3S}\frac{d\overline{\rho}}{\ _{3}} \}_{n}$ , (19c)

where the notation $\langle\cdots\rangle_{n}$ indicates the $n$ -th order component ffinction ofthe expansion with
respect to $\delta$ , for example $\langle(\overline{\rho}-1)\partial u_{iS}/\partial t\rangle_{3}=\overline{\rho}_{2}\partial u_{iS1}/\partial t$ \dagger $\overline{\rho}_{3}\partial u_{iS0}/\partial t$ and

$\{\frac{1}{\overline{a}^{2}}\}_{n}=\{\begin{array}{l}1(n=0)0(n=\mathrm{l})-\{\frac{\varpi^{2}}{\Phi}\}_{0}\overline{p}_{2}-\langle\frac{ffi^{2}}{\partial\overline{\rho}}\}_{0}\overline{\rho}_{2}\ldots\cdots\end{array}$ $(n =2)$
,

$AG_{n}$ , $BG_{in}$ and $CG_{n}$ are zero for $n\leq 2M-1$ , and for $n\geq 2M$ ,

$AG_{n}=G\langle\overline{\mu}l_{3S}\rangle_{n-2M}$ , (20a)

$BG_{jn}=-G\delta_{i3}\rho_{\acute{S}n-2M}$ , $(n\geq 2M)$ (20b)

$CG_{n}=-G \{\frac{\overline{\beta}l_{3S}}{\overline{a}^{2}}\}_{n-2M}$ (20c)

The initial condition is obtained by substituting the series (12a-c) into (9a-c) and arranging the
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same order quantities in $\delta$ :
$u_{\mathrm{i}Sn}=0$ , (21a)
$\rho_{\acute{S}n}=0$ , $(n \geq 0)$ (21b)
$p_{\acute{S}n}=0$ . (21c)

The boundary condition is obtained from $(10\mathrm{a},\mathrm{b})$ by the same procedure as
$u_{iSn}n_{i}=v_{n}$ at $x_{j}=x_{wl}$ , $(n\geq 0)$ (22a)

$u_{iSn}n_{i}=0$ at $x_{3}=0,1$ . (22b)

We analyze the above initial-boundary-value problem (16)-(22). Note that the purpose of
the present study is to derive the set of governing equations after the acoustic region. For that
purpose, we need the solution as $tarrow\infty$ that can be the initial condition of the subsequent
time development. First consider the case of $n=0,1$ . The governing equations for $u_{iSn}$ and

$p_{\acute{S}n}$ are the acoustic equations $(16\mathrm{a},\mathrm{b})$ , so that the sound wave is generated and propagates
inside the fluid when the discharge commences. Since the flow region is open and the suction
speed $U_{n}$ is steady after agiven time of the order of unity, any sound wave is propagated
away if the time elapses sufficiently, i.e., the flow becomes steady as $tarrow\infty$ at this order.
$u_{iSn}$ and $p_{\acute{S}n}$ at $n$ $=0,1$ are, therefore, independent of $t$ as $tarrow\infty$ and we obtain the
following equations ffom Eqs.(16a,b),:

$\frac{\partial u_{iSn}}{\mathrm{a}_{i}}|_{tarrow\infty}=0$ , (23a)

(23b)

where the variable with $\ldots|_{tarrow\infty}$ is evaluated as $tarrow\infty$ . Another equation for $u_{iSn}|_{tarrow\infty}$ can be
derived by taking the rotation of (16b) and integrating with respect to $t$ under the initial
condition (21a) as

$\mathrm{c}\mathrm{u}\mathrm{r}1\mathrm{u}_{Sn}|_{tarrow\infty}=0$ , $(n =0,1)$ (23c)

where $u_{Sn}$ is the vector notation of $u_{iSn}$ and curl is that of rotation. Thus, $u_{iSn}|_{tarrow\infty}$ can be
obtained by solving (23a) and (23c) under the boundary condition $(22\mathrm{a},\mathrm{b})$ as $tarrow\infty$ . The
remaining variable $\rho_{\acute{S}n}|_{tarrow\infty}$ is deducible from $p_{\acute{S}n}|_{tarrow\infty}$ by (16c) as

$\rho_{\acute{S}n}|_{tarrow\infty}=p_{\acute{S}n}|_{tarrow\infty}$ , $(n=0,1)$ $(23\mathrm{d})$

Next consider the case of $n$ $=2$ . The governing equations for $u_{iS2}$ and $p_{\acute{S}2}$ are $(17\mathrm{a},\mathrm{b})$ , or
the acoustic equations with source terms. Using $(23\mathrm{a},\mathrm{c})$ , however, we find that these source
terms disappear as $tarrow\infty$ and governing equations approach the usual acoustic equations as
$tarrow\infty$ . So $u_{iS2}$ and $p_{\acute{S}2}$ are independent of $t$ as $tarrow\infty$ . We then obtain the equations for
them ffom $(17\mathrm{a},\mathrm{b})$ . If we continue the analysis for the higher order successively, the situation
is the same up to $n$ $=2M-1$ . This is because the source terms $AG_{n}$ and $BG_{in}$ representing
the effect ofgravity never appear for $n$ $\leq 2M-1$ . Thus, we obtain

$\frac{\partial u_{iSn}}{\partial x_{i}}|_{tarrow\infty}=0$ , (24a)
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$\frac{\Phi_{\acute{S}n}}{\mathrm{a}_{i}}|_{tarrow\infty}=0$ , ( $2\leq n\leq 2M-1$ ;with $M\neq 1$ ) (24b)

$\mathrm{c}\mathrm{u}\mathrm{r}1(u_{Sn}+\sum_{m=2}^{n}\overline{\rho}_{m}u_{Sn-m)1_{tarrow\infty}=0}.$ (24c)

Eq.(24c) indicates that the momentum vector is rotation free. The remaining variable $\rho_{\acute{S}n}|_{tarrow\infty}$

is deducible from $p_{\acute{S}n-m}|_{tarrow\infty}(0\leq m\leq n)$ and $u_{iSn- m}(2\leq m\leq n)$ by (17c) as

$\rho_{\acute{S}n}|_{tarrow\infty}=\sum_{m=0}^{n}p_{\acute{S}n-m}|_{tarrow\infty}\{\frac{1}{\overline{a}^{2}}\}_{m}-\sum_{m=2}^{n}1^{\infty}(u_{3S\mathrm{m}m}-u_{3Snm}-|_{tarrow\infty}\mu_{t\frac{\Gamma\rho_{m}}{\ _{3}}-\sum_{m=2}^{n}u_{3Sn-m}|_{tarrow\infty}\frac{d\overline{\rho}_{m}}{\ _{3}}t}$ .

$(2\leq n \leq 2M-1)$ $(24\mathrm{d})$

The last term on the right-hand side represents the dependency of $\rho_{\acute{S}n}|_{tarrow\infty}$ on $t$ .

When $n=2M$ and $2M+1$ , the source terms of $(17\mathrm{a},\mathrm{b})$ are not zero due to contribution of
$AG_{n}$ and $BG_{in}$ . They are found to approach constant values as $tarrow\infty$ because $u_{3Sn-2M}$ and
$\rho_{\acute{S}n-2M}$ included in $AG_{n}$ and $BG_{3n}$ take stationary values other than zero as $tarrow\infty$ [see

Eqs. $(23*\mathrm{c},\mathrm{d})]$ . So we get, from $(17\mathrm{a},\mathrm{b})$ ,

$\frac{\partial u_{iSn}}{\partial x_{i}}|_{tarrow\infty}=Gu_{3Sn-2M}|_{tarrow\infty}$ , $(n =2M,2M+1)$ (25a)

$\frac{\Phi_{\acute{S}n}}{\partial x_{i}}|_{tarrow\infty}=-G\delta_{i3}\rho_{\acute{S}n-2\mathrm{A}f}|_{tarrow\infty}$. (25b)

taking the rotation of (17b) and integrating with respect to $t$ under the initial condition (21a),
we have

curl $(u_{Sn}+ \sum_{m=2}^{n}\overline{\rho}_{m}u_{Sn-m)1_{tarrow\infty}=}$ -Gcurl $ff\rho_{\acute{S}n-2M}\delta_{3}dt$ . $(n=2M,2M+1)$ (25c)

where $\delta_{3}$ is the unit vector in the positive $x_{3}$ direction. The remaining variable $\rho_{\acute{S}n}|_{tarrow\infty}$ at

$n=2M$ and $2M$ $+1$ is given by $(24\mathrm{d})$ with additional term

$-Gff(u_{3Sn-2M}-u_{3Sn-2M}|_{tarrow\infty}\mathfrak{p}_{t-Gu_{3Sn-2M}|_{tarrow\infty}t},$ $(25\mathrm{d})$

on its right-hand side.
We can proceed with the analysis in asimilar way. $\partial u_{iSn}/\ _{\mathrm{i}}|_{tarrow\infty}$ and $\phi_{\acute{S}n}/\ _{i}|_{tarrow\infty}$ are

obtained from $(17\mathrm{a},\mathrm{b})$ . The rotation ofthe momentum vector as $tarrow\infty$ is given by taking the
rotation of (17b) and integrating with respect to $t$ under the initial condition (21a). $\rho_{\acute{S}n}|_{tarrow\infty}$

is deducible from $p_{\acute{S}n-m}|_{tarrow\infty}$ $(0\leq m \leq n)$ and $u_{iSn- m}(2\leq m \leq n)$ by (17c). For

$2(M+1)J\leq n\leq 2(M+1)(J+1)-1$ ( $J$ is anatural number), $\partial u_{iSn}/\partial x_{i}|_{tarrow\infty}$ , $\Phi_{\acute{S}n}/\partial x_{i}|_{tarrow\infty}$ and
the rotation of the momentum vector as $tarrow\infty$ are given by series of $t$ uP to the order of
$2J-2,2J-1$ and $2J$ , respectively. The time dependency of $\rho_{\acute{S}n}|_{tarrow\infty}$ is staggered and it is
aseries of $t$ uP to the order of $2J+1$ for $2(M+1)J+2\leq n$ $<2(M+1)(J+1)+1$ . From these
results, it is clear that the $n$ -th component functions increase their dependency on $t$ by the
order oftwo as $n$ is increased by $2(M+1)$ .
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3.3 Fluid motion after the acoustic region
We consider the subsequent fluid motion after the acoustic region. The basic equations are
(7a-c) with (8). The initial condition is the steady part of the solution as $tarrow\infty$ of the
acoustic region obtained in the preceding subsection. It is written as

$u_{i}=u_{i0}+\delta u_{i1}+\delta^{2}u_{i2}+\cdots$ , (26a)
$p’=p_{\acute{0}}+\delta p_{1}’+\delta^{2}p_{2}’+\cdots$ , (26b)
$\rho’=\rho_{\acute{0}}+\delta\rho_{1}’+\delta^{2}\rho_{2}’+\cdots$ , (26c)

where the component ffinctions $u_{in}$ , $p_{n}’$ and $\rho_{n}’$ $(n =0,1,2,\cdots)$ on the right-hand side are the
steady part of the corresponding component ffinctions as $tarrow\infty$ of the acoustic region. These
are independent of $t$ and satisfy (23a-d), (24a-c), (25a-c) and the steady part of $(24\mathrm{d})$ . The
boundary condition is the steady part of $(\mathrm{l}\mathrm{O}\mathrm{a},\mathrm{b})$ and the steady-state solution of the acoustic
region prescribed at far field $\sqrt{x_{1}^{2}}$\dagger $x_{2}^{2}arrow\infty$ [This boundary condition is numbered (lO’a-c)].

constant, we introduce ashortened coordinate with respect to $t$ :
$T=\delta^{a}t$ . (30)

The value $\alpha$ is determined by considering abalance among time-derivative terms of (7a-c)
and the leading-0rder terms that can contribute to the time development following the
acoustic region. We then find

$a=M+1$ . (33)
(33) is consistent with the fact that the $n$ -th component ffinctions of the solution as $tarrow\infty$

in the acoustic region increase their dependency on $t$ by the order of two as $n$ is increased
by $2(M+1)$ . The order of each variable $u_{i}$ , $p’$ and $\rho’$ under this time scale is given by
substituting (33) into (3 lb-d) and then into (26a-c) as

$u_{i}=o(u_{i}|_{Tarrow 0})$ , (34a)
$p’=o(\delta^{-M+1}u_{3}|_{Tarrow 0})$, (34b)

$\rho’=o(\delta^{-M+1}u_{3}|_{Tarrow 0})$ . (34c)
Based on these estimates, we look for the solution of Eqs. (7a-c) with (8) whose appreciable
variation occurs in the dimensionless distance $x_{i}$ and the dimensionless time $T$ ofthe order

unity [ $\partial\phi/\ _{i}=O(\phi)$ , $\partial\phi/\partial T=O(\emptyset)$ with $\phi=u_{\mathrm{i}}$ , $p’,\rho’$ ], in power series of 6:
$u_{rB}=u_{1B0}+\delta u_{iB1}+\delta^{2}u_{lB2}+\cdots$ , (35a)

$p_{B}’=\delta^{-M+1}p_{B-M+1}’+\delta^{-M+2}p_{B-M+2}’+\delta^{-M+3}p_{B-M+3}’+\cdots$ , $(35\mathrm{b})$

$\rho_{B}’=\delta^{-M+1}\rho_{B-M+1}’+\delta^{-M+2}\rho_{B-M+2}’+\delta^{-M+3}\rho_{B-M+3}’+\cdots$ , (35c)
where the subscript $B$ is attached to discriminate the type of solution. In the following
analysis, derivation of sets of governing equations are given in Section 3.3.1 and their
corresponding initial conditions and boundary conditions are arranged in Section 3.3.2.

3.3.1 Derivation of sets of governing equations
Substituting (35a-c) and (14a-c) into the original governing equations (7a-c), and arranging
the terms by the order in $\delta$ , we obtain aseries of equations. First 211 sets are those for
$p_{Bm}’(-M+1\leq n\leq M)$ . They are derived ffom the momentum equation (7b) at the order ffom
$-M+1$ to $M$ :

35



$\frac{\Phi_{B-M+1}’}{\mathrm{a}_{j}}=\frac{\Phi_{B-M+2}’}{\mathrm{a}_{i}}=\cdots=\frac{\Phi_{BM}’}{\partial x_{i}}=0$ . (36)

Using the boundary condition $(10’ \mathrm{c})$ at far $\mathrm{f}_{1}\mathrm{e}1\mathrm{d}\sqrt{x_{1}^{2}+x_{2}^{2}}arrow\infty$ that prescribes the steady
pressure distribution, we obtain constant values for $p_{Bm}’$ $(-M+1\leq n \leq M)$ :

$p_{B-M+1}’=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ , $p_{B-M+2}’=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ , $\cdots\cdots$ , $p_{BM}’=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ . (37)

In the subsequent orders, sets of equations for $u_{iBn}$ , $p_{Bn+M+1}’$ and $\rho_{Bn-M+1}’(n=0,1,2,\cdots)$

are successively derived. It is use ful here to note that the order of each variable in the same set
is staggered, that is, $p_{B}’$ is of higher order by $M+1$ and $\rho_{B}’$ is of lower order by $M-1$

than $u_{\iota B}$ . $p_{B}’$ being higher order is anecessary condition for equations to be those for an
incompressible fluid. Reflecting this situation, the initial sets up to $n$ $=2M-3$ are classified
as those for an incompressible flfluid, $\mathrm{i}.\mathrm{e}.$ , for $0\leq n\leq 2M-3$ (with $M\neq 1$ ),

$\frac{\partial u_{\iota Bn}}{\mathrm{a}_{i}}=0$ , (38a)

$\frac{\partial u_{Bn}}{\partial T}+\sum_{m=2}^{n}\overline{\rho}_{m}\frac{\partial u_{\iota Bn- m}}{\partial T}=-\frac{\Phi_{Bn+M+1}’}{\mathrm{a}_{i}}-G\delta_{i3}\rho_{Bn-M+1}’$ , (38b)

$\frac{\partial\rho_{Bn-M+1}’}{\partial T}+\sum_{m=2}^{n+2}u_{3Bn+2-m}\frac{\Gamma\rho_{m}}{\ _{3}}=0$, (38c)

where Eq.(37) is used to derive the equation of incompressibility (38c). At $n=0$ or 1, the
second term on the leR-hand side of momentum equation (38b) disappears and $\mathrm{E}\mathrm{q}\mathrm{s}.(38\mathrm{a}- \mathrm{c})$

are nothing but the set of linearized Boussinesq equations.
The next derived sets $(n =2M-2,2M-1)$ are classified as those for acompressible fluid

with aspecial feature, that is, they can be reduced to the $\mathrm{f}\mathrm{o}\mathrm{m}$ for an incompressible fluid by
easy manipulation. They are the combination of $(38\mathrm{a},\mathrm{b})$ with $n=2M-2$ , $2M-1$ and the
following:

$\frac{\partial\rho_{Bn-M+1}’}{\partial T}+\sum_{m=2}^{n+2}u_{3Bn+2-m[\frac{F\rho_{m}}{\ _{3}}+G\{\frac{\overline{\rho}}{\overline{a}^{2}}\}_{m-2M}]=0}$ , (39c)

where the hydrostatic equation (15) and Eq.(37) are used to derive (39c) and $\langle\overline{\rho}/\overline{a}^{2}\rangle_{m-2M}$ is

zero for $m\leq 2M-1$ . Although $\langle\overline{\rho}/\overline{a}^{2}\rangle_{m-2M}$ in the third term on the left-hand side of (39c)

is not zero at $m=2M$ , the sets of equations $(38\mathrm{a},\mathrm{b})$ and (39c) can be reduced to the

incompressible Euler sets by regarding $\overline{\rho}_{2M}+G\int_{0}^{x_{3}}\langle\overline{\rho}/\overline{a}^{2}\rangle_{0}\ _{3}= \overline{\rho}_{2M}+Gx_{3}$ as the

corresponding component function of the initial density because $\overline{\rho}_{2M}$ does not appear at the
other place. When $M=1$ , they are the lowest order sets $(n =0,1)$ and correspond with the
sets of Boussinesq equations. When $M\geq 2$ (or $n$ $\geq 2$ ), they include the non-Boussinesq
terms on the left-hand side of the momentum equation and have arole of being corrections to
the preceding lower-0rder sets (38a-c).

At the next order, or $n=2M$ , $2M+1$ , we obtain the linearized Euler sets of equations for
acompressible fluid:

$\frac{\mathrm{a}_{l_{\iota Bn}}}{\alpha_{\mathrm{i}}}=Gu_{3Bn-2M}$ , (40a)

(38b) with $n$ $=2M$ , $2M+1$ (40a)
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$\frac{\partial}{\partial T}(\rho_{Bn-M+1}’-p_{Bn-M+1}’)+\sum_{m=2}^{n+2}u_{3Bn+2-m}[\frac{T\overline{\rho}_{m}}{\ _{3}}+G \{\frac{\overline{\rho}}{\overline{a}^{2}}\}_{m}]=0$ , (40c)

where Eq.(39c) is used to derive (40a). The differences ffom those of the previous sets are the
right-hand side of (40a) and the $\Phi_{Bn-M+1}’/\partial T$ term on the left-hand side of (40c). Owing to

these terms and the fact that $\overline{\rho}_{m}(m=2M, 2M+1)$ appear on the left-hand side of (40b) so

that $\overline{\rho}_{m}+G\mathfrak{g}^{x_{3}}\langle\overline{\rho}/\overline{a}^{2}\rangle_{m-2M}\ _{3}(m=2M, 2M+1)$ cannot be regarded as the corresponding

component ffinction of the initial density, this set cannot be reduced to the incompressible
type.

Finally we note that the analysis can be continued in asimilar way and the higher-0rder sets
of equations for acompressible fluid are successively derived.

3.3.2 Initial conditions and boundary conditions
Initial conditions for the incompressible Euler sets of equations (38a-c) and (39a-c) (They are
the Boussinesq sets at $n=0,1$ , and the non-Boussinesq sets for $n\geq 2$ ) are arranged in the
following form ffom Eqs.(27a-d) and (28a-d):
For $0\leq n$ $\leq M$ ,

$\frac{\partial u_{iBn}}{\mathrm{a}_{i}}=0$ , (41a)

$\mathrm{c}\mathrm{u}\mathrm{r}1(u_{Bn}+\sum_{m=2}^{n}\overline{\rho}_{m}u_{Bn-m})=0$ , (41b)

(irrotational at $n$ $=0,1$ ;momentum vector being rotation ffee for $n$ $\geq 2$ )

$\rho_{Bn-M+1}’=\{$
0 $(0\leq n\leq M-2)$,

$p_{Bn-M+1}’$ $(n =M-1,M)$. (41c)

For $M+1\leq n\leq 2M-1(M\neq 1)$,

$\frac{\partial u_{\iota Bn}}{\mathrm{a}_{i}}=0$ , (42a)

curl $(u_{Bn}+ \sum_{m=2}^{n}\overline{\rho}_{m}u_{Bn-m)=0},$ (42b)

$\rho_{B\prime\vdash M+1}’=\sum_{m=M-1}^{n}p_{Bn-m}’\{\frac{1}{\overline{a}^{2}}\}_{m-M+1}-\sum_{m=M+1}^{n}1^{\infty}(u_{3Sn-m}-u_{3Bn-m}\mu_{t\frac{\Gamma\rho_{m-M+1}}{\ _{3}}}.$ (42c)

Here the condition for $p_{Bn+M+1}’$ is not presented in (41) and (42). It is because it can be
obtained as asolution of the equation that is derived by taking the divergence of the
momentum equation (38b) or (39b) and applying to it the divergence ffee condition for flow
velocity ffom the equation of mass conservation (38a) or (39a). The derived equation is the
second-0rder partial differential equation for $p_{Bn+M+1}’$ with respect to $x_{\mathrm{i}}$ . Its boundary
condition is anormal component, with respect to boundary, of the momentum equation whose
time derivative term ofthe velocity component normal to the boundary is zero.

An important aspect ofthe above initial conditions (41a-c) and (42a-c) is that adeviation of
the density from its initial value at rest is not zero for $n\geq M-1$ . Recalling that the terms
representing compressibility of fluid appears in the governing equations at the higher order
$n=2M$ , the correct evaluation of initial conditions may be more important than taking the
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compressibility of fluids into account in decreasing the error for using aset of equations for
an incompressible fluid.

Lastly, the initial condition for the compressible Euler set of equations (40a-c) $(n$ $=2M$ ,
$2M+1)$ is given. From Eqs.(28d) and (29a-d),

$\frac{\partial u_{iBn}}{\mathrm{a}_{j}}=Gu_{3Bn-2M}$ , (43a)

$\mathrm{c}\mathrm{u}\mathrm{r}1(u_{Bn}+\sum_{n1=2}^{n}\overline{\rho}_{m}u_{Br\succ m})=-G\mathrm{c}\mathrm{u}\mathrm{r}]\mathrm{f}\mathrm{f}\rho_{\acute{S}n-2M}\delta_{3}dt$, (43b)

(42c) with $n$ $=2M$ or $2M+1$ . (42c)
The condition for $p_{Bn+M+1}’$ is not presented because it can be obtained by asimilar procedure
as that for an incompressible type. In this case, the equation for $p_{Bn+M+1}’$ is derived by taking
the divergence ofthe momentum equation (40b) and subtracting $G$ times the $x_{3}$ component
of the momentum equation (40b) at $n$ $=0$ from it before using the mass conservation
equation (40a). In (43a), the flflow velocity is not divergence free. This is consistent with the
equation ofmass conservation (40a) for a compressible fluid. Moreover the momentum vector
is not rotation ffee from this order.

In the linearized theory discussed above, we neglected the nonlinear terms of the deviation
from the initial state like $u_{j}\partial u_{i}/\partial x_{j}$ which is ofthe order of $\delta^{4k}$ [recall that $u_{i}$ is $O(\delta^{2k})$ ]

but retained the quantities like $f-flu_{i}/\partial t$ and its higher order which are of the order of
$\delta^{2k+M+1+n}$ [see (30) and (33)] where $n$ is zero or any positive integer. This means that
$2k>>M+1+n$ , or $2k>>M+1$ (or $2k>>M$ ). The sets of linearized equations derived in
this section 3reflect this situation.

4. Discussion

Let us extend the results to the case of a liquid, as commented at the last paragraph of Section
1. We assume that the derivatives ofthe square of the sound speed with respect to the pressure
and the density are ofthe orders of $o(\epsilon^{\mathrm{h}}/\rho_{0})$ and $o(\epsilon^{b_{2}}a_{0}^{2}/\rho_{0})$ , respectively, where $b_{1}$ and
$b_{2}$ are given integers. Then the results for this case are obtained only by the $\mathrm{r}$ evaluation of
the orders of $\mathrm{a}\mathrm{e}^{2}/Tp$ and $\varpi^{2}/\partial\overline{\rho}$ that appear in the derived sets of equations and initial
conditions presented in the previous sections as

$\frac{ffi^{2}}{\Phi}=o(\epsilon^{b_{1}})$ , $\frac{\mathrm{a}\mathrm{e}^{2}-}{\partial\overline{\rho}}=o(\epsilon^{b_{2}})$ . $(44*\mathrm{b})$

We note that the magnitude ofthe square ofthe sound speed itself does not affect the results.
Next, consider the case where the flfluid is also subject to the stratification due to the

concentration of solvent or species without diffusion. Then we have to add another unknown
variable representing the concentration $\overline{c}+c’$ where $\overline{c}(x_{3})$ represents initial concentration
profile and $c’$ that of deviation. This variable appears as another independent variable of $a^{2}$

That is, $\overline{a}^{2}=\overline{a}^{2}(\overline{p},\overline{\rho},\overline{c})$ in (8) for the linear theory, where $\overline{c}$ is subject to the equations:
In the linear theory,
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The initial condition is

$\frac{\partial c’}{\partial t}+u_{3}\frac{ffc^{-}}{\ _{3}}=0$ (45)

$c’=0$ . (46)
In the linear theory no modification is needed to the derived sets of equations and initial

conditions in Section 3.3. They remain the same form, since effects of concentration are
already included in the density profile.

Now, based on the results obtained in the preceding sections, we estimate the error for
using an approximate set of equations. The error is defined as

$\frac{|(\begin{array}{lll}\mathrm{S}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e} \mathrm{E}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{t}\end{array})-(\mathrm{S}\mathrm{o}1\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{f}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t})|}{|\mathrm{S}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}_{\mathrm{E}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{r}} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t}|}$ . (48)

We conduct an error estimate for the following three kinds of approximate sets:
(i) Use of the set of equations for an incompressible fluid, where the condition of

incompressibility is employed as an equation of state,

(ii) Use of the set of Boussinesq equations, where the constant value is substituted into the
density of inertial terms in the momentum equation of the incompressible Euler set.

(iii) Use of the conventional initial condition where flow velocity is divergence free, the
momentum vector is rotation ffee, and the density deviation is zero.

The results of the error estimates are arranged in Table 1. From their results, we see that the
error due to the initial condition (iii) is equal to or larger than that due to the use of
incompressible Euler set. This indicates that the correct evaluation of initial conditions may
be more important than incorporating the terms representing compressibility of fluids into the
governing equations to decrease an error for using an approximate set of equations. This
tendency is amplified as $M$ increases, or the effect ofgravity decreases.

Table 1
$(M\geq 1)$ (i) The error of

incompressible
$(M\geq 1)$ (i) The error of

incompressible
Euler set

(ii) The error of
the Boussinesq

set

(iii) The error of
the initial
condition

(I) Linear theoly
$2k>>M+1$

$\epsilon^{M}$

$\mathcal{E}$

$\epsilon^{\frac{M+1}{2}}$

(II) Weakly nonlinear theory
$2k=M+1$

$\epsilon^{2k-1}$ $(=\epsilon^{M})$
$\epsilon^{k}(=\epsilon^{\frac{M+1}{2}})$

(III) Flow with no buoyancy effect
$2k<<M+1$

$\epsilon^{2k}$ $\epsilon^{k}$
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